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Abstract Case Based Reasoning (CBR) is a novel para-
digm that uses previous cases to solve new, unseen and dif-
ferent problems. However, redundant features may not only
dramatically increase the case memory, but also make the
case retrieval more time-consuming. Furthermore, camshaft
grinding process is controlled by a number of process param-
eters, and it is more complex comparing with the ordinary
cylindrical grinding. The process conditions are achieved by
skilled and professional workers. Therefore, this research
combines Rough set (RS) and CBR for process conditions
selection in camshaft grinding, and Genetic Algorithm (GA)
is developed to discretize condition features. Through the
approach an optimal subset of process conditions can be
selected quickly and effectively from a large database with a
lot of cases, and complexity of computation of the similarity
testing is significantly reduced. Moreover, the validity of the
proposed solution is verified by the application of practical
experiments for the process conditions selection in camshaft
grinding.
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Introduction

Camshaft is one of the key components of vehicle engines. Its
quality directly determines engine combustion and dynamic
characteristics. The camshaft grinding process is a non-cir-
cular grinding, large grinding margin and high production.
Hence, how to improve the grinding efficiency and the qual-
ity of processing is one of the key technologies needed to
be solved. It becomes a critical task in camshaft grinding
to identify the grinding process conditions from the overall
process parameters.

Earlier Yang et al. (2003) proposed the Genetically Opti-
mized Neural Network System (GONNS) for the selection of
optimum composite material and operating conditions. It is
proved that the GONNS is very promising for many complex
optimization problems. A hybrid Artificial Neural Network
(ANN) and Genetic Algorithm (GA) model was introduced
to optimize the camshaft grinding process parameters (Deng
et al. 2009). However, this model has some limitations: (1)
It can only select some grinding process parameters and can
not output a complete conditions of grinding process; (2) The
configuration of the model is determined with 5×12×8 and
it is difficult to extend the model output for the entire grinding
conditions.

To conquer this problem, a hybrid system combining
Rough set (RS) and case based reasoning (CBR) is proposed
to infer the grinding process conditions for a camshaft prod-
uct. CBR is a novel paradigm that uses previous cases to
solve new, unseen and different problems (Aamodt and Plaza
1994; Shin and Han 1999). The core idea of CBR is that
‘similar problems have similar solutions’ (Finnie and Sun
2003; Kwong et al. 1997). But traditional CBR is deficient
for case reduction of information preserving data, representa-
tion of uncertain or imprecise knowledge, identification and

123



212 J Intell Manuf (2013) 24:211–224

Fig. 1 The R5 model of CBR
cycle
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evaluation of data dependencies, reasoning with uncertainty
and approximate pattern classification.

Some researchers such as Jiang et al. (2006), Huang and
Tseng (2004), and Lin et al. (2009) and others have com-
bined RS and CBR applying to some fields. Through the
approach an optimal subset of process conditions can be
selected quickly and effectively from a large database with a
lot of cases, and the complexity of computation of the simi-
larity testing is significantly reduced.

In the proposed system, a case consisted of the grind-
ing processing environment, processing parameters and cor-
responding production qualities is stored in a case base.
An algorithm based on RS and GA is proposed for fea-
ture reduction and feature weight calculation. By using
those results a new set of some features is constructed to
obtain high quality classifiers. According to weight value
the features are classified into three grades. In the case
retrieval stage of the CBR system, a Hierarchical Filtering
Search (HFS) method is developed to retrieve past cases that
have similar process condition to the new case in order to
select the useful features from the database. By means of
a method called ‘Nearest Neighbor Matching (NNM)’ the
similarity between the new case and retrieved past cases is
determined. After using a comprehensive evaluation method
called ‘Similarity-Confidence Level (SCL)’ the most match-
ing case will be presented to the user. At last, the system
is used to practical application by collecting many cases
of camshaft grinding. The results have verified the validity
and dependability of the hybrid method integrating RS and
CBR.

The rest of the paper is organized as follows. The related
works about this research are surveyed in “Related work” sec-
tion. “Framework of the proposed RS-CBR system” section
introduces the framework of the proposed system combin-
ing RS and CBR in detail. “Application” section describes the
effectiveness of the system by a practical application. Finally,

in the fifth section some conclusions and suggestions have
drawn for future study.

Related work

Case based reasoning

Case based reasoning (CBR) is an approach based on the
reuse of the past experience in finding the solutions to new,
similar problems. The classic definition of CBR was sug-
gested by Riesbeck and Schank (1989): “A case based rea-
soner solves problems by using or adapting solutions to old
problems.”

Note that this definition points out “what” a case based
reasoner does and not “how” it does what it does (Watson
1999). It can mirror the problem-solving approaches taken by
human beings who solve current problems using past experi-
ences (Chiu et al. 2003). Aamodt and Plaza (1994) introduced
a process model of the CBR cycle [2]. The model is com-
monly called the R4 model of CBR, because this cycle com-
prises four activities (the four-REs). Finnie and Sun (2003)
proposed a R5 model, in which repartition, retrieve, reuse,
revise and retain are the main tasks for the CBR process. In
fact the “finer” and “coarser” mentioned in the literature is
the indiscernibility relation in the RS. RS can automatically
calculate the weight of the features, so a new R5 CBR model
based on RS is proposed in Fig. 1. The model consists of
five procedures: reclassify, retrieve, reuse, revise and retain.
Reclassify means using the discrete and reduction algorithms
to get the most classified set of features and reclassify the case
base according to weight value.

The CBR which is a methodology not a technology
has been widely used in the selection of process con-
ditions. Kwong et al. (1997) developed a CBR system
called CBRS for determining proper injection moulding
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parameters. Tsai and Chiu (2007) proposed a CBR system
to infer the principal process parameters for a new printed
circuit board product. Tong et al. (2001) introduced CBR in
the process-parameters setting of transfer moulding in micro-
chip encapsulation. Nagano et al. (2001) developed a system
based on CBR to select high speed milling operation con-
dition. The case retrieve of the CBR system depends on the
similarity between tool shapes. But in grinding the shape and
size of a grain is random and difficult to measure. Brian Rowe
(1996) and Li et al. (1999) presented a CBR approach for the
external cylindrical plunge grinding conditions selection.

Rough set

Rough set (RS) is a new mathematical approach to intel-
ligent data analysis and data mining (Pawlak 2002). The
RS approach seems to be of fundamental importance to
knowledge discovery from databases (Li et al. 2006b). Some
researches have combined RS and CBR in Artificial Intel-
ligence (AI) and cognitive sciences. Geng and Zhu (2009)
proposed a hybrid mechanism based on RS integrating ANN
(RS-ANN) for feature selection in pattern recognition to
achieve fault diagnosis in industrial process. Moreover, the
RS approach was used to analyze and induce rules by describ-
ing a case formulated with the Zachman framework (Huang
and Tseng 2004). Jiang et al. (2006) presented a methodol-
ogy to apply fuzzy similarity-based RS algorithm in feature
weighting and reduction for CBR system. The methodology
was used in tool selection for die and mold NC machining.
The RS method and fuzzy sets Method were used for the
adaptation study of the CBR of fluidized-Bed crystalliza-
tion. The adaptation results showed that for average crys-
tal size the RS method is better than the fuzzy sets method
(Louhi-kultanen et al. 2009). More detailed information
regarding features can be found in the works of Li et al.
(2006b) and Gutiérrez Martínez and Bello Pérez (2003).

Grinding process conditions selection

Grinding is a complex manufacturing process with a large
number of interacting variables. Many investigations have
been carried out to establish process models for grinding,
including physical and empirical models (Chen et al. 1999;
Gopal and Venkateswara Rao 2003; Gopala Krishna 2007).
Since analytical models cannot be comprehensively defined
and empirical models have a restricted range of validity
with the aid of a number of grinding tests which are both
time consuming and costly, the proposed models are not
always reliable in practice. On the other hand, AI technol-
ogy can describe the various non-linear relationships between
grinding parameters (Sedighi and Afshari 2010). Choi and
Shin (2007) described a Generalized Intelligent Grinding
Advisory System (GIGAS), which employes the fuzzy basis
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Fig. 2 The flow chart of the proposed RS-CBR system

function network with an autonomous learning algorithm
and the evolutionary strategy-based optimization algorithm.
Cai et al. (2007) proposed an intelligent grinding database
(IGA@) to provide only selective data to the operator based
on CBR and rule based reasoning. However, a few studies
conducted in camshaft grinding process conditions selection.

Framework of the proposed RS-CBR system

Based on introducing RS theory and CBR theory, this section
introduces how the proposed RS-CBR system achieves cam-
shaft grinding process conditions selection. Four important
parts of the system including case representation, reclassify,
retrieval and evaluation are introduced in details. Its flow
chart is shown in Fig. 2.

Case representation

Camshaft grinding conditions that have been accumulated by
the industry are regarded as past cases and stored in a case
base D, where D = {da |a = 1, . . ., X}, da is the ath past
case, and X is the total number of past cases in D. Therefore,
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Table 1 The case base of the RS-CBR system

Case c1 . . . cp . . . cs Ea

The problem The solution The evaluation

d1 c11 . . . cp1 . . . cs1 E1

. . . . . . .

. . . . . . .

. . . . . . .

dX c1 X . . . cp X . . . cs X EX

the problem features of a past case da in D can be represented

as
(

ca
1 , . . . , ca

i . . . , ca
p

)
, where ca

i is the i th problem feature

of da and p is the total number of problem feature. The solu-
tion features of a past case da in D can be represented as(

ca
p+1, . . . , ca

j . . . , ca
s

)
, where ca

j is the j th solution feature

of da and the total number of solution feature is s-p. The
evaluation features of a past case da in D can be represented
as Ea . In the proposed RS-CBR system, p, s and X are 14,
35 and 268, respectively. Table 1 shows an example of the
case base.

Case reclassify

RS theory can deal with discrete data only, but many fea-
ture values in the camshaft grinding process conditions are
both crisp and continuous. In the paper, GA is developed to
discretize condition features C (Chen 2007). Firstly, candi-
date breakpoints are encoded into binary code, in which a
bit represents a breakpoint, and the value “1” and “0” denote
“Adopted” and “Abandoned”, respectively. Secondly, fitness
function, reproduction, crossover and mutation operators are
constructed, which fully assure that discernible relationship
of decision table is not changed and the number of cut points
is minimum. The principle of selecting breakpoints is that
the number of breakpoints is least under the premise of the
indiscernibility relation of the decision table not be changed.
Therefore, the fitness function is defined as

Fitness = N1 × N2 (1)

where N1 is the number of breakpoints, N2 the degree of
change of the indiscernibility relation. If the indiscernibility
relation is not changed, N2 is set to 1. On the contrary, N2 is
set to 0.

The flow chart of the discretization method based on GA
is illustrated in Fig. 3.

The significance of condition feature ci is defined as:

WD(ci ) = card(P O SC (D))− card(P O SC−|ci |(D))
card(U )

(2)
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Fig. 3 The flow chart of the discretization method based on GA

Clearly, the redundancy features have been deleted. So
WD(ci ) ∈ (0, 1], and the greater the value of WD(ci ) the
larger that the influence on the processing results. If the
weight of a feature is equal to 0, the feature is redundant.
Finally the feature weights can be calculated by Eq. (3).

ω(ci ) = WD(ci )
/ ∑

ci ∈C

WD(ci ) (3)

where 0 ≤ ω(ci ) ≤ 1,
∑m

k=1 ω(ak) = 1.
According to the weight a novel Hierarchical Filtering

Search (HFS) is proposed and illustrated schematically in
Fig. 4. In the method, primary concern level, secondary con-
cern level and other concern levels have been divided. Each
level contains some features whose weight is located in an
interval. After normalization, the primary concern level con-
tains the features whose normalized weights are located in
(0.75, 1]. The Secondary concern level and the third concern
level are located in (0.4, 0.75], (0, 0.4], respectively. The
normalized weights can be calculated by Eq. (4).

ω′(ci ) =
(
ω(ci )− ωmin(c)

)
/
(
ωmax(c)− ωmin(c)

)
(4)

where ωmin(c) is the minimum value of the feature weight,
ωmax(c) is the maximum value of the feature weight.

Case retrieval

The global similarity is determined by the local similarity of
each feature. Some of the features are very important to case
retrieval, but some other features may be redundant and only
increase the complexity of retrieval process. It is necessary to
decrease the search time and increase the effectiveness of the
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Fig. 4 The schematic model of
the HFS
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Fig. 5 Description of the HFS method

retrieval. As mentioned before, by the HFS method the most
classified set of features can be get and each feature of the
set determines a subset of relevant source cases like sub-case
base 1 shown in Fig. 4. Therefore, to select the subset of the
more relevant cases for a new case, it is constrained for the
search space to the sub-case base for the important feature
and can quickly get the most appropriate case such as d82

only by the intersection (Fig. 5).
After similar cases to the new case are obtained by the

HFS method, the system tries to calculate the global similar-
ity between the target problem and the source ones during
the second step of retrieval. This crucial operation is realized
with the local similarity. Though there are several types of
techniques that could be employed in the process, i.e. nearest-
neighbor retrieval, inductive approaches, knowledge-guided
approaches, and validated retrieval, yet scope of application
of the nearest-neighbor retrieval is the most widely. Accord-
ing to the descriptive features of the grinding processing
environment, a method called‘Nearest Neighbor Matching
(NNM)’ determines to the local similarity. Then all the local
similarities are gathered to evaluate the global similarity. The
NNM method can apply to different types of values: numeric,

linguistic and enumeration for the presented example. The
Euclidian and the Manhattan distances have been proposed
to measure the distance between two values.

d(X,Y ) =
( p∑

i=1

ω(ci )d(c
x
i , cy

i )
l

)1/ l

(5)

For l = 1 it is the Manhattan distance, l = 2 the Euclid-
ian one. In formula (5), cx

i and cy
i , respectively represent the

i th features of X and Y , and ω(ci ) the associated weight
to this feature. According to the composition of the problem
description features in the camshaft grinding, the features can
be divided into the three types combined with the correspond-
ing areas (metal cutting) knowledge. Each type corresponds
to a calculation method for the local distance.

For numerical features, the calculation of the local dis-
tance is based on the following equation:

d(cx
i , cy

i ) = |cx
i − cx

i |
max(ci )− min(ci )

(6)

where, max(ci ) and min(ci ) are maximum value and mini-
mum value of feature ci of all cases.

In camshaft grinding many of the features are numerical,
such as hardness, maximum error of lift range, maximum
adjacent error, surface roughness, total grinding allowance,
number of cam, base diameter, maximum lift range and cam-
shaft length.

For linguistic features, the different values are no connec-
tion and can be considered of independent. Its local distance
can be calculated by the following equation:

d(cx
i , cy

i ) =
{

0, cx
i = cy

i
1, cx

i �=y
i

(7)

In Eq. (7), the local distance is 0 while two features are iden-
tical, otherwise the local distance is 1. Cam type, material
type and material brand are in the domain of the linguistic
features.
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For enumeration features, the calculation of the local dis-
tance is based on the following equation:

d(cx
i , cy

i ) = |e(cx
i )− e(cx

i )|
M

(8)

where, M is the maximum assignment value of the feature
enumeration ci , e(ci ) the corresponding value. For example,
degree of burn is classified into infrequent burn, moderate
burn, severe burn, in turn defined as 1, 2 and 3. So for the
degree of burn the maximum assignment value M is equal to
3. Waviness is described by the ambiguous words as {infre-
quent, mild, moderate, severe}, and they are replaced by the
set {1, 2, 3, 4}. Similarly, its maximum assignment value M
can be set to 4.

Therefore, by the values of the weights and the local dis-
tances, when determining the Euclidian distance the global
similarity is based on the following equation:

sim(X,Y )=1 − d(X,Y ) = 1−
( p∑

i=1

ω(ci )d(c
x
i , cy

i )
2

)1/2

(9)

Case evaluation

It is necessary to firstly evaluate the output of the system
to ensure that the data is fit-for-purpose. Similarity which
derives from data expresses the match degree between the
target problem and source cases. It is obtained with a certain
degree of objectivity, but is vulnerable to the impact of noise
data. Confidence is obtained through man-made judgment
with a certain degree of subjective. In order to improve the
accuracy and anti-jamming of case matching, a comprehen-
sive evaluation method called ‘Similarity-Confidence Level
(SCL)’ is presented. The SCL method defines a comprehen-
sive confidence factor E based on the similarity and the con-
fidence.

E(X j ) = (1 − ψ)ε(X j )+ ψsim(X j ) (10)

where, ε(X j ) is the confidence of the j th case, ψ the pro-
portion factor.

The proportion factor ψ determines the impact degree
between the similarity and the confidence for the comprehen-
sive confidence factor E . It is generally defined as ψ = 0.7.
So in Eq. (10) the proportion of the similarity and the confi-
dence are 30, 70%, respectively.

After the step of the HFS method and the retrieval, the
system calculates the comprehensive confidence factor E of
the filtered cases. After carried out in ascending order, the
most matching case whose E value is the greatest will be
presented to the user.

Application

Case base establishment

Experimental device

Grinding experiments were performed upon a NC camshaft
grinder (Type CNC8312A) developed by the National Engi-
neering Research Center for High Efficiency Grinding in
China. The numerical control (NC) system of the grinder
is siemens 840D and it uses 611D digital servo motor to con-
trol the grinding carriage-axis(X axis), the working table-axis
(Z axis) and the headstock-axis (C axis). NC cam grinding
without master form can be achieved through the linkage
of X axis and C axis. Furthermore, coarse grinding, preci-
sion grinding, finish grinding and no-spark grinding can be
once finished after clamping the workpiece. The grinder is
also equipped with an on-machine dynamic balancer (Type
SBS4500) whose spindle bearing stiffness is not less than
100 kg/µm. The camshaft machined by the grinder has the
high precision including the error of adjacent point less than
0.01 mm, the maximum error of lift range no more than
0.04 mm, surface roughness Ra ≤ 0.4 µm.

Surface roughness was measured using a surface coarse-
ness profiling instrument (Type Homel18000) made in
Germany. Degree of burn was detected by a metallographic
microscope (Type 5 XB-PC) and a magnetic detector. Cam
waviness and error of lift range were observed by visual
detection and a cam error measuring instrument (Type
TL500), respectively.

The samples of case base based on Uniform Design

The condition of the grinding experiments was established
on the choice of the following ways in CNC8312A camshaft
grinder:

The grinding wheel whose specification is 14A1 500 ×
24 × 160 × 5 CBN120A150 was dressed by an abrasive
dresser (Type S-DC-C-110×12×28) in down dressing mode.
The interval of dressing was also set to 120 min. A 3% solu-
tion of water-based coolant (Type W20) was applied. There
are three types of the camshaft to be processed, namely, alloy
steel 20CrNiMo, magnesium iron QT700 and chilled cast
iron GCH1. The properties of the camshaft to be processed
are shown in Table 2.

Establishing case base requires a series of process cases.
A reasonable sample size and distribution can help the RS-
CBR system to accurately express the relationship between
the process features. There are two main ways of the estab-
lishment and expansion of the case base: (1) acquisition of
existing camshaft grinding process plans; (2) using uniform
test method to carry out testing process. Because the uniform
design is an efficient factorial design method. More detail
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Table 2 The properties of the
camshaft to be processed Material 20CrNiMo QT700 GCH1

Hardness HRC30∼HRC37 HRC50∼HRC55 HRC55∼HRC60

Maximum lift range of inlet cam (mm) 9.0882 9.4822 5.3454

Number of inlet cam 3 3 4

Total length (mm) 602.8 525 418

Total grinding allowance(mm) 2 1.2 1.4

Base diameter (mm) 28.4 26.8 30

Maximum lift range of exhaust cam (mm) 8.8823 8.4815 5.2823

Number of exhaust cam 6 6 4

Total number of cam 9 9 8

Table 3 The values of six levels
Factor Levels

Linear velocity of wheel vs (m/s) 50 56 62 68 74 80

Rotational velocity in the finish grinding stage nw3 (rpm) 60 84 108 132 156 180

Feed rate in the coarse grinding stage fr1 (mm/min) 0.005 0.405 0.805 1.205 1.605 2

precision grinding allowances �r2 (mm) 0.1 0.18 0.26 0.34 0.42 0.5

Feed rate in the precision grinding stage fr2 (mm/min) 0.005 0.325 0.645 0.965 1.285 1.6

Finish grinding allowances �r3 (mm) 0.01 0.05 0.09 0.12 0.16 0.2

Feed rate in the finish grinding stage fr3 (mm/min) 0.005 0.205 0.405 0.605 0.805 1

Turns of no-spark grinding r 0 2 4 6 8 10

introductions about applying it into the camshaft grinding
have been introduced (Deng et al. 2009). Yet the type of the
uniform design table for these experiments is U60(68). The
table is 6 levels for each of the 8 factors and contains 60 sam-
ples. In order to improve the pertinence of the experiments,
the spans of 8 experimental factors are appropriately enlarged
on the basis of the earlier empirical data. Their spans and units
are [50, 80] (m/s), [60,180] (rpm), [0.005, 2] (mm/min), [0.1,
0.5] (mm), [0.005, 1.6] (mm/min), [0.01, 0.2] (mm), [0.005,
1] (mm/min), [0, 10], respectively. The factors consist of: lin-
ear velocity of wheel, rotational velocity of the camshaft in
the finish grinding stage, feed rates in the three stages (coarse
grinding stage, precision grinding stage and finish grinding
stage), grinding allowances in the precision grinding stage
and finish grinding stage and turns of no-spark grinding. The
Table 3 shows the values of six levels for each of the eight
factors.

According to the uniform design table U60(68), the experi-
ments for the camshaft to be processed shown in Table 2 have
been completed, respectively. 60 group of case representation
can be collected for each type of the camshaft. The experi-
ments for alloy steel 20CrNiMo have been completed earlier.
Using the same experimental scheme the experiments for the
other materials can be carried out.

After collecting the initial cases, domain experts audit to
obtain reasonable process cases by filtering out the unqual-
ified. Based on actual processing conditions it will be set to

the confidence of the reasonable cases, a detailed descrip-
tion of the processing location, the operator, the single chip
processing time and the special circumstances. Through the
acquisition of existing camshaft grinding process plans in
Huda Haijie Manufacture Technology Co., Ltd, almost 100
cases can be gotten. Finally after deleting the copied cases,
the case base including 268 cases based on three kinds of
camshafts can be constructed. The detailed information of
case d109 is shown in Table 4.

Application

Because the number of the decision features D is greater than
1, that is, Card (D) ≥ 2. When Card (D) ≥ 2, the decision
table is called multi-decision table. In general, in the dis-
cretization through coding and classification multi-decision
table can be equivalently transformed into single decision
table. Table 5 shows a small portion of the case base men-
tioned in the above. Rows of the table are labeled by cases
and columns are labeled by the problem features of cases.
The other features of cases are eliminated and converted to
the decision feature D in Table 5 by the method of coding
and classification. The discretization from Table 5 are shown
in Table 6. The population size was 30. Uniform cross-over
and uniform mutation operators were used and the probabil-
ity of cross-over and mutation operators are 0.75 (Pc) and
0.02 (Pm), respectively.
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According to Table 6, the significance of the problem fea-
tures of cases can be calculated.

U/IND(D) = {{d1, d5, d6, d8, d9, d10, . . .d265, d267},
{d2, d3, d7, d11, d12, . . .d266, d268}, . . .}

U/IND(C − {C1}) = {{d1, d268, . . .}, {d2, . . .}, . . .}
POSC (D) = {d1, d2, d3, d4, d5, d6, d7, d9, d10, d11, d12,

. . .d265, d266, d267, d268}
POSC−{C1 }(D) = {d2, d3, d4, d5, d6, d7, d9, d10, d11,

d12, . . .d265, d266, d267}
The significance of the first feature c1 is

WD(c1) = card(P O SC (D))− card(P O SC−|ci |(D))
card(U )

= 0.043

Also the significances of the other problem features is
WD(c2) = 0.232,WD(c3) = 0.232,WD(c4) = 0.21,WD

(c5) = 0.196,WD(c6) = 0.096,WD(c7) = 0.112,WD

(c8) = 0.091,WD(c9) = 0.083,WD(c10) = 0,WD(c11) =
0,WD(c12) = 0,WD(c13) = 0,WD(c14) = 0.

The results show that the problem features c10, c11, c12,

c13 and c14 are dispensable in D. Note that the features are
redundant and can be removed from the set of condition fea-
tures. Therefore, the set of all the features indispensable in
D denoted CORE(D) is {c1, c2, c3, c4, c5, c6, c7, c8, c9}.

Because any relative reduction of the decision table
can keep the same classification ability and can not cause
D to be inconsistent. So the relative reduction must be
inclusion to the core. It can be seen that the features
c1, c2, c3, c4, c5, c6, c7, c8 and c9 are absolutely necessary,
while the features c10, c11, c12, c13 and c14 are unnecessary,
but may be not omitted at the same time. As B is relatively
independent in D and POSB(D) = POSC (D), the subset of
features B = {c1, c2, c3, c4, c5, c6, c7, c8, c9} constitutes a
feature reduction of the decision table.

Thus the feature weights can also be obtained by Eq. (3):
ω(c1) = 0.033, ω(c2) = 0.179, ω(c3) = 0.179, ω(c4) =
0.162, ω(c5) = 0.151, ω(c6) = 0.074, ω(c7) = 0.086,
ω(c8) = 0.07, ω(c9) = 0.064, ω(c10) = 0, ω(c11) = 0,
ω(c12) = 0, ω(c13) = 0, ω(c14) = 0.

The results show that material type, material brand, hard-
ness, maximum error of lift range and surface roughness
have a greater influence on process conditions selection in
camshaft grinding. Maximum adjacent error, waviness and
degree of burn have less influence. And total grinding allow-
ance, number of cam, maximum lift range and camshaft
length are the redundant features. The remaining results are
basically consistent of experience criteria.

Thus the normalized weights can also be obtained by
Eq. (4). Based on this study the HFS is framed. ω′(c1) =
0.185, ω′(c2) = 1, ω′(c3) = 1, ω′(c4) = 0.905, ω′(c5) =
0.844, ω′(c6) = 0.414, ω′(c7) = 0.483, ω′(c8) = 0.392,
ω′(c9) = 0.358, ω′(c10) = 0, ω′(c11) = 0, ω′(c12) =
0, ω′(c13) = 0, ω′(c14) = 0.

For the levels the weight is decreasing along with the direc-
tion of the arrow.

Primary concern level: Material type (material brand) →
Hardness → Maximum error of lift range

Secondary concern level: Surface roughness → Maxi-
mum adjacent error

The third concern level: Waviness → Degree of burn →
Cam type

An example

A practical data provided by Huda Haijie Manufacture Tech-
nology Co., Ltd is used to verify the validity of the proposed
RS-CBR system in camshaft grinding. If the camshaft grinder
is stable, the maximum adjacent error can meet the require-
ments and generally do not need to be set. So the problem
feature value can be filled by extracting from the current pro-
cess description of the problem. The features whose values
are empty or impossible to determine will be expressed by a
question mark “?”. Also its local similarity is equal to 0. The
new case is given as following.

Cam type < Pump camshaft >

Material type < Alloy steel >

Material brand < 20CrNiMo >

Hardness < HRC32 >

Maximum error of lift range <0.02mm>

Maximum adjacent error < ?>

Waviness < Infrequent >

Surface roughness < 0.32µm >

Degree of burn < Infrequent >

Total grinding allowance < 2mm >

Number of cam < ? >

Base diameter < ? >

Maximum lift range < ? >

Camshaft length < ? >

After completing the feature weights and the case reclas-
sify, using the HFS method the 16 retrieved cases are sent to
the case reasoning stage. In the stage the global similarities
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Fig. 6 The picture of a camshaft manufactured by the solution of the
case d42

of the case set can be calculated using Eq. (9). The thresh-
old is set as 0.9, when global similarity is greater than the
threshold the case will be sent to the user.

It can be found that the global similarity between the case
d62 and the new case is the greatest and is equal to 0.924. Also
the global similarity of the case d42 equal to 0.915 meets the
requirements of the threshold.

Sim(d42) = 1 × 0.033 + 1 × 0.179 + 1 × 0.179 + 0.96 ×
0.162 + 1 × 0.151 + 1 × 0.086 + 0.97 × 0.07 + 1 × 0.064 =
0.915

The confidences of the case d42 and the case d62 are 1.0,
0.8, respectively. Using the SCL method when the proportion
factorψ is defined as 0.7, the comprehensive confidence fac-
tors E42 and E62 are computed as Eq. (10): 0.94 and 0.899,
respectively. Thus the case d42 is the most similar with the
new case. The detailed information of case d42 is shown in
Table 7.

The solution of the case d42 was applied to process 8
workpieces in CNC camshaft grinder. After random testing,
it was found that maximum error of lift range is less than

0.018mm, maximum adjacent error is less than 0.004mm,
surface roughness is less than 0.29µm, waviness and degree
of burn are infrequent. The results showed that the solution
of the case d42 can meet the requirements of this batch of
camshaft in NC grinding. A picture of the manufactured cam-
shaft and the evaluation of the dimensional error are shown
in Figs. 6 and 7, respectively.

Through the above analysis, it is obvious that application
the RS-CBR system in process conditions Selection in Cam-
shaft Grinding is correct and effective in this paper.

Conclusions

In actual process industry camshaft quality and productivity
depend to a large extent on the experience of the operator. The
status quo is that the many camshaft grinding operations are
run inefficiently and far from optimum. This research devel-
ops a hybrid method integrating Rough set (RS) and case
based reasoning (CBR) to engineers selecting the optimal
process conditions for a new camshaft product. An algorithm
based on RS and Genetic Algorithm (GA) is proposed for fea-
ture selection and feature weight calculation. According to
weight value the features from a classifier are classified into
four grades. In the case retrieval stage of the CBR system,
a Hierarchical Filtering Search (HFS) method is developed
to retrieve past cases that have similar process condition to
the new case in order to select the useful features from the
database quickly and effectively. The similarity between the
new case and retrieved past cases is determined by a method
called‘Nearest Neighbor Matching (NNM)’. After using a
comprehensive evaluation method called ‘Similarity-Confi-
dence Level (SCL)’, the most matching case is presented to
the user.

The proposed system has been validated using a practi-
cal camshaft industry example. After random testing, it was

Fig. 7 The dimensional error of a cam manufactured by the solution of the case d42
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found that maximum error of lift range is less than 0.018
mm, maximum adjacent error is less than 0.004 mm, surface
roughness is less than 0.29 µm, waviness and degree of burn
are infrequent. The result shows that the RS-CBR system
can help operations to select the optimal process conditions
in camshaft grinding. The further work is finding the combi-
nation of RS and fuzzy theory to improve the quality of case
retrieval and case similarity.
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