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Abstract Semiconductor manufacturing is one of the most
complicated production processes with the challenges
of dynamic job arrival, job re-circulation, shifting bottle-
necks, and lengthy fabrication process. Owing to the lengthy
wafer fabrication process, work in process (WIP) usually
affects the cycle time and throughput in the semiconduc-
tor fabrication. As the applications of semiconductor have
reached the era of consumer electronics, time to market has
played an increasingly critical role in maintaining a com-
petitive advantage for a semiconductor company. Many past
studies have explored how to reduce the time of scheduling
and dispatching in the production cycle. Focusing on real set-
tings, this study aims to develop a manufacturing intelligence
approach by integrating Gauss-Newton regression method
and back-propagation neural network as basic model to fore-
cast the cycle time of the production line, where WIP, capac-
ity, utilization, average layers, and throughput are rendered
as input factors for indentifying effective rules to control the
levels of the corresponding factors as well as reduce the cycle
time. Additionally, it develops an adaptive model for rapid
response to change of production line status. To evaluate the
validity of this approach, we conducted an empirical study
on the demand change and production dynamics in a semi-
conductor foundry in Hsinchu Science Park. The approach
proved to be successful in improving forecast accuracy and
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Introduction

Semiconductor manufacturing is one of the most complicated
production processes because of the challenges of
lengthy fabrication process, unrelated parallel machine,
dynamic job arrival, non-preemptive, inseparable sequence-
dependent setup time, multiple-resource requirements, gen-
eral precedence constraint, job re-circulation, and shifting
bottlenecks (Chien and Chen 2007). A semiconductor
foundry provides a make-to-order production system with
complex product mix, in which the bottleneck is often shift-
ing with unbalanced machine loading caused by unplanned
orders and thus results in WIP bubbles. Since the semicon-
ductor industry is capital intensive, capacity is configured
to highly load the critical and expensive equipment such
as scanners for photolithography as the bottleneck. How-
ever, the near-bottleneck machines may become bottleneck
due to bottleneck shifted and thus complicate the problem in
addition to the conventional bottleneck. Most of the existing
approaches are formulated under the assumption of a sta-
tic production environment. In practice, special production
actions are applied to respond to due dates or other customer
requirements, especially in the foundry that often make the
production line unbalanced.

With the increasing competition in global semiconductor
market and declining average selling price of semiconductor
products, an accurate cycle time forecast is critical to make
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on-time delivery, reduce cycle time, which can reduce unnec-
essary buffer WIP in production lines and bullwhip effect
in the whole semiconductor manufacturing supply chain.
Indeed, wafer fabrication facility (fab) needs safety WIP level
as the buffer to maintain the productivity of the expensive bot-
tleneck equipment in light of dynamic production changes
(Leachman et al. 2002). However, little research has been
done to determine the corresponding WIP levels for vari-
ous tool groups at different process steps to maintain overall
production flow balanced.

Focusing on real settings, this study aims to develop a
manufacturing intelligence approach via data mining and
combine domain knowledge to forecast the cycle time with
production line status such as WIP, movement (MOVE), and
capacity. The derived rules can be used to control the pro-
duction line status (e.g., WIP levels) to reduce the cycle time.
Indeed, manufacturing intelligence approaches has been
developed to extract useful information and derived patterns
from production to support manufacturing decisions (Chien
et al. 2010; Kuo et al. 2011). In particular, the proposed
approach integrated Gauss-Newton regression (GNR)
method and back-propagation neural network (BPNN) model
into a two-phase manufacturing intelligence framework to
provide accurately forecast, while sensitively detecting the
change of production status. To evaluate the validity of this
approach, we conducted an empirical study on a semiconduc-
tor foundry in Hsinchu Science Park on the basis of real data
from the production line. The results have shown that this
approach can induce effective models to reduce the forecast
errors with the dynamic operation conditions.

The remainder of this paper is organized as follows. In the
next section, this study reviews the production planning in
semiconductor manufacturing. Then, proposed approach and
integrated forecast model for production line performance is
developed. Next, we conduct an empirical study on semicon-
ductor manufacturing for validation. Finally, this study con-
cludes with discussion of contribution and future research
directions.

Production planning in semiconductor manufacturing

Semiconductor industry is very capital intensive in which a
modern 300 mm wafer fab will need US$3 Billion capital
investment that can produce about 30,000 wafers per month.
In the past decades, semiconductor industry has closely fol-
lowed the Moore’s Law (Moore 1965) that the number of
transistors on a wafer area will be doubled every 12–24
months. To maintain the shrinkage of Integrated Circuit (IC)
features, a new generation of production technology will
be developed and employed every 12–24 months. There-
fore, multiple production technologies generally co-exist in a
wafer fab with utilization of a pool of common tools for mul-

tiple technologies and critical tools dedicated for a specific
technology. The wafer fabrication process flow in a semi-
conductor fab generally contains over 500 processing steps
including oxidation, deposition, metallization, lithography,
etching, ion implantation, photo-resist strip, cleaning, inspec-
tion, and metrology. The average production cycle time is
approximately 30–60 days depending on the complexity of
the technology. An average-sized factory containing average
400 pieces of equipment usually continuously operates 7 days
a week, and 24 hours a day (Dabbas and Chen 2001). The
production plan needs to be revised with dynamic re-entrant
process flow and complex product-mix. In addition, the bot-
tleneck also drifts with the unbalanced machine loading.
Therefore, it is difficult to estimate production status in long
production process of semiconductor foundry. Most existing
approaches are based on rule of thumb and various heuristic
indexes which are complicated and interrelated in semicon-
ductor manufacturing management (Chien et al. 2004).

According to Little’s Law, WIP and throughput are two
key factors for cycle time. Throughput and cycle time are
related to the line loading (WIP level) in the theoretical curves
as illustrated in Fig. 1. This curve always lies in the positive
region and is limited by some fixed capacity or resource con-
straints. Based on the Theory of Constraint (TOC), the rela-
tionship between fab line loading and relative throughput has
three characteristics. Firstly, the line loading is proportional
to the throughput and much lower than the capacity limi-
tation. Secondly, throughput tends to grow gradually while
line loading is close to the capacity limitation, where deci-
sion makers will start to reduce the line loading due to the
decreasing turn ratio (i.e., the average throughput obtained
by unit line loading). Thirdly, throughput cannot increase
with the line loading while the capacity is over-loaded. At
this stage, excess line loading only increases the production
cycle time instead of throughput. The throughput level is crit-
ical for determining the optimal buffer allocation that mini-
mizes the average WIP inventory (Papadopoulos and Vidalis
2001). Although a higher throughput and utilization can be
achieved with sufficient buffer WIP for bottleneck tools, the
cycle time may be increased because of queue time.

Both throughput and cycle time are important factors for
assessing manufacturing performance and helpful in giving
directions for future improvement. Atherton and Dayhoff
(1986) used signature analysis to characterize the curves
of inventory, cycle time, and throughput as a function of
wafer start rates. Chen et al. (1988) developed a queuing
network model for predicting cycle time and throughput.
Sattler (1996) used a queuing curve approximation to deter-
mine the productivity improvement of particular machine
sets and provided a basis for cycle time adjustment with fab
loadings. Miltenburg and Sparling (1996) developed three
models, including a simple stochastic model, a Markov chain
model, and a queuing model for cycle time reduction and
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Fig. 1 Theoretical curves of (a)
throughput (b) cycle time
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management under different situations. Fowler et al. (1997)
used a simulation-based analysis to evaluate the potential area
for productivity and capacity improvement. In particular, the
implementation helps a real fab reduce 25% cycle time and
inventory. Fowler et al. (2001) developed sampling strate-
gies to quickly generate the simulation-based cycle time-
throughput curve. Yu and Huang (2002) used BPNN to form
a relationship between product cycle time and the operation
tool. Morrison and Martin (2007) incorporated four practi-
cal manufacturing realities into a closed-form approximation
of a G/G/m-queue model to expand the practical applica-
bility of existing approximations for the behavior of mean
cycle time. However, most of the existing studies focused on
clarifying the relationship among actual cycle time, through-
put, and forecast cycle time. In practice, the feature of cycle
time and throughput varies with operation conditions such
as the change of production routings, preventative mainte-
nance policies, throughput rates, line configurations (Fowler
et al. 2001). Kuo et al. (2011) proposed a manufacturing
intelligence approach based on neural networks to analyze
production data and tool data for cycle time reduction. Lit-
tle research has been done on incorporating dynamic oper-
ation conditions for cycle time forecast and deriving useful
rules for WIP level management to reduce cycle time effec-
tively.

Proposed approach

The terminologies and notations used in this study are listed
as follows:

i : Index of the model types.
j : Index of the regression model types.
k: Index of the model periods.
m: Index of the data numbers in a specific model period.
b: Index of the basic model type.
a: Index of the adaptive model types.
e: Index of exponential regression model (for cycle time

forecast).
l: Index of logistic regression model (for MOVE forecast).

p: Index of the model stage (period) number.
G N Ri j (k): The Gauss-Newton regression function

of model type i and regression model type j (in period k
only for the adaptive models).

X : The variable of normalized WIP.
Y : The variable of normalized MOVE.
Z : The variable of cycle time.
Ai j(k), Bi j(k), Ci j(k): Regression coefficient from model

type i and regression model type j (in period k only for the
adaptive models).

Di j(k): Dummy limit from model type i and regression
model type j (in period k only for the adaptive models).

cm(k): The mth capacity data (in period k only for the
adaptive models).

xm(k): The mth WIP data (in period k only for the adaptive
models).

ym(k): The mth MOVE data (in period k only for the adap-
tive models).

zm(k): The mth cycle time data (in period k only for the
adaptive models).

x∗
m(k): The mth normalized WIP data (in period k only for

the adaptive models).
y∗

m(k): The mth normalized MOVE data (in period k only
for the adaptive models).

Ni(k): Data quantity used to construct model type i (in
period k only for the adaptive models).

Nc: Data quantity used to calculate Ĉbl .
RPT: Raw process time in this fab.
ε jmk : The mth residual of regression model j in period k.
ε jk : The average bias of regression model j in period k.
α jk : Adaptive coefficient of regression model j in period

k.
β jk : The best adaptive coefficients of regression model j

in period k while the adaptive criteria are achieved.
W ∗

L : A comparatively low level of normalized WIP.
W ∗

H : A comparatively high level of normalized WIP.
η j : Learning factor of regression model j .
q: Total trial numbers to test different adaptive coeffi-

cients.

123



2284 J Intell Manuf (2012) 23:2281–2294

Table 1 Summary of attributes

Attribute Definition Unit

Average layer Average layers of one wafer need to be manufactured Layers per wafer

Capacity The possibly maximum wafers production quantity Wafers output per month

Cycle time Average time needed to finish one layer of a wafer Days per layer

Fab utilization The percentage of used capacity to the maximum useful capacity in a fab Ratio

Movement (MOVE) Total accomplished operations among all machines Operations per day

Work in process (WIP) Number of wafer that in processing Wafers per day

This study proposes a two-phase approach consists of
basic model and adaptive model to derive production line
performance. In the first phase, the basic model is used to
describe the static status of existing production environments.
However, the latest situation of fab productivity should be
continuously modified according to actual production line
behavior which is influenced by the variance of fab WPH
(wafers per hour), different dispatching criteria, operator
learning effect, different product mix, and the new technol-
ogy introduced. In order to reduce forecast deviation of line
performance, an adaptive model is proposed for continuous
bias detection and rapid model re-alignment. The adaptive
models consider the physical properties of specific regres-
sion models and then construct an adaptive procedure with
learning effect to adjust the regression models.

Data preparation

There are lots of performance indexes in the field of semicon-
ductor manufacturing. Chien et al. (2004) reviewed related
studies and made arrangement of these key indexes. The
indexes such as capacity, cycle time, MOVE, and WIP, are
selected to represent the production line status, as shown in
Table 1. Theoretically, capacity can be described as the avail-
able production quantity for bottleneck machines. In a semi-
conductor fab, the capacity is measured by output quantity.
Fab utilization can be accessed by the ratio of the total wafer
output over the capacity during specific time period. MOVE
is the major index for fab productivity measurement. In this
study, the throughput is measured by MOVE instead of wafer
output because wafer output can be affected by human and
external factors, such as demand change, customer require-
ment, and urgent orders. WIP represents the wafers that are
not fully finished.

The purpose of data preparation is to ensure the avail-
ability of production line data and data quality for analysis.
The production data are automatically collected from various
engineering databases by different engineers on a daily basis.
To ensure that the relations of production attributes during
the same time period are connected to each other, the miss-

ing values would be filled through discussion with domain
experts.

Moreover, the WIP level under different capacity condi-
tions may represent different meanings, and increases with
capacity expansion. Thus, the original amount of WIP should
be normalized by being divided with relative capacity to
avoid incorrect information. Similarly, the MOVE is also
influenced by different capacity. The WIP and MOVE can
be normalized as follows:

x∗
m = xm

cm
m = 1 . . . Nb (1)

y∗
m = ym

cm
m = 1 . . . Nb (2)

In practice, the capacity sometimes should be adjusted based
on different product mix, because different product types
have different consumption of capacity. The difference could
be estimated as a weighted relation by their manufacturing
properties, fabricating difficulty, and proportion of their on-
machine time.

Basic model

The basic model is to derive the contours of fab productive
capability, which means the “existing” performance standard
for productivity for the long-term history. The GNR method
is used to forecast the global trend and BPNN is applied to
improve the forecast accuracy based on the production line
status.

Performance curve fitting

The performance curves among line loading, throughput and
cycle time can be shown by nonlinear regression analysis.
The iterative algorithm of GNR method is widely used to
solve the nonlinear least square problems (Seber and Wild
1989). In particular, GNR model is one of the best itera-
tive methods that perform well at converging speed and fit-
ting accuracy for solving nonlinear least square problems
(Kumar and Alsaleh 1996). The procedure of performance
curve sketches some characteristics from the scatter plots as
the theoretical curves first. In particular, cycle time increases
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exponentially with WIP and MOVE increases proportionally
with WIP. Therefore, the logistic and exponential functions
are used to present the curves of “normalized WIP versus nor-
malized MOVE” and “normalized WIP versus cycle time”
respectively.

Y = Cbl

1 + Abl Exp(Bbl x)
(3)

Z = Abe Exp(Bbex) + Cbe (4)

The parameter Ĉbl representing the higher limit of normal-
ized MOVE in logistic function and the parameter Ĉbe repre-
senting the lower limit of cycle time in exponential function
are estimated as follows:

Ĉbl =
∑Nc

m=1 y(m)

Nc
(5)

Ĉbe = R PT (6)

Meanwhile, the index (m) denoting normalized MOVE data
is ranked by their normalized WIP (i.e., m = 1 refers to
the data with maximally normalized WIP). Nc is the number
of data that contains information about the boundary lim-
itation of normalized MOVE. Nc changes from fab to fab
based on the distribution of past WIP level. In addition, the
cycle time tends toward its average raw process time (R PT )

while the quantity of WIP decreases to an extremely low
level. Once Ĉbl and Ĉbe are determined, the other parame-

ters
(

Âbl , B̂bl , Âbe, B̂be

)
could then be calculated iteratively

by the GNR method. Furthermore, Ĉbl and Ĉbe will also be
the initial values in the adaptive models.

The upper and lower limits for the logistic and exponen-
tial regression model should be considered first to ensure
that the adaptive model can form a reasonable shape. The
parameters Ĉbl and Ĉbe are used to control the upper limit
and lower limit of logistic and exponential regression model
respectively. Moreover, a relatively low WIP level for the
logistic regression model and a relatively high WIP level for
the exponential regression model are defined as W ∗

L and W ∗
H ,

respectively. According to the basic model, the dummy limits
D̂bl and D̂be can be derived as follows:

D̂bl = Ĉbl

1 + Âbl Exp
(

B̂bl W ∗
L

) = G N Rbl
(
W ∗

L

)
(7)

D̂be = Âbe Exp
(

B̂beW ∗
H

)
+ Ĉbe = G N Rbe

(
W ∗

H

)
(8)

Forecast error is used to evaluate the forecast performance.
Mean Absolute Percentage Error (MAPE) is used to express
the percentage error with the relative data scale and is pre-
sented as follows:

M AP E = 1

T

∑T

t=1

|Actualt − Forecastt |
Actualt

× 100% (9)

The smaller MAPE represents that the larger deviation can
be explained from forecast model and higher accuracy for
forecasting normalized MOVE and cycle time. If the GNR
model can not provide good fitness for MOVE or cycle time,
it needs to incorporate other factors in production line that
may influence on MOVE or cycle time for enhancing forecast
accuracy

Forecast accuracy enhancement

The GNR model only considers WIP level to present the
global trend of MOVE and cycle time. In practice, the MOVE
and cycle time are also influenced by the production line
status. For example, the cycle time will be increased with
manufactured layers. Moreover, fabs with larger capacity
could provide more tolerance and better flexibility to avoid
the throughput loss caused by improper job scheduling or
machine failure. However, these existing relations may not
be easily modeled via a mathematical formulation. BPNN
model with powerful learning ability is applied to extract
complicated patterns among various input factors and output
variables. The residual of GNR model which defines as the
difference between actual value and predicted value is used
as the output variable. As listed in Table 1, the input factors
related to production line status are used to construct BPNN
model and enhance forecast accuracy.

BPNN model is widely used to extract the complex pat-
terns from specific dataset by iterative learning approaches to
minimize the squared error between forecast value and actual
output. Basic topology of BPNN structure includes one input
layer, one output layer and one or two hidden layers between
input and output layers. In particular, the number of input
nodes and output nodes can be determined directly based on
the number of relative attributes. In general, BPNN model
with single hidden layer can obtain better prediction perfor-
mance. Each number of hidden nodes in hidden layer needs
to be determined by experiment trials. In this study, conjugate
gradient method is used for model learning and selection of
number of hidden nodes with the minimum MAPE. In partic-
ular, 80% of the input data are randomly selected to train the
BPNN model and the other 20% are used to test the model.

There are two advantages of the proposed basic model.
The first is that decision makers can realize the relation among
WIP, MOVE, and cycle time by using charts and tables to sup-
port their decisions about WIP level. The second is that they
can incorporate the variation of other external factors and
improve the forecast result via the BPNN models. There are
also two disadvantages of the basic models. Firstly, it is diffi-
cult to determine the complex relation among models inputs
(e.g., WIP and other external factors) and the outputs (e.g.,
MOVE and cycle time) in a regression model. Secondly, the
BPNN are difficult to provide understandable rules or for-
mulas for decision makers.
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Adaptive model

The production line status may change dynamically with the
external factors (such as short product life cycle, various mar-
ket segments, and demand) and internal factors (such as WPH
improvement, product-mix, yield, learning effect, and tech-
nology maturity). The basic model should adapt itself accord-
ing to the actual production environment for increasing the
forecast accuracy. Adaptive model is developed to forecast
the recent production status accurately by a small number of
newly observed data. This aggressive property is necessary
for rapid response to productivity adjustment.

Judgment of model adaptation

The adaptive model determines whether the model should
be adapted by both time and error criteria. Firstly, the time
criterion determines the maximum time interval of the basic
model with good forecast ability. In the semiconductor man-
ufacturing industry, the rapid changes of production status,
such as demand change, short product life cycle, market com-
petition, and technology innovation, lead to a short model
life cycle. Secondly, the error criteria are used to detect the
changes in the production condition. In order to measure
such situation, a simple control chart is applied to detect the
assignable bias in the manufacturing process. The forecast
errors between actual performance and corresponding pre-
dicted value from GNR models are recorded sequentially
and monitored via the control charts. The upper control limit
(UCL) and the lower control limit (LCL) should also be deter-
mined first (e.g., error rate within 5%) by the decision maker.
The error criteria of model adaption are listed as follows:

(1) There are n1 points that continuously locate in a row
with out-of-limit.

(2) There are n2 points that continuously locate in one side
of the central line without out-of-limit.

Criterion (1) shows that the recent performance index starts
with some obvious abnormal events and the guideline for
performance target could be changed. Criterion (2) is used
as a precaution against the expectable error when the system
is biased but not yet out-of-limit.

Coefficient update

The parameters of the regression model have to be adjusted
to incorporate the latest production status into models, while
the adaptive criteria are achieved for stage p. Figures 2, 3
show how the adaptive coefficients (αlp and αep) are applied
to update parameters and construct adaptive models at stage
p+1. As shown in Fig. 2, the new observations are performed

Adaptive model 
construction

Calculating the 
average bias

Input information 
in period p

Historical data before period p
New observations at period p
Dummy data point

Basic model
Adaptive model

Normalized WIP

Normalized MOVE

*
LW

1
ˆ

+alpC

1
ˆ

+alpD

Normalized WIP

Normalized MOVE

lpε

Normalized WIP

Normalized MOVE

alpĈ

alpD̂

*
LW

Fig. 2 Conception of adaptive logistic regression model

better at the previous stage p, the average bias of logistic
regression model at stage p can be calculated to measure the
average bias of normalized MOVE as Eq. (10). In particular,
εlp < 0 implies that the performance may have declined.

εlp =
∑Nap

m=1

[
y∗

mp − G N Ralp

(
x∗

mp

)]

Nap
(10)

The upper limit
(

Ĉalp

)
and lower limit

(
D̂alp

)
at stage p

should also be adjusted with the change. In general, the com-
plexity of management and capacity constraints of bottleneck
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machines will depress the growth of throughput at a higher
WIP level. The growth of throughput at a lower WIP level
should also be obtained. Thus, Ĉalp and D̂alp can be updated
to Ĉalp+1 and D̂alp+1 with εlp and αlp as follows.

Ĉalp+1 = Ĉalp + αlpεlp (11)

D̂alp+1 = D̂alp + εlp (12)

αlp is the adaptive coefficient of logistic regression model at
stage p with a value between 0 and 1. After Ĉalp is replaced

by Ĉalp+1 and a dummy data point
(

W ∗
L , D̂alp+1

)
is inserted

into the training dataset, other estimators in the adapted logis-
tic regression model ( Âalp+1 and B̂alp+1) can be derived

iteratively by the GNR method according to the updated esti-
mators and new observations.

Similarly, as shown in Fig. 3, the conception of the adap-
tive exponential regression model for cycle time at time period
p can also be updated by Eqs. (13)–(15):

εep =
∑Nap

m=1

[
zmp − G N Raep

(
x∗

mp

)]

Nap
(13)

Ĉaep+1 = Ĉaep + εep (14)

D̂aep+1 = D̂aep + αepεep (15)

αep is the adaptive coefficient of exponential regression model
at stage p with a value between 0 and 1. After Ĉaep is replaced

by Ĉaep+1 and a dummy data point
(

W ∗
H , D̂aep+1

)
is inserted

into the training dataset, other estimators in the adapted expo-
nential regression model ( Âaep+1 and B̂aep+1) can be derived
iteratively.

The adaptive coefficients are designed to revise the regres-
sion models at a high WIP level by the average bias between
actual value and predicted value for new observations. The
learning factor η that represents the learning ability of adap-
tive models is a constant ratio between 0 and 1. The larger
learning factor leads parameters of adaptive model to a rapid
change. The small learning factor makes the adjustment of
parameters slowly that could result in a local optimal solu-
tion. The learning factor η is usually set between 0.5 and
0.8. At the initial stage (p = 0), the value of adaptive coef-
ficients (αl0 and αe0) is set as an initial value. Once the
adaptive criteria are achieved, the average bias (εlp and εep)

can be calculated by Eqs. (10) and (13). The parameters of
regression models at stage p+1 can be updated immediately.

Once the adaptive criteria are achieved again, a heuristic
method is used to derive the optimal adaptive coefficients
at stage p, i.e., βlp and βep, to minimize the forecasting
error at stage p+1. First, we determine the comparison tri-
als q (q ≥ 1). Next, the different values of αlp and αep

are set as 0, 1/q, 2/q, . . ., (q − 1)/q, and then we recon-
struct the G N Ralp and G N Raep according to the data col-
lected at stage p. Then, the new observations collected at
stage p+1 are applied to each regression model to calculate
the sum of square errors (SSE, namely, square forecasting
errors). The adaptive coefficients βlp and βep with the mini-
mum SSE are selected for updating new adaptive coefficients
αlp+1 and αep+1 as follows:

αlp+1 = ηl × βlp + (1 − ηl) × αlp (16)

αep+1 = ηe × βep + (1 − ηe) × αep (17)

where ηl is the discount factor for the logistic regression mod-
els, andηe is the discount factor for the exponential regression
models. The new adaptive coefficients (αlp+1 and αep+1)

are the weighted combinations of the latest adaptive coef-
ficients (αlp and αep) and the best adaptive coefficients
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(βlp and βep) while the adaptive criteria are achieved at stage
p. Meanwhile, the new adaptive coefficients are used to con-
struct the new regression models at stage p+1. The estima-
tors Ĉalp+1, D̂alp+1, Ĉaep+1 and D̂aep+1 can be derived
from previous Eqs. (11), (12), (14), and (15), respectively
by translating the time period from stage p to stage p+1.
The estimators ( Âalp+1, B̂alp+1, Âaep+1 and B̂aep+1) can
also be derived from the iterative GNR method, and then the
regression model can be reconstructed to forecast the relative
throughput and cycle time.

Furthermore, the forecast accuracy of adaptive models can
also be improved by BPNN model as the basic model. All
the historical data are used to construct the BPNN model for
the adaptive model. For example, BPNN model is applied to
stage p + 2, and all the historical data including the basic
model and adaptive model at stage p and stage p + 1 are
integrated into a single dataset to construct the BPNN model.
According to the proposed forecast model, detailed tabula-
tion about WIP level with corresponding MOVE and cycle
time in basic and adaptive models can be analyzed as a useful
tool for WIP level decision and cycle time forecast. Deci-
sion maker can determine the WIP level decisions based on
the latest productivity forecast considering various kinds of
parameter setting.

Empirical study

To evaluate the validity of the proposed approach, an empir-
ical study was conducted in a semiconductor wafer fab in
Hsinchu Science Park. This fab was faced with the chal-
lenge of a lengthy production process, such as Make to Order
(MTO) production type, complicated job re-circulation flow,
various product mix, and serious bottleneck shifts. However,
the appropriate WIP level is crucial for cycle time reduction
in light of the dynamic nature of a wafer fab. The analysis
results provide useful information for wafer release plan and
reduce the production cycle time.

Data preparation

Without losing the generality, all the data showed in this
study were transformed for further analysis. The production
line data of one technology among 28 months were daily
collected to validate the proposed approach. The production
line data, including WIP, MOVE, cycle time, capacity, aver-
age layer, and fab utilization, were integrated into an analysis
dataset. In order to eliminate the effect of capacity expansion,
all the collected WIP and MOVE data have to been normal-
ized by dividing the relative capacity at the same period.
According to the time sequence, the first 80% of these data
were used to construct the basic model for a long-term basis.
The other 20% data were applied to construct the adaptive
models to fine-tune the dynamic production line.

Basic model

To capture the trend of production line status and avoid the
disturbance of daily data noise, the daily data were sampled
in every 10 days to ensure that the minimum data quantity
contains various patterns in the beginning, middle, and end of
a month. According to the sampling strategy, historical data
in the first 22 months were transformed to 66 data to con-
struct the basic model for evaluating the long-term behavior.
Low fab utilization which indicates the abnormal produc-
tion environment will be excluded from the adaptive model.
Therefore, 6 production data whose fab utilization is lower
than 60% were excluded and the other 60 production data
were used to derive the regression models of MOVE and
cycle time as shown in Fig. 4. The value of MAPE was used to
evaluate the forecast performance. The MAPE of MOVE and
cycle time were 3.14 and 4.59%, respectively. Furthermore,
the remaining 90% daily data were input into the constructed
regression models to evaluate the effectiveness of sampling
strategy. As listed in Table 2, by using 90% daily data, the
MAPE of MOVE and cycle time are 3.43 and 4.96%, respec-
tively, which were close to the 10 sampled daily data. The

Fig. 4 Training result of GNR
model
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Table 2 Forecast result with only GNR method in basic model

Number
of data

MOVE
MAPE
(%)

Cycle
time
MAPE
(%)

Sampled data 60 3.14 4.59

Un-sampled data 533 3.43 4.96

results showed that the main trend can be extracted by using
the sampling interval in the basic model as follows.

∧
G N Rbl (x) = Ĉbl

1 + Âbl Exp
(

B̂bl x
)

= 6.655

1 + 6.029 × Exp(2.039x)

∧
G N Rbe (x) = Âbl Exp

(
B̂bex

)
+ Ĉbe

= 1.073 × Exp(0.204x) + 0.5

BPNN model was used to improve the forecast accuracy
of MOVE and cycle time by the related factors of produc-
tion line status. To model the remainder of MOVE in the
logistic regression model, the input factors are defined as the
normalized WIP, capacity, average layers and expected cycle
time. To model the remainder of cycle time in the exponen-
tial regression model, the input factors are defined as the nor-
malized WIP, capacity, average layers and expected MOVE.
A three-layer network topology was applied, where the sig-
moid activation function was used in the hidden layers. The
numbers of input nodes is four and the number of output
nodes is one. The number of hidden nodes needs to be exper-
imented by conjugate gradient algorithm. In particular, we
randomly select 80% training data to construct the model
and then employ the derived BPNN model to forecast the
20% remaining data. Each BPNN model with different num-
ber of hidden nodes is trained and tested iteratively with ten
times. Table 3 lists the forecast result for MOVE and cycle
time for different BPNN models. In particular, BPNN model
under each number of hidden nodes can obtain lower MAPE
than only GNR model. To compare the results in MOVE and
cycle time, respectively, the structure of four hidden nodes
with smaller MAPE is selected for BPNN model construction
and enhancement of forecast accuracy.

Sensitivity analysis is conducted to support WIP level
decision based on the forecast model. Although the increase
of WIP is useful for increasing throughput and machine uti-
lization, the cycle time is also extended with the increasing
WIP. In addition, machine capacity is wasted and loss of
order due to fewer WIP. The tabulations that summarize the
WIP level with the corresponding MOVE and cycle time are

useful for WIP level decision and cycle time forecast. Deci-
sion makers can determine the cycle time based on the due
date and demand trend. Moreover, MOVE requirement can
also be derived through the order list and current WIP level.
Therefore, the feasible range of WIP level for the specific
production plan is limited. Then the WIP level can be easily
adjusted based on the manufacturing strategy. For example,
assuming the average layers in the next period are 32.5 lay-
ers per lot and the monthly capacity is estimated as 37,300
wafers, the expected MOVE and cycle time under different
WIP levels can be estimated through the result of combin-
ing the outputs of GNR models and BPNN models. Table 4
lists the generated information about the combined forecast
result of relative expected MOVE and cycle time under differ-
ent planning WIP levels by sensitivity analysis. As the WIP
level is close to the production capacity, the rate of increased
MOVE becomes slowly and gets the extended cycle time.
The decision makers can estimate the required MOVE based
on the aggregated information such as capacity and average
layers, the corresponding minimal WIP level can be deter-
mined through the proposed forecast model. The cycle time
under determined WIP level can facilitate the decision-mak-
ing process of wafer starts for on-time delivery and reduce
the unnecessary wastes of fab production cycle time.

Adaptive models for MOVE and cycle time forecast

Total 182 daily data in the last 6 months were used to validate
the proposed adaptive model. After removing the low-
utilization data through employing the basic model, 139 his-
torical daily production data were applied to illustrate the
effectiveness of the adaptive models. Each model was
adjusted according to its specific adaptive criteria and proce-
dure. The threshold of adaptive criteria was set by discussing
with the domain experts in semiconductor manufacturing. In
practice, the production cycle time should never be longer
than 2 months. Therefore, the maximum life cycle of each
constructed model was set as 60 days. The UCL and LCL
for error criteria were determined as 5% under or below the
forecast target. The parameters of n1 and n2 were determined
as 10 based on the response effectiveness and minimum data
requirement for new model construction. In addition, cycle
time usually has higher variance than MOVE because of the
man-made operations. In order to detect the change of real
production status rapidly, the parameters of n1 and n2 for
cycle time will be reduced to 8 days.

Firstly, the regression parameters in stage 0 were followed
by the basic model. The comparatively low level of normal-
ized WIP

(
W ∗

L

)
is set to 0.5. The initial adaptive coefficient

(αl0) and learning factor (ηl) for MOVE forecast model are
set to be 0.5 and 0.8 respectively. The test trial q is set to
10. As shown in Fig. 5a, the new MOVE data violated the
error criterion (1) from day 15 to day 24. The average bias
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Table 3 Comparisons of MAPE
in MOVE and cycle time for
different BPNN models

Number of hidden node MOVE MAPE (%) Cycle Time MAPE (%)

Training Testing Training Testing

2 2.88 3.50 4.49 4.13

3 2.86 3.48 4.48 4.15

4 2.93 3.41 4.45 4.09

5 2.85 3.49 4.46 4.13

6 2.85 3.44 4.44 4.15

7 2.93 3.53 4.43 4.11

8 2.83 3.50 4.47 4.12

Table 4 Sensitivity analysis for the relative MOVE and cycle time under different WIP level in basic model

Normalized WIP WIP level � WIP Move forecast � MOVE Cycle time forecast � Cycle time

0.5 18,650 86,134.74 1.6214

0.6 22,380 3,730 106,570.20 20,435.46 1.6489 0.0275

0.7 26,110 3,730 127,015.73 20,445.53 1.6793 0.0305

0.8 29,840 3,730 146,628.33 19,612.59 1.7125 0.0331

0.9 33,570 3,730 164,713.51 18,085.19 1.7417 0.0292

1.0 37,300 3,730 180,812.50 16,098.99 1.7709 0.0292

1.1 41,030 3,730 194,719.53 13,907.03 1.8015 0.0306

1.2 44,760 3,730 206,444.07 11,724.54 1.8338 0.0323

1.3 48,490 3,730 216,142.12 9,698.05 1.8682 0.0343

1.4 52,220 3,730 224,048.47 7,906.35 1.9047 0.0366

1.5 55,950 3,730 230,423.90 6,375.43 1.9436 0.0389

1.6 59,680 3,730 235,522.95 5,099.05 1.9826 0.0389

1.7 63,410 3,730 239,580.52 4,057.58 2.0155 0.0330

1.8 67,140 3,730 242,813.07 3,232.55 2.0593 0.0438

1.9 70,870 3,730 245,432.53 2,619.45 2.1043 0.0450

2.0 74,600 3,730 247,663.88 2,231.35 2.1469 0.0426

2.1 78,330 3,730 249,761.82 2,097.95 2.1829 0.0359

2.2 82,060 3,730 251,993.91 2,232.09 2.2278 0.0449

2.3 85,790 3,730 253,437.34 1,443.43 2.2669 0.0392

2.4 89,520 3,730 254,440.43 1,003.09 2.3055 0.0386

2.5 93,250 3,730 255,051.56 611.13 2.3510 0.0455

of the newly collected data from day 1 to day 24 were calcu-
lated by Eq. (10); the regression coefficients Ĉal1 and D̂al1

can be adjusted through Eqs. (11) and (12) as shown in
Fig. 5a. Next, the new regression model for stage 1 was con-
structed based on the newly adjusted regression coefficients
(Ĉal1 and D̂al1) and collected data from day 1 to day 24.
Although the MOVE from day 25 to day 84 did not violate the
error criteria, the adaptive model should be employed again
based on the time criterion. Before the adaptive procedure,
a comparison test was used to determine the best adaptive
coefficient at stage 0. As shown in Fig. 5b, the result showed
the lowest SSE at stage 0 while βl0 is set to 0. The new adap-
tive coefficient αl1 is updated by Eq. (16). Then, the new
regression coefficients (Ĉal2 = 6.732 and D̂al2 = 2.360)

were used to adjust the new regression model of stage 2.
Finally, the MOVE data collected from day 85 to day 139
did not meet the time criteria and error criteria, as shown in
Fig. 5c.

Similarly, the adaptive models for cycle time were con-
structed according to the newly collected dataset. In the ini-
tial stage 0, the comparatively high level of normalized WIP(
W ∗

H

)
is set to be 2.5, and the initial adaptive coefficient (αe0)

and learning factor (ηe) are set to be 0.5 and 0.8, respectively.
The adaptive processes of cycle time forecast were illustrated
in Fig. 6 a–f with the five stages, respectively. Firstly, the new
cycle time data violated the error criterion (1) from day 11
to day 18 as shown in Fig. 6a. The average bias of collected
data from day 1 to day 18 by Eq. (13), and then the regres-
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Fig. 5 a Adaptive procedure for MOVE forecast at stage 0. b Adaptive procedure for MOVE forecast at stage 1. c Adaptive procedure for MOVE
forecast at stage 2

sion coefficients Ĉel1 and D̂el1 can be adjusted through Eqs.
(14) and (15) as shown in Fig. 6a. The new regression model
for stage 1 was constructed based on the data from day 1 to
day 18. Secondly, the cycle time from day 19 to day 26 is
lower than the LCL as shown in Fig. 6b, which implies that
the performance of fab cycle time is getting improved. Then,
the best adaptive coefficient αe0 with lowest SSE is set as
0.9 based on the result of comparison test. The new adaptive
coefficient αe1 is updated as 0.82 by Eq. (18) and the new
regression coefficients (Ĉae2 = 0.051 and D̂ae2 = 1.951)

can be adjusted for constructing the adaptive model in stage
2. Thirdly, the adaptive model need to be adapted as shown
in Fig. 6c due to the 8 data continuously below the LCL
from day 30 to day 37. The new adapting coefficient αe2

is set as 0.884 based on the best adaptive coefficient αe1

which has the lowest SSE in stage 1. Then, the new adap-
tive model in stage 3 is constructed by the new coefficients
(Ĉae3 = −0.138 and D̂ae3 = 1.784) and new collected
data from day 27 to day 37. Fourthly, the average error rate
from day 38 to day 97 is about 4.25% without violating the
error criteria as shown in Fig. 6d. According to the deter-
mined maximum model life cycle, the basic model should
be adapted. By the result of comparison test for αe2, the new
adapting coefficient αe3 is set as 0.177. Then, the new adap-
tive model in stage 4 is constructed by the new regression
coefficients (Ĉae4 = −0.169 and D̂ae4 = 1.779) and data
collected from day 38 to day 97. Fifthly, the cycle time from
day 102 to day 109 is lower than the LCL. The process of
model adoption is shown in Fig. 6e. Finally, the new adap-
tive model in stage 5 is constructed based on the new adjusted
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regression coefficients (Ĉae5 = −0.314 and D̂ae5 = 1.669)

and new cycle time data from day 98 to day 109. In stage 5,
all the newly collected data did not violate the error criteria
or time criteria, with an average error rate about 3.18% from
day 110 to day 139.

Result evaluation and discussion

To improve the forecast accuracy of the adaptive model in
each stage, BPNN model was also integrated with GNR
model as the basic model. All the historical data in basic
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Fig. 6 a Adaptive procedure for cycle time forecast at stage 0.
b Adaptive procedure for cycle time forecast at stage 1. c Adaptive
procedure for cycle time forecast at stage 2. d Adaptive procedure for

cycle time forecast at stage 3. e Adaptive procedure for cycle time
forecast at stage 4. f Adaptive procedure for cycle time forecast at
stage 5
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Fig. 6 continued

Table 5 Comparisons in adaptive models

MOVE Cycle time

Stage 0 Stage 1 Stage 2 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Number of days in stage 24 60 55 18 8 11 60 12 30

GNR MAPE (%) 5.32 5.62 3.66 7.04 23.12 14.93 4.25 10.16 3.18

GNR+BPNN MAPE (%) 5.30 3.88 2.92 8.95 9.90 9.32 3.74 8.36 2.56

model and previous stage p of adaptive model were used to
construct the BPNN model for the adaptive model in stage
p. In particular, 80% of the data are randomly selected for
BPNN model training and 20% are used for evaluation.

As shown in Table 5, the integrated GNR and BPNN
model have better forecast accuracy via MAPE than only
GNR model, except the cycle time forecast at stage 0. The
result may be caused from the gap between the long-term
sampled data and the short-term daily data. The forecast per-
formance of the integrated model is significantly improved
at the following stages by increasing more daily data. The
overall MAPE for MOVE and cycle time using GNR model
are 4.79% and 6.13%. The overall MAPE from the integrated
GNR and BPNN model are 3.75% and 4.80%. The integrated
model has an improvement of 21.7% of MAPE in forecast-
ing MOVE and cycle time. With the ability of detecting
productivity change immediately, the GNR model can be
re-aligned again within 12 days. Although the forecast error
of GNR model will be larger given a rapid change in pro-
duction line status, the forecast accuracy was significantly

improved by BPNN model and was less than 10% of few
daily data. The forecast result can be presented as tabulations
based on the assumption of the calculated average layers and
monthly capacity. The corresponding WIP release plans can
be made according to the due date and the corresponding
target of MOVE and cycle time.

Conclusion

To determine and control appropriate WIP levels is impor-
tant to maintain the productivity of various tool groups in
fabs, which enables the flexibility to meet the demand, while
reducing the cycle time and inventory days in the supply
chain. The proposed two-phase approach for cycle time fore-
cast can provide valuable information for production decision
making to control the corresponding WIP levels. In addition,
production managers can quickly identify the latest status of
production capability of the fabs, and determine the wafer
release plan and scheduling to control WIP. The production
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line can also be effectively balanced by aligning with the tar-
gets to reduce the cycle time and avoid WIP bubbles causing
unnecessary inventory in the supply chain.

In the first phase, the basic model is constructed for deriv-
ing a foundation to forecast cycle time and throughput based
on the long-term historical production line data. However,
the forecast models need be adapted based on the dynamic
production status. In the second phase, in order to align with
the production change, the adaptive models are designed for
detecting the rapid change by measuring the difference of
forecast errors. In addition, they can also re-align the fore-
cast models with a small number of newly collected data
and still maintain acceptable forecast accuracy. The results
showed that the cycle time can be forecasted accurately by
the proposed approach even though the status of production
line changed dramatically. Considering the complexity of this
problem and the practicability in real business, the forecast
procedure was designed into certain rule formats or flows to
be embedded into the decision support system (DSS). Addi-
tionally, the forecast results are presented with charts and
tables to support effective decision making. Considering the
current fab information such as capacity and number of aver-
age layer, the proposed framework can be a useful tool for
making WIP level decisions, performance benchmarking of
fabs.

The parameter settings of adaptive criteria directly influ-
ence the frequency of the adaptive model. Few data will be
selected into the adaptive model based on the strict adaptive
criteria, in which the models may become sensitive to pro-
ductivity change and increase the adjustment frequency. On
the contrary, loose adaptive criteria decrease the frequency
and may lower the forecast quality once the production sta-
tus is changed. The other parameters such as the learning
factor of adaptive coefficients have the similar issues. Fur-
ther research can be done to discuss how to obtain the opti-
mal parameters considering the quality of forecast result and
adapting frequency. Furthermore, other attributes can also be
considered as the input of BPNN models, such as seasonal-
ity, product mix, performance and capacity of specific high
loading machine groups.
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