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Abstract We consider price-dependent demand and
develop an integrated inventory and transportation policy
with strategic pricing to maximize the total profit for a ubiq-
uitous enterprise. The proposed policy provides the optimal
ordering, shipment and pricing decision. We first assume that
demand for a product is a linear function of the price. A
mathematical model for the total profit under quantity based
dispatch is developed in consideration of ordering, shipment
and pricing variables. Optimality properties for the model
are then obtained and an efficient algorithm is provided to
compute the optimal parameters for ordering, shipment and
pricing decision. Finally, we extend our results to a more
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general case where demand for the product is a convex or a
concave function of the price.
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Introduction

Recently, pervasive computing and ubiquitous networks have
received significant attention from researchers (Weatherall
and Jones 2002). The vision of ubiquitous technology is
to create a smart space where users can enjoy ubiquitous
services in an “anytime, anywhere, on any device” man-
ner (Takahashi et al. 2005; Serrano and Fischer 2007; Su
et al. 2008). The smart space realizing this vision is called a
ubiquitous environment and the ubiquitous environment has
motivated companies to create ubiquitous enterprise (Chen
and Kotz 2000; Bohlen et al. 2005; Su et al. 2008).

The most successful application of ubiquitous technology
has been run in the field of supply chain management (Bose
and Pal 2005 and Yang 2008). Ubiquitous supply chain man-
agement (USCM) has been recognized as a new initiative
for the effective supply chain management (SCM) and has
been adapted to ubiquitous enterprise (Yang 2008). USCM,
which differs from conventional SCM, makes a supply chain
management decision in a real time based on information col-
lected through ubiquitous technology. Thus, USCM needs an
integrated model that computes the optimal values of supply
chain control on a real time basis. This research addresses
integrated supply inventory, transportation and pricing deci-
sion making for ubiquitous supply chain management
(Fig. 1).
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Fig. 1 Description of ubiquitous enterprise environment

Previous integrated supply chain optimization models are
classified by two different approaches. One of the approaches
is integrated inventory-transportation decision where the total
relevant cost with the consideration of joint inventory and
transportation decision is minimized. A stream of problems
that deal with integrated inventory-transportation decisions
is referred to as a shipment consolidation problem. Due to the
advancement in information technology (e.g. electronic data
interchange) and the cost reduction in information sharing,
companies face a better opportunity to synchronize inven-
tory and transportation decisions and began to use a ship-
ment consolidation policy. Under a shipment consolidation
policy, the company has the autonomy to consolidate small
orders from customers until a larger dispatch quantity accu-
mulates. Thus, fewer shipments of larger loads are dispatched
(this practice is known as shipment consolidation), and the
company improves the synchronization of the inventory and
transportation decision (Chen et al. 2005). Using this method,
companies can reduce the transportation cost.

However, shipment consolidation does not always reduce
the supply chain cost. Delivery time and inventory holding
time increase while several small orders are consolidated into
a larger shipment. Thus, customer waiting cost and inventory
holding cost increase in return. Hence, such trade-offs must
be considered when making decisions about shipment con-
solidation.

On the other hand, recent operations management liter-
ature has started to focus on developing integrated mod-
els that can simultaneously optimize the relevant inventory
(operations) and pricing (marketing) decisions (Sajadieh and
Akbari Jokar 2009). The purpose of these literatures is to
determine the operations and marketing decision variables
that maximize the company’s profit. The first model of this
kind was investigated by Whitin (1955) who incorporated
pricing into the traditional EOQ model through a linear price-
sensitive relation for the customers.

The shipment consolidation literature and the integrated
inventory-pricing literature deal with the ordering and
shipment policies, and the ordering and pricing policies,

respectively. In this paper, we integrate the two above men-
tioned literature branches in a model where the shipment,
ordering and pricing policies are optimized all together and
develop an integrated inventory-transportation-marketing
model for ubiquitous enterprise.

This paper is organized as follows: “Literature review”
provides an overview of USCM, shipment consolidation and
integrated inventory-pricing literature. In “Integrated inven-
tory-transportation-pricing decision”, we have developed an
integrated inventory-transportation-pricing model to maxi-
mize the total profits. A mathematical model with a linear
demand function has been developed and an efficient algo-
rithm is provided to obtain the optimal parameters for the
proposed policy. We then extend our results in “Extensions”
to a more general case where the demand for the product is a
convex or a concave function of the price. Finally, “Conclu-
sion” summarizes our conclusions.

Literature review

Most research relevant to USCM is carried out recently and
tends to focus on technical perspective. Roussos (2006)
addressed the SCM standard in ubiquitous commerce. He
reviewed the history of unique identifier and product classi-
fication system and examined a global cataloguing schemes
and standards for ubiquitous commerce. Hackenbroich et al.
(2006) described enterprise software SAP’s SCM and Auto-
ID technology. They provide a good example of better under-
standing the relationship between ubiquitous technology and
U-business application. In addition, Johnson (2006) exam-
ined tracking technologies focusing on the business case for
investment and discussed the benefits of automated identifi-
cation and tracking as compared with traditional legacy sys-
tems like bar codes. Thiesse et al. (2006) described the design
and adaption of a real-time identification and localization
system using RFID and ultrasound sensor technologies and
Yang (2008) identified the critical success factors and exam-
ined their relationship with the benefits of USCM. Recently,
Schoenemann et al. (2009) introduced a Peer-to-Peer-based
architecture for exchanging distributed information, which
are shared among participants of a supply chain facilitated
with ubiquitous information technologies.

Shipment consolidation has received increasing academic
attention in the last two decades (Chen et al. 2005). Research
on shipment consolidation employs three different appro-
aches in consolidating orders: Quantity-based dispatch pol-
icy, time-based dispatch policy and hybrid dispatch policy.
The time-based dispatch policy and the quantity-based dis-
patch policy are the two most frequently used methods.

The quantity-based policy ships accumulated loads when
a predetermined economical dispatch quantity, q is accu-
mulated, whereas the time-based policy ships accumulated
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loads (all outstanding orders) every T period. Under the
time-based policy, each order is dispatched on pre-specified
shipment release dates, even if the dispatch quantity does
not necessarily satisfy transportation scale economies. On
the other hand, under the quantity-based policy, the dispatch
quantity assures transportation scale economies, but a spe-
cific dispatch time cannot be guaranteed. An alternative to
these two policies is a hybrid policy aimed at balancing the
trade-offs between the timely delivery of the time-based pol-
icy and the transportation cost savings associated with the
quantity-based policy. Under the hybrid policy, a dispatch
decision is made either when the size of a consolidated load
exceeds qH (pre-specified dispatch quantity), or when the
time since the last dispatch exceeds TH (pre-specified dis-
patch time).

Cetinkaya and Bookbinder (2003); Chen et al. (2005);
Centinkaya and Lee (2002); Moon et al. (2011); Ching and
Tai (2005); Cetinkaya et al. (2006) have developed the opti-
mization models for shipment consolidation. For the demand
arrival following a Poisson process, Cetinkaya and Book-
binder (2003), and Chen et al. (2005) have developed the opti-
mal quantity based policy. Centinkaya and Lee (2002) present
an optimization model for coordinating inventory and trans-
portation decisions at an outbound distribution warehouse
that serves a group of customers located in a given market.
Moon et al. (2011) developed joint replenishment and con-
solidated freight delivery policies for a TPW that handles
multiple items. They extended the results of Centinkaya and
Lee (2002) to consider the joint replenishment of multiple
items and introduce two time-based policies for the ware-
house (stationary policy and non-stationary policy, respec-
tively). The optimal hybrid dispatch policy with stochastic
demand is studied by Ching and Tai (2005) and Cetinkaya
et al. (2006). They analyzed the advantages and the disadvan-
tages of the quantity-based policy and the time-based pol-
icy, and have proposed hybrid policies. Recently, Günther
and Seiler (2009) investigated an operational transportation
planning problem based on a real industry case on shipment
consolidation.

These traditional studies on shipment consolidation have
assumed that the price of the product is constant. However,
the price of the product, if allowed to be adjusted, would influ-
ence the demand and the optimal dispatch quantity, accord-
ingly. Thus, the price of the product should also be considered
a decision variable. Different from existing cost minimiza-
tion research, we develop the optimization model to jointly
optimize ordering, shipment and pricing decisions in order
to maximize the total profit.

The integration of inventory and pricing decisions is first
studied by Whitin (1955). Whitin (1955) incorporated pricing
decision into the traditional EOQ model and this model was
later explicitly solved by Portueus (1985). Other researchers
such as Mills (1959); Karlin and Carr (1962); Hempenius

(1970); Lau and Lau (1988) and Polatoglu (1991) build an
integrated model consider a price-dependent demand. Abad
(1996) then investigated a similar problem for a more general
demand function.

Kunreuther and Schrage (1973) determine the optimal
static price and the optimal production quantity under the
assumption of deterministic demand. For stochastic demand,
Federgruen and Heching (1999) address the problem of deter-
mining optimal pricing and inventory replenishment quanti-
ties. They build both finite and infinite horizon and obtain an
optimal combined pricing and inventory policy.

Lau and Lau (2003) investigated a joint pricing-inventory
model and they found that the nature of the price-demand
relationship may have a considerable effect on the results of
inventory-pricing decision. Ray et al. (2005) introduced an
integrated marketing-inventory model for two pricing poli-
cies, price as a decision variable and mark-up pricing.
Another recent paper in this area is by Bakal et al. (2008)
who presented two inventory models with a price-dependent
demand. They introduced two different pricing strategies (1)
the firm chooses to offer a single price in all markets, and
(2) a different price is set for each market. Recently, Abad
(2008) investigated the pricing and lot-sizing problem for
a product subject to general rate of deterioration and par-
tial backordering. Sajadieh and Akbari Jokar (2009) devel-
oped an integrated production-inventory-marketing model to
determine the relevant profit-maximizing decision variable
values. Kannegiesser et al. (2009) considered on integrated
sales and supply decision for commodities in a value chain
and developed a mathematical model to determine the opti-
mal sales quantity, production quantity and price to maximize
the profit. Recently, Kannegiesser and Günther (2010) pro-
posed coordinated decision making for production, distribu-
tion, sales and procurement of a global supply chain network
and introduced a linear optimization model for tactical value
chain planning.

These literatures on integrated inventory-pricing problem
only deal with the ordering and pricing decisions and did not
consider transportation decision. Explained ahead, company
can reduce the transportation cost using shipment consolida-
tion. Different from existing studies, we integrate these two
streams of literature and develop a model where the shipment,
ordering and pricing policies are optimized all together.

Integrated inventory-transportation-pricing decision

In this section, we develop a mathematical model for inte-
grated inventory-transportation-pricing decision of USCM.
The price of the product affects the total revenue as well as
the total cost. For example, if the price is reduced, the demand
increases, which will shorten the replenishment cycle. While
the total cost may be reduced, the revenue may also be
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reduced. Thus, the price must be determined considering this
trade-off between the revenue and the cost, and we employ
the objective function of maximizing the profit, which is com-
puted by the difference between revenue and cost.

In this study, we consider a quantity-based dispatch pol-
icy where the company releases a shipment as soon as the
size of an outbound load waiting to be released reaches a
critical dispatch quantity denoted by q. In this context, the
time between two successive outbound dispatch decisions is
called a dispatch cycle, and all orders arriving during a dis-
patch cycle are combined to form a large outbound load. Let
Q denote the replenishment quantity. Observe that one can
safely substitute Q = nq, where n is an integer denoting
the number of dispatch cycles within an inventory replen-
ishment cycle. In this paper, we assume that each customer
requests one unit of the product, and the demand arrives
according to a Poisson process with mean rate λ. Customers
can wait, however, keeping customers waiting has negative
impact on firm’s goodwill. Such loss of goodwill associated
with delayed receipt of goods is represented by a customer
waiting cost. We also assume that the shipment cost is irre-
spective of the customer location (transportation distance).
In this paper, we assume that the delivery lead time is negligi-
ble, i.e., customers are located in a relatively close proximity.
Under this assumption, the shipment cost consists of a fixed
cost of hiring trucks (or other transportation means) and a
variable cost that is determined by volume, not by distance.

The followings are the additional assumptions of the
model:

• The inventory level is under continuous review.
• The lead time for inventory replenishment is assumed to

be negligible so that there is no inventory during the last
dispatch cycle of an inventory replenishment cycle, as in
Fig. 2.

• The demand arrival rate λ is a non-increasing and lin-
ear function of the price, as shown in Fig. 3 (Lau and
Lau 1988; Polatoglu 1991; Abad 1996; Jung and Hwang
2009) and (Yassine 2010).

As a result, the problem is to compute the optimal price,
p, the optimal number of dispatch cycles within a replenish-
ment cycle, n, and the optimal dispatch quantity, q, in order
to maximize the total profit.

Mathematical model

In this section, we present a mathematical model for the quan-
tity-based dispatch policy to consider pricing.

The following notation is employed in this study:
p: Unit product price (decision variable)
FR : Fixed cost of replenish inventory

Fig. 2 Firm’s inventory level

Fig. 3 Linear demand function

CR : Unit replenish cost
FD: Fixed cost of dispatching

shipment to customer
CD: Unit dispatch cost
h: Holding cost per unit per unit time
w: Waiting cost per unit per unit time
λ: Poisson demand rate, a linear

function of product price (λ = λ0 − αp)
α: Price sensitivity of demand (α > 0)

q: Dispatch quantity (integer, decision variable)
n: Number of dispatch cycles within an inventory

replenishment cycle (integer, decision variable)
Q: Replenishment quantity (Q = nq)

As Fig. 2 has shown, the process under consideration is
a renewal process (for the classical treatment of this kind
of system). Thus, using the Renewal Reward Theorem, the
expression for the long-run average profit, T P(p, n, q), is
determined by dividing E[Replenishment Cycle Profit] by
E[Replenishment Cycle Length].

As the demand process is a Poisson process, the expec-
tation of the dispatch cycle length will be q/λ. Since the
number of dispatch cycles within an inventory replenish-
ment cycle is n, the expectation of the replenishment cycle
length is:
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E[Replenishment Cycle Length] = nq/λ (1)

We now compute revenue and four different cost elements
(replenishment, dispatch, holding and waiting costs) during
a replenishment cycle:

• Revenue: Since the quantity of product dispatched
during a replenishment cycle is nq, the corresponding
revenue is:

Revenue = npq (2)

• Replenishment Cost: Since the replenishment quantity,
Q, is equal to nq, the replenishment cost is:

Replenishment Cost = FR + CR · nq (3)

• Dispatch Cost: Since the dispatch quantity is q, the dis-
patch cost in a dispatch cycle is FD +CD ·q. There are n
dispatch cycles during a replenishment cycle, and thus,
the dispatch cost during the cycle is:

Dispatch Cost = n (FD + CD · q) (4)

• Inventory Holding Cost: At the beginning of a replen-
ishment cycle, the inventory level is (n−1)q. This implies
that the inventory level is kept at (n −1)q throughout the
first dispatch cycle, and hence incurs an expected hold-
ing cost of h · (n − 1)q · q

λ
. For the i th dispatch cycle,

the expected holding cost is h · (n − i)g · q
λ

. Hence, the
total expected inventory holding cost is given by:

Inventory Holding Cost =
n∑

i=1

[
h · (n − i)q · q

λ

]

= h · n(n − 1) · q2

2λ
(5)

• Waiting Cost: Since the company will not dispatch their
products until q units of demand accumulate, the wait-
ing time for the j th demand is (q− j)

λ
. Thus, the customer

waiting cost per dispatch cycle is
∑q

j=1

[
w · (q− j)

λ

]
=

w· q(q−1)
2λ

. Since there are n dispatch cycles in a replenish-
ment cycle, the customer waiting cost per replenishment
cycle is:

Waiting Cost = n
w · q(q − 1)

2λ
(6)

Using the above results, the expected profit during a
replenishment cycle is computed by

E[Replenishment Cycle Profit]

= nqp − (FR + CR · nq)

−n(FD + CD · q) − h · n(n − 1) · q2

2λ

−n · w · (q − 1)q

2λ
(7)

Conversely, the expression for the long-run average profit,
T P(n, q, p), is given by

T P(n, q, p)

= nqp−(FR +CR · nq)−n(FD +CD · q)− h·n(n−1)·q2

2λ
− n·w·(q−1)q

2λ
nq
λ

= pλ − FRλ

nq
− CRλ − FDλ

q
− CDλ − h(n − 1)q

2

−w(q − 1)

2
(8)

Since λ = λ0 − αp, T P(p, n, q) is

T P(n, q, p) = p(λ0 − αp) − FR(λ0 − αp)

nq

−CR(λ0 − αp) − FD(λ0 − αp)

q

−CD(λ0 − αp) − h(n − 1)q

2
− w(q − 1)

2
(9)

The value of p, n and q that maximize the total profit per
unit time follow the optimality conditions below.

Proposition 1 For given values of n and q, the total profit
function is a concave function of p. Thus, the optimal price
p is obtained by taking the first order derivative of the total
profit function, as given by Eq. (10):

p∗ = 1

2α

[
λ0 + αFR

nq
+ αCR + αFD

q
+ αCD

]
(10)

Proof Taking the first order and second order partial deriva-
tives of (9) with respect to p, we have

dT P(n, q, p)

dp
= λ0 − 2αp+ αFR

nq
+αCR + αFD

q
+ αCD

(11)

and

d2T P(n, q, p)

dp2 = −2α (12)

respectively. Since the second order derivative is always less
than zero, T P(n, q, p) is concave with respect to p for given
values of n and q. ��
Proposition 2 For given values of p and q, the optimal value
of n always satisfies the following condition:

n∗(n∗ − 1) ≤ 2FR(λ0 − αp)

hq2 ≤ n∗(n∗ + 1) (13)
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Proof For given values of p and q, the optimal value of n
always satisfies the following:

T P(n∗ − 1) ≤ T P(n∗) and T P(n∗ + 1) ≤ T P(n∗)

Using Eq. (1), an optimality condition for n is:

n∗(n∗ − 1) ≤ 2FR(λ0 − αp)

hq2 ≤ n∗(n∗ + 1)

��
Proposition 3 For given values of p and n, the optimal value
of q satisfies the following condition:

q∗(q∗ − 1) ≤ 2 [FR(λ0 − αp) + nFD(λ0 − αp)]

n [h(n − 1) + w]
≤ q∗(q∗ + 1) (14)

Proof For given values of p and n, the optimal value for q
follows:

T P(q∗ − 1) ≤ T P(q∗) and T P(q∗ + 1) ≤ T P(q∗)

Similarly, using Eq. (1), an optimality condition of q is:

q∗(q∗ − 1) ≤ 2 [FR(λ0 − αp) + nFD(λ0 − αp)]

n [h(n − 1) + w]
≤ q∗(q∗ + 1)

��
Proposition 4 The upper bound of n satisfies the following
condition:

nmax(nmax − 1) ≤ 2FRλ0

h
≤ nmax(nmax + 1) (15)

where nmax denote the upper bound of n.

Proof The value, 2FR(λ0−αp)

hq2 in Eq. (13) is a non-increasing
function of p and n. So, the maximum value of possible n is
determined when p = 0 and q = 1. ��
Proposition 5 The upper bound of q satisfies the following
condition:

qmax(qmax − 1) ≤ 2 [FRλ0 + FDλ0]

w
≤ qmax(qmax + 1)

(16)

where qmax denote the upper bound of q.

Proof The value, 2[FR(λ0−αp)+nFD(λ0−αp)]
n[h(n−1)+w] in Eq. (14) is non-

increasing function of p and q. So, the maximum value of
possible n is determined when p = 0 and n = 1. ��

Using the above optimality conditions, we develop a sim-
ple enumeration algorithm to obtain the optimal parameters
for the proposed policy. The simple enumeration algorithm
always guarantees the optimal solution. The procedure is as
follows:

Table 1 The parameter values
for our example

Parameter Value

FR 40

FD 5

λ0 2

h 1

w 2

α 0.01

Table 2 Summary of the
solution procedure

Parameter Value

nmax 13

qmax 9

Optimal p 103.0556

Optimal n 3

Optimal q 3

Total profit 88.98225

The simple enumeration algorithm (SEA)

(Step 1) Compute the upper bound of n and q using Eqs.
(15) and (16), respectively.

(Step 2) For all combination of n(n = 1, . . . , nmax) and
q(q = 1, . . . , qmax), compute the optimal p using
Eq. (10).

(Step 3) For given combination of n and q, p, compute the
total profit T P(n, q, p) using Eq. (9).

(Step 4) Select the (n, q, p) with the maximum
T P(n, q, p)

A numerical example is employed to illustrate how the
algorithm proceeds. The parameter values for this example
are provided in Table 1.

The upper bound of n and q, as well as the resulting opti-
mal values, are provided in Table 2.

Computational complexity of the proposed algorithm

The computational complexity of the simple enumeration
algorithm is determined by the number of dispatch cycles
and the number of dispatch quantity. The proposed algo-
rithm requires computing p∗ by Eq. (10) at most qmax · nmax

times, where qmax and nmax are tight upper bounds obtained
by Propositions 4 and 5.

Computational experiments

In this subsection, we compare the performance of the two
policies (Quantity-based dispatch policy with pricing (QWP)
and without pricing (QWOP)). For this comparison, we will
use the data from (2006), a set of 1,024 problem instances,
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Table 3 Comparison of the profits under QWP and QWOP

FR FD λ0 h w

40 5 2 1 2

p n q Total profit

Quantity-based dispatch policy with pricing
103.0556 3 3 88.98225

p j n q Total profit Profit gap �P%

Quantity-based dispatch policy without pricing
12.25 2 6 7.176459 81.80579 91.94

24.5 3 4 27.98375 61.0285 68.59

36.75 3 4 45.51209 43.47017 48.85

49 3 3 59.76222 29.22003 32.84

61.25 2 5 71.54688 17.43538 19.59

73.5 2 5 80.1525 8.829758 9.92

85.75 3 3 85.95743 2.99482 3.37

98 3 3 88.72666 0.255592 0.29

110.25 2 4 88.34 0.64225 0.72

122.5 2 4 85.0376 3.888496 4.37

generated using a full factorial design and considering CR =
0 : CD = 0 : FR = 40, 80, 160, 320; FD = 5, 10, 20,

40; h = 1, 2, 4, 8;w = 2, 4, 8, 16; and λ0 = 2, 4, 8, 16.
To compare the performance of QWP for different values

of p, we compute maximum value of p, pmax, and divide
the range [0, pmax] into ten equally spaced values of p j :
(p1, p2, . . . , p10). Thus, ten different values of p are con-
sidered. For each value of p, 1,024 problems are generated
and solved using both QWP and QWOP for a total of 10,240
problems. The particular scenario satisfying FR = 40, FD =
5, λ0 = 2, h = 1, w = 2 is shown in Table 3. Table 3 dem-
onstrates the profit difference among a QWP and QWOP.
The optimal price of QWP is calculated by Proposition 1,
and the price of QWOP is given in column 1. For each
p j = 12.25, 24.5, . . ., 122.5, the percentage profit increase
that result from optimal pricing is reported under the column
heading �P%. These values are computed by

�P% = 100
Profit of QWP − Profit of QWOP

Profit of QWP
.

As shown in Table 3, the values of n and q are adjusted
according to the price, and the total profit under QWP con-
sistently increases. The profit difference between QWP and
QWOP is at least 0.29% and can be up to 91.94% in a par-
ticular scenario.

Tables 4 and 5 analyze the performance of the QWP with
different the fixed cost of replenishing inventory and dispatch
shipment. Table 4 shows that the replenishment quantity
(Q = nq) increase and the profit decreases as FR increases
from 40 to 320. This agrees with the intuition that if fixed cost

Table 4 Performance of QWP with different FR (FD = 5, λ0 = 2,

h = 1, w = 2)

FR n q p Profit

40 3 3 103.06 88.98

60 4 3 103.13 86.94

80 4 3 103.96 85.34

100 5 3 103.83 83.84

120 5 3 104.50 82.57

140 5 3 105.17 81.30

160 6 3 104.86 80.22

180 6 3 105.42 79.17

200 6 3 105.97 78.13

220 7 3 105.60 77.22

240 7 3 106.07 76.33

260 7 3 106.55 75.44

280 8 3 106.15 74.61

300 8 3 106.56 73.83

320 8 3 106.98 73.06

of replenishing inventory is high, we order more products to
reduce the replenishment cost.

Table 5 shows that the shipment quantity increases and
profit decrease as FD increases from 5 to 40. This agrees
with the intuition that if the fixed cost of dispatch shipment
is high, we dispatch more orders to reduce the transportation
cost.

Table 6 shows that the replenishment quantity and the
profit decrease as the unit holding cost increases from 1
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Table 5 Performance of QWP with different FD (FR = 40,

λ0 = 2, h = 1, w = 2)

FD n q p Profit

5 3 3 103.06 88.98

7.5 2 4 104.38 88.23

10 2 4 105.00 87.63

12.5 2 5 105.13 87.07

15 2 5 105.75 86.57

17.5 2 5 106.38 86.07

20 2 5 107.00 85.57

22.5 2 5 107.63 85.07

25 2 5 108.25 84.56

27.5 2 5 108.88 84.06

30 2 6 109.17 83.59

32.5 2 6 109.79 83.15

35 2 6 110.42 82.70

37.5 2 6 111.04 82.26

40 2 6 111.67 81.81

Table 6 Performance of QWP with different h (FR = 40, FD = 5,

λ0 = 16, w = 16)

h n q p Profit

1 13 2 800.96 6,347.72

1.5 10 2 801.25 6,342.54

2 9 2 801.39 6,338.27

2.5 8 2 801.56 6,334.55

3 5 3 801.83 6,331.38

3.5 5 3 801.83 6,328.38

4 4 3 802.29 6,326.06

4.5 4 3 802.29 6,323.81

5 4 3 802.29 6,321.56

5.5 4 3 802.29 6,319.31

6 3 3 803.06 6,317.20

6.5 3 3 803.06 6,315.70

7 3 3 803.06 6,314.20

7.5 3 3 803.06 6,312.70

8 3 3 803.06 6,311.20

to 8. This agrees with the intuition that if the unit holding
cost is high, we keep fewer inventories to reduce the holding
cost.

Table 7 shows that the shipment quantity and the total
profit decrease as the unit waiting cost increases from 2 to
16. This agrees with the intuition that if the unit waiting cost
is high, we dispatch fewer orders to reduce the total waiting
cost because the waiting cost increases as shipment quantity
increases.

Table 7 Performance of the QWP with different w(FR = 40, FD = 5,

λ0 = 16, h = 4)

w n q p Profit

2 1 19 803.55 6,363.01

3 1 15 803.83 6,354.97

4 1 13 804.04 6,348.29

5 1 12 804.17 6,342.48

6 2 6 802.92 6,339.70

7 2 6 802.92 6,337.20

8 3 4 802.50 6,335.39

9 3 4 802.50 6,333.89

10 3 4 802.50 6,332.39

11 4 3 802.29 6,331.06

12 4 3 802.29 6,330.06

13 4 3 802.29 6,329.06

14 4 3 802.29 6,328.06

15 4 3 802.29 6,327.06

16 4 3 802.29 6,326.06

Extensions

In this section, we extend our results to a more general case
where the demand for the product is a convex or a con-
cave function of the product price. In previous sections, we
assumed that the demand for the product is a linear function
of the price. But the relation between price and demand is not
accurately represented by an inverse proportion in real life.
Thus, we consider a more general case where the demand for
the product is a convex or a concave function of the price, as
shown in Fig. 4.

Concave demand function

When the demand for the product is a general concave func-

tion (λ = f (p) where d f (p)
dp < 0 and d2 f (p)

dp2 < 0), T P(n,

q, p) is

T P(n, q, p) = p f (p) − FR f (p)

nq
− CR f (p) − FD f (p)

q

−CD f (p) − h(n − 1)q

2
− w(q − 1)

2
(17)

The values of p, n and q that maximize the total profit per
unit time follow the optimality conditions below.

Proposition 6 For given values of n and q, the total profit
function is a concave function of p. Thus, the optimal price
p is obtained by taking the first order derivative of the total
profit function.
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Fig. 4 Concave and convex
demand functions

Proof Taking the first order and second order partial deriva-
tives of (17) with respect to p, we have

dT P(n, q, p)

dp
= f (p) + p · f ′(p) − FR · f (p)

nq

−CR · f ′(p) − FD · f (p)

q

−CD · f ′(p) (18)

and

d2T P(n, q, p)

dp2

= 2 f ′(p) + f ′′(p)

[
p − FR

nq
− CR − FD

q
− CD

]

< 0 (19)

respectively. Since the second order derivative is always less
than zero, T P(n, q, p) is concave with respect to p for given
values of n and q. ��

Proposition 7 For given values of p and q, the optimal value
of n always satisfies the following condition:

n∗(n∗ − 1) ≤ 2FR · f (p)

hq2 ≤ n∗(n∗ + 1) (20)

Proof For given values of p and q, the optimal value of n
always satisfies the following:

T P(n∗ − 1) ≤ T P(n∗) and T P(n∗ + 1) ≤ T P(n∗)

Using Eq. (15), an optimality condition for n is:

n∗(n∗ − 1) ≤ 2FR · f (p)

hq2 ≤ n∗(n∗ + 1)

��

Proposition 8 For given values of p and n, the optimal value
of q always satisfies the following condition:

q∗(q∗ − 1) ≤ 2 [FR · f (p) + nFD · f (p)]

n [h(n − 1) + w]
≤ q∗(q∗ + 1)

(21)

Proof For given values of p and n, the optimal value of q
follows:

T P(q∗ − 1) ≤ T P(q∗) and T P(q∗ + 1) ≤ T P(q∗)
Similarly, using Eq. (15), an optimal condition of q is:

q∗(q∗ − 1) ≤ 2 [FR · f (p) + nFD · f (p)]

n [h(n − 1) + w]
≤ q∗(q∗ + 1)

��
Proposition 9 The upper bound of n satisfies the following
condition:

nmax(nmax − 1) ≤ 2FR f (0)

h
≤ nmax(nmax+1) (22)

Proof The value, 2FR f (p)

hq2 in Eq. (20) is a non-increasing
function of p and q. So, the maximum value of possible n is
determined when p = 0 and q = 1. ��
Proposition 10 The upper bound of q satisfies the following
condition:

qmax(qmax−1) ≤ 2 [FR f (0)+FD f (0)]

w
≤ qmax(qmax+1)

(23)

Proof The value, 2[FR f (p)+nFD f (p)]
n[h(n−1)+w] in Eq. (21) is a non-

increasing function of p and n. So, the maximum value of
possible n is determined when p = 0 and n = 1. ��

Using the above optimality conditions, we can develop
an enumeration algorithm (like SEA in “Integrated inven-
tory-transportation-pricing decision”) to obtain the optimal
parameters for the proposed policy.

Convex demand function

When the demand for the product is a general convex function

(λ = f (p) where d f (p)
dp < 0 and d2 f (p)

dp2 > 0), the optimal-
ity conditions for upper bound of n and q are provided by
Propositions 9 and 10. However, it is difficult to obtain an
optimality condition for p. Thus, we consider the two most
widely-employed convex demand functions, f (p) = k

pβ and
f (p) = γ exp(−δp), where k, β, γ and δ are positive con-
stants. These functions are introduced in numerous standard
Economics references (Lau and Lau 2003).
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Iso-elastic demand function

When the demand for the product is an iso-elastic demand
function, f (p) = k

pβ where β > 1, T P(n, q, p) is

T P(n, q, p) = p

(
k

pβ

)
−

FR

(
k
pβ

)

nq
− CR

(
k

pβ

)

−
FD

(
k
pβ

)

q
− CD

(
k

pβ

)

−h(n − 1)q

2
− w(q − 1)

2
(24)

The value of p that maximizes the total profit per unit time
follows the optimality conditions below.

Proposition 11 For given values of n and q, the total profit
function is a concave function of p. Thus, the optimal price
p is obtained by taking the first order derivative of the total
profit function, as given by Eq. (25).

p∗ =
β

(
FR
nq + CR + FD

q + CD

)

(β − 1)
(25)

Proof Taking the first order and second order partial deriva-
tives of (24) with respect to p, we have

dT P(n, q, p)

dp

= k

pβ+1

[
p − βp + β

(
FR

nq
+ CR + FD

q
+ CD

)]
(26)

and

d2T P(n, q, p)

dp2 = − 2βk

pβ+1

+β(β + 1)k

pβ+2

[
p − FR

nq
− CR − FD

q
− CD

]

= − 2βk

pβ+1 + β(β + 1)k

pβ+1 − β(β + 1)k

pβ+2

×
[

FR

nq
+ CR + FD

q
+ CD

]
(27)

respectively. The unique value of p that satisfies dT P(n,q,p)
dp =

0 exists, and this value is

p =
β

(
FR
nq + CR + FD

q + CD

)

(β − 1)
(28)

Using Eq. (28),
[

FR
nq − CR − FD

q − CD

]
= (β−1)

p . Substitut-

ing this equation into Eq. (27), we obtain (after rearranging
the terms):

d2T P(n, q, p)

dp2 = − 2βk

pβ+1 + β(β + 1)k

pβ+1

− (β + 1)(β − 1)k

pβ+1 = (1 − β)k

pβ+1 < 0 (29)

Since the second order derivative is always less than zero,
T P(n, q, p) is concave with respect to p for given values of
n and q. ��

Using the above optimality conditions, we can develop
an enumeration algorithm (like SEA in “Integrated inven-
tory-transportation-pricing decision”) to obtain the optimal
parameters for the proposed policy.

Exponential demand function

When the demand for the product is an exponential demand
function, f (p) = γ exp(−δp), T P(n, q, p) is

TP(n, q, p) = p (γ exp(−δp)) − FR (γ exp(−δp))

nq

−CR (γ exp(−δp)) − FD (γ exp(−δp))

q

−CDγ exp(−δp)− h(n−1)q

2
− w(q − 1)

2
(30)

The value of p that maximizes the total profit per unit time
follows the optimality conditions below.

Proposition 12 For given values of n and q, the total profit
function is a concave function of p. Thus, the optimal price
p is obtained by taking the first order derivative of the total
profit function, as given by Eq. (31).

p∗ = 1

δ
+

(
FR

nq
+ CR + FD

q
+ CD

)
(31)

Proof Taking the first order and second order partial deriva-
tives of (30) with respect to p, we have

dT P(n, q, p)

dp
= γ exp

×(−δp)

[
1 − δ

(
p − FR

nq
− CR − FD

q
− CD

)]
(32)

and

d2T P(n, q, p)

dp2 = −2δγ exp(−δp)

+δ2γ exp(−δp)

[
p − FR

nq
− CR − FD

q
− CD

]
(33)

respectively. The unique value of p that satisfies dT P(n,q,p)
dp =

0 exists, and this value is

p = 1

δ
+

(
FR

nq
+ CR + FD

q
+ CD

)
(34)

Using Eq. (34),
[

p − FR
nq − CR − FD

q − CD

]
= 1

δ
. Substi-

tuting this equation into Eq. (33), we obtain (after rearranging
the terms)

d2T P(n, q, p)

dp2 = −δγ exp(−δp) < 0 (35)
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Since the second order derivative is always less than zero,
T P(n, q, p) is concave with respect to p for given values of
n and q. ��

Using the above optimality conditions, we can develop
an enumeration algorithm (like SEA in “Integrated inven-
tory-transportation-pricing decision”) to obtain the optimal
parameters for the proposed policy.

Conclusion

For USCM, suppliers must simultaneously optimize inven-
tory, transportation and pricing on a real time basis. The pro-
posed model jointly determines the optimal price, order quan-
tity, and shipment quantity with polynomial complexity.

We consider the price-dependent demand and develop an
integrated inventory and transportation policy with strategic
pricing to maximize the total profit for a ubiquitous enter-
prise. We first assume that demand for the product is a linear
function of the price and extend our results to a more gen-
eral case where the demand for the product is a convex or
a concave function of the price. An efficient algorithm is
provided to obtain the optimal parameters for the proposed
policy. Numerical results show that the Quantity-based dis-
patch policy with pricing (QWP) significantly improve the
total profit. To the best of our knowledge, this is the first
attempt to jointly optimize ordering, shipment and pricing
decisions for USCM.
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