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Abstract The present study highlights application of
Taguchi’s robust design coupled with fuzzy based desirabil-
ity function approach for optimizing multiple bead geome-
try parameters of submerged arc weldment. Fuzzy inference
system has been adapted to avoid uncertainly, imprecision
and vagueness in experimentation as well as in data analysis
by traditional Taguchi based optimization approach. Detailed
methodology and unique features of the proposed method has
been highlighted through a case study. The said approach can
efficiently be used in off-line quality control of any produc-
tion process as well as automation of the process.

Keywords Taguchi’s robust design · Fuzzy logic ·
Desirability function · SAW

Introduction

The Submerged Arc Welding (SAW) process finds wide
industrial application due to its easy applicability, high cur-
rent density and ability to deposit a large amount of weld
metal using more than one wire at the same time (Patnaik
et al. 2007). The process is mainly characterized by mul-
tiple process parameters influencing multiple performance
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outputs such as deposition rate, percent dilution, features
of bead geometry, and mechanical-metallurgical character-
istics of weldment as well as the heat affected zone (HAZ).
Proper selection and precise control of process parameters
can achieve satisfactory weld quality. However, SAW opti-
mization is difficult due to existence of multiple quality indi-
ces which may be contradicting in nature depending on the
requirements. Moreover, direct and interactive effects of pro-
cess parameters also influence the extent of weld quality. It
is, therefore, indeed required to select the best suited process
environment i.e. optimal parametric combination to produce
desired quality weld.

Toyofumi et al. (1986) investigated on optimization of
welding materials and welding conditions for high speed
submerged arc welding of spiral pipes. Tsai et al. (1996) opti-
mized submerged arc welding process parameters in hardfac-
ing. Tarng and Yang (1998) applied Taguchi method to the
optimization of the submerged arc welding process. Gunaraj
and Murugan (1999) applied Response Surface Methodol-
ogy (RSM) for prediction and optimization of weld bead
quality in submerged arc welding of pipes by establishing
mathematical models. Tarng et al. (2002) applied grey based
Taguchi method for optimization submerged arc welding pro-
cess parameters in hardfacing. Datta et al. (2008a) applied
Taguchi philosophy for parametric optimization of bead
geometry and HAZ width in submerged arc weld. In another
paper, Datta et al. (2008b) used grey relational analysis in
combination with Taguchi method to optimize multiple fea-
tures of bead geometry of submerged arc weld. Murugananth
Kumar et al. (2000) used Non-dominated Sorting Genetic
Algorithms (NSGA) to optimize the contradicting combina-
tion of strength and toughness of steel welds.

Literature highlights that Taguchi method is very popular
in product/process optimization as it requires a well balanced
experimental design (limited number of experiments) which
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saves time as well as cost. In addition, Taguchi approach
finds optimal setting at discrete levels of the process parame-
ters that can easily be adjusted in the machine/setup. But the
method fails to solve multi-objective optimization problems.
In order to overcome this limitation, utility theory (Walia
et al. 2006; Datta et al. 2006), grey relation theory (Datta
et al. 2008b), and desirability function approach (Kumar et al.
2000) have been applied by previous investigators in com-
bination with Taguchi method. The purpose is to aggregate
multiple responses (objective functions) into an equivalent
quality index (single objective function) which can easily be
optimized using Taguchi method.

In such aggregation procedure, individual priority weights
are required to be assigned to different responses. In practice,
these responses may not be of equally importance. Degree of
importance/priority of various responses depends on appli-
cation area and functional requirements of the product. For
example, a weldment should have high degree of penetra-
tion depth in order to increase joint strength. To reduce weld
metal consumption, it is desired that the weld should have
less bead height and bead width. In general, weld strength
is of vital importance. Therefore, priority weight of pene-
tration depth is to be set more compared to bead width and
bead reinforcement. Assignment of response priority weights
basically depends on the judgement of the decision maker.
Change in value of the priority weights yields change in the
value of aggregated quality index.

Moreover, aforesaid approaches are based on the assump-
tion that responses are uncorrelated. Interdependence of the
responses has been assumed negligible while in practice any
change in one response remarkably affects another response.
Thus, judgement of priority weights in conjunction with
assumption of negligible response correlation may lead to
imprecision, uncertainty as well as vagueness in the solution.
It is, therefore, indeed required to develop a model which
can efficiently avoid those limitations. In this context, fuzzy
expert system has been proposed.

Desirability function approach

In this approach, individual responses are transformed into
corresponding desirability values. Desirability value depends
of acceptable tolerance range as well as target of the
response. If the response reaches its target value, which
is the most desired situation, its desirability is assigned
as unity. If the value of the response falls beyond the
prescribed tolerance rage, which is not desired, its desir-
ability value is assumed as zero. Therefore, desirability
value may vary with zero to unity. In this section, indi-
vidual desirability values for each bead geometry param-
eters have been calculated using the formulae proposed
by Derringer and Suich (1980). For bead width, reinforce-

Fig. 1 Desirability function (lower-the-better)

ment, area of reinforcement and bead volume, Lower-the-
better (LB) and for depth of penetration, area of penetration
and dilution percentage Higher-the-better (HB) criterion has
been selected.

Individual desirability value using Lower-the-better (LB)
criterion is shown in Fig. 1. The value of ŷ is expected to be
the lower the better. When ŷ is less than a particular crite-
ria value, the desirability value di equals to 1; if ŷ exceeds
a particular criteria value, the desirability value equals
to 0. di varies within the range (0, 1). The desirability func-
tion of the Lower-the-better (LB) criterion can be written
as below in Eqs. (1–3). Here, ymin denotes the lower toler-
ance limit of ŷ, the ymax represents the upper tolerance limit
of ŷ and r represents the desirability function index, which
is to be assigned previously according to the consideration
of the optimization solver. If the corresponding response is
expected to be closer to the target, the index can be set to the
larger value, otherwise a smaller value.

If ŷ ≤ ymin, di = 1 (1)

If ymin ≤ ŷ ≤ ymax, di =
(

ŷ − ymax

ymin − ymax

)r

(2)

If ŷ ≥ ymax, di = 0 (3)

Individual desirability value using Higher-the-better (HB)
criterion is shown in Fig. 2. The value of ŷ is expected to be

Fig. 2 Desirability function (higher-the-better)
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the higher the better. When ŷ exceeds a particular criteria
value, according to the requirement, the desirability value di

equals to 1; if ŷ is less than a particular criteria value, i.e.
less than the acceptable limit, the desirability value equals
to 0. The desirability function of the Higher-the-better (HB)
criterion can be written in the form as given in Eqs. (4–6).
Here, ymin denotes the lower tolerance limit of ŷ, the ymax

represents the upper tolerance limit of ŷ and r represents
the desirability function index, which is to be assigned pre-
viously according to the consideration of the optimization
solver. If the corresponding response is expected to be closer
to the target, the index can be set to the larger value, otherwise
a smaller value.

If ŷ ≤ ymin, di = 0 (4)

If ymin ≤ ŷ ≤ ymax, di =
(

ŷ − ymin

ymax − ymin

)r

(5)

If ŷ ≥ ymax, di = 1 (6)

The individual desirability values have been accumu-
lated to calculate the overall desirability using the following
Eq. (7). Here DO is the overall desirability value, di is the
individual desirability value of i th quality characteristic and
n is the total number of responses. Wi is the weight for i th
attribute. Sum of all attribute weights should be equal to 1.

D0 =
(

dw1
1 dw2

2 · · · dW n
n

)1/
∑

Wi
(7)

However, overall desirability D0 can be treated as equiva-
lent aggregated quality index but the problem arises in assign-
ing priority weights of various responses. Literature showed
that previous investigators determined optimal setting of pro-
cess parameters (Datta et al. 2006) by maximizing DO in the
experimental domain. The results obtained thereof, may be
erroneous because the exact value of priority weight to be
assigned to each and individual responses is difficult to pre-
dict. Therefore, slight change in priority weight may shift the
optimal setting if these weights are found sensitive to predict
the optima.

To avoid this uncertainty, the present study proposes fuzzy
approach to be discussed in later sections.

Fuzzy inference system

A fuzzy rule based system consists of four parts: knowledge
base, fuzzifier, inference engine and defuzzifier. Detailed
analysis on fuzzy can be found in numerous literature (Zadeh
1976; Mendel 1992; Cox 1992). The four parts are described
below.

Fuzzifier

The real world input to the fuzzy system is applied to the
fuzzifier. In fuzzy literature, this input is called crisp input
since it contains precise information about the specific infor-
mation about the parameter. The fuzzifier convert this pre-
cise quantity to the form of imprecise quantity like ‘large’,
‘medium’, ‘high’ etc. with a degree of belongingness to it.
Typically the value ranges from 0 to 1.

Knowledge base

The main part of the fuzzy system is the knowledge base in
which both rule base and database are jointly referred. The
database defines the membership functions of the fuzzy sets
used in the fuzzy rules where as the rule base contains a
number of fuzzy IF–THEN rules.

Inference engine

The inference system or the decision making input perform
the inference operations on the rules. It handles the way in
which the rules are combined.

Defuzzifier

The output generated by the inference block is always fuzzy
in nature. A real world system will always require the output
of the fuzzy system to the crisp or in the form of real world
input. The job of the defuzzifier is to receive the fuzzy input
and provide real world output. In operation, it works opposite
to the input block.

In general, two most popular fuzzy inference systems
are available: Mamdani fuzzy model and Sugeno fuzzy
model. The selection depends on the fuzzy reasoning and
formulation of fuzzy IF-THEN rules. Mamdani fuzzy model
(Mamdani and Assilia 1975) is based on the collection of
IF-THEN rules with both fuzzy antecedent and consequent
predicts. The benefit of this model is that the rule base is gen-
erally provided by an expert and hence to a certain degree it
is translucent to explanation and study. Because of easeness,
Mamdani model is still most commonly used technique for
solving many real world problems.

The first step in system modeling was the identifi-
cation of input and output variables called the system
variables. In the selection procedure, the inputs and the
outputs are taken in the form of linguistic format. A lin-
guistic variable is a variable whose values are words or
sentences in natural or man-made languages. Linguistic val-
ues are expressed in the form of fuzzy sets. A fuzzy set
is usually defined by its membership functions. In general,
triangular or trapezoidal membership functions are used
to the crisp inputs because of their simplicity and high
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computational efficiency (Yager and Filev 1999; Chang et al.
2005; Gü ngör and Arıkan 2007; Sapkota and Ohmi 2009;
Castillo and Melin 2008; Li et al. 2009; Wang et al. 2010).

In the present study, a fuzzy set Ã is represented by trian-
gular fuzzy number which is defined by the triplet (a, b, c).
Membership function μ Ã (x) is defined as:

∀x, a, b, c ∈ R

μ Ã (x) = 0, if x < a else

(
x − a

b − a

)
, if a ≤ x ≤ b else

(
c − x

c − b

)
, if b ≤ x ≤ c else 0, if x > c

The Mamdani implication method is employed for the
rules definition. For a rule,

Ri : If x1 is Ati and x2 is Ati ...xs is Asi then yi is Ci ,

i = 1, 2, . . . , M

Here, M is the total number of fuzzy rule, x j ( j =
1, 2, . . . , s) is the input variable, yi is the output variable
and Ai j and Ci are the fuzzy sets modeled by membership
functions μAi j

(
x j

)
andμci (yi ) respectively. The aggregated

output for the M rules is:

μci (yi ) = max

[
min

j

{
μA1i (x1) , μA2i (x2) , . . . , μAsi (xs)

}]
,

i = 1, 2, . . . , M (8)

Using a defuzzification method, fuzzy values can be
obtained into one single crisp output value. The centre of
gravity, one of the most popular methods for defuzzifying
fuzzy output functions, is employed in the study. The for-
mula to find the centroid of the combined outputs:

�
yi =

∫
yiμci (yi ) dy∫
μci (yi ) dy

(9)

In this work, the non-fuzzy value
�
yi is called a MPCI (Multi-

Performance Characteristic Index). Based on the above dis-
cussion, the larger is the MPCI, the better is the performance
characteristic.

Experimentation

Experiments of submerged arc welding on mild steel (MS)
plates of thickness 15.50 mm (SAIL Steel, IS 2062, Grade
A) have been carried out as per Taguchi’s L25 Orthogonal
Array (OA) design with twenty five combinations of volt-
age (OCV), wire feed rate, traverse speed and electrode
stick-out. The selected process control parameters and corre-
sponding parametric values at different levels have been fur-
nished in Table 1. Based on the parameter settings available
in the machine and knowledge acquired from literature; the
domain of parameters and levels of variation have been cho-
sen. Design of experiment has been given in Table 2. In order
to form bead-on-plate submerged arc welds on the samples
[100×50×15.50], copper coated electrode wire of 3.15 mm
diameter has been used with type AUTOMELT EL8 (AWS A
5.17/5.23 EL8, IS 7280: AS-1) of ADOR WELDING LIM-
ITED, INDIA. Chemical composition of the wire: C-0.04%,
Mn-0.4%, Si-0.05%. AUTOMELT A55 flux (Make: ADOR
WELDING LIMITED, INDIA) has been used with the fol-
lowing compositions.

SiO2 + TiO2 = 30%

CaO + MgO = 10%

Al2O3 + MnO = 45%

CaF2 = 15%

Grain Size = 0.25 − 2.00mm

Basicity Index = 0.6

Welding has been performed on the SAW setup (Make:
ADOR WELDING LIMITED, INDIA; Model—MAESTRO
1200(F)). After removing the solidified slag, the weld sam-
ples have been cooled in the room atmospheric condition.
Cross section of the welded samples of about 15–20 mm of
thickness has been cut by hydraulic power saw with nor-
mal water as coolant. The section faces of each sample have
been machined by shaper to get parallel plane as well as
semi-finished surface. Then the samples (sections) have been
filed with smooth flat file followed by finishing with emery
papers of grade 150, 600, and 2,000 consecutively to get
almost mirror finish. The faces of the samples have been
polished by self-fabricated polisher using leather buffer to
achieve the mirror finished surface. The finished surfaces

Table 1 Domain of experiment
Parameters Units Notation Level values

Level 1 Level 2 Level 3 Level 4 Level 5

Voltage (OCV) V V 32.5 35 37 39 41

Wire feed Knob setting F 2 3 4 5 6

Traverse speed m/ min S 0.30 0.45 0.60 0.75 0.90

Stick-out Mm N 25 27 29 31 33
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Table 2 Taguchi’s L25
orthogonal array and collected
experimental data

Sl. no. Design of experiment (coded) Experimental data ( mm)

V F S N Penetration Reinforcement Bead width

1 1 1 1 1 1.61 2.14 15.41

2 1 2 2 2 3.27 2.19 15.25

3 1 3 3 3 4.93 3.38 12.68

4 1 4 4 4 5.30 3.69 9.80

5 1 5 5 5 5.17 3.71 9.73

6 2 1 2 3 1.39 1.81 13.99

7 2 2 3 4 2.27 2.16 12.65

8 2 3 4 5 4.17 2.43 13.20

9 2 4 5 1 4.99 3.16 12.19

10 2 5 1 2 8.76 5.77 18.13

11 3 1 3 5 1.51 1.59 11.15

12 3 2 4 1 2.47 2.07 13.35

13 3 3 5 2 4.78 2.64 10.01

14 3 4 1 3 7.34 5.58 17.00

15 3 5 2 4 8.21 4.85 11.59

16 4 1 4 2 1.70 1.45 10.01

17 4 2 5 3 2.76 1.63 11.97

18 4 3 1 4 6.82 3.92 20.53

19 4 4 2 5 6.99 4.35 16.06

20 4 5 3 1 8.62 3.94 13.89

21 5 1 5 4 1.45 1.53 8.57

22 5 2 1 5 3.35 2.74 21.37

23 5 3 2 1 6.30 3.09 18.14

24 5 4 3 2 8.81 2.54 15.77

25 5 5 4 3 7.26 4.57 13.16

have been etched with natal solution i.e. 10% nitric acid solu-
tion in distilled water in room atmospheric condition. The
weld bead geometry features namely percentage dilution and
HAZ width has been observed (Table 2) under Optical Trin-
ocular Metallurgical Microscope (Make: Leica, GERMANY,
Model No. DMLM, S6D & DFC320 and Q win Software).

Proposed methodology

Table 3 shows calculated individual desirability values cor-
responding to each parameters of weld bead geometry. In
this computation, linear desirability function has been cho-
sen (desirability function index unity). While calculating var-
ious desirability values; a Higher-the-better (HB) criterion
has been chosen for penetration depth, whereas a Lower-the-
better (LB) criterion has been selected for reinforcement and
bead width. These selections have been based on functional

requirements of the weldment when subjected to application
filed. Weld strength is directly proportional to the penetra-
tion depth. Therefore, it is necessary that the produced weld
should confirm deeper penetration. To reduce weld metal
consumption it is desired that bead width and reinforce-
ment should be as small as possible. The aim of the analysis
is to simultaneously maximize penetration depth and mini-
mize reinforcement as well as bead width. Keeping in view;
the traditional Taguchi method deals with single response.
Therefore, prior to exploration of Taguchi method, it is nec-
essary to convert three objectives into single performance
index. Therefore, desirability values have been computed for
the selected bead geometry parameters. Irrespective of the
criteria chosen; computed desirability value should always
be maximized. Instead of computing overall desirability; a
fuzzy inference system has been proposed to receive indi-
vidual response desirability values as inputs with MPCI as
output. Therefore, desirability values of aforesaid three bead
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Table 3 Individual desirability
values of bead geometry
parameters and MPCI

Sl. no. Individual desirability values of bead geometry parameters MPCI S/N ratio

Penetration Reinforcement Bead width

1 0.0296 0.8403 0.4656 0.634 −3.95821

2 0.2534 0.8287 0.4781 0.627 −4.05465

3 0.4771 0.5532 0.6789 0.734 −2.68608

4 0.5269 0.4815 0.9039 0.737 −2.65065

5 0.5094 0.4769 0.9094 0.733 −2.69792

6 0.0000 0.9167 0.5766 0.698 −3.12289

7 0.1186 0.8356 0.6812 0.667 −3.51748

8 0.3747 0.7731 0.6383 0.680 −3.34982

9 0.4852 0.6042 0.7172 0.744 −2.56854

10 0.9933 0.0000 0.2531 0.494 −6.12546

11 0.0162 0.9676 0.7984 0.724 −2.80523

12 0.1456 0.8565 0.6266 0.679 −3.36260

13 0.4569 0.7245 0.8875 0.742 −2.59192

14 0.8019 0.0439 0.3414 0.44 −7.13095

15 0.9191 0.2129 0.7641 0.655 −3.67517

16 0.0418 1.0000 0.8875 0.751 −2.48720

17 0.1846 0.9583 0.7344 0.736 −2.66244

18 0.7318 0.4282 0.0656 0.496 −6.09037

19 0.7547 0.3287 0.4148 0.580 −4.73144

20 0.9744 0.4236 0.5844 0.706 −3.02391

21 0.0081 0.9815 1.0000 0.750 −2.49877

22 0.2642 0.7014 0.0000 0.489 −6.21382

23 0.6617 0.6204 0.2523 0.635 −3.94453

24 1.0000 0.7477 0.4375 0.733 −2.69792

25 0.7911 0.2778 0.6414 0.648 −3.76850

geometry parameters have been treated as three inputs to
the fuzzy inference system. The single output (crisp value)
of the fuzzy system is defined as MPCI which has been
treated as multi-performance characteristic index. By this
way three bead geometry parameters have been aggregated
to compute MCPI. Therefore, optimal process environment
may be evaluated by maximizing this MPCI. In this tech-
nique it is not required to check interdependence (correla-
tion) of the responses. Individual priority weights need not
to be assigned. Fuzzy inference system takes care of that.

In this procedure, the quality characteristics evaluation
strategy for the welding process that has been designed as
membership function using the fuzzy model as illustrated in
Fig. 3. As shown in Fig. 3, there are three fuzzy sets for each
of the parameters of bead geometry: small (S), medium (M)
and Large (L). Five fuzzy sets have been assigned for MPCI
(Fig. 4): very small (VS), small (S), medium (M), large (L)
and very large (VL). The fuzzy rules (Tzeng and Chen 2007;
Lu and Antony 2002) in a matrix form used for the fuzzy logic
controller have been shown in Table 4. The possible numbers
of fuzzy rules used for this experimental controller have been

shown (Fig. 5). After the input parameters are fuzzified into
the appropriate linguistic values, applying the logic rules in
Table 4 along with Mamdani inference, the fuzzy linguistic
values and their membership values for the output MPCI can
be obtained. Then, defuzzification method by the centre of
gravity in (Eq. 9) has been used to calculate the crisp value
as the final MPCI’s outputs (Table 3).

To determine the optimal process environment, it is
required to find out the highest MPCI value among all pos-
sible combinations

(
54

)
of the process parameters. Optimi-

zation (maximization) of MPCI has been carried out using
Taguchi method. Taguchi method converts response value
into corresponding S/N ratio. The Signal-to-Noise (S/N) ratio
is the ratio of mean to deviation of the response from targeted
value. Target can closely be reached by maximizing S/N
ratio. Therefore, in Taguchi analysis the optimal paramet-
ric combination is determined by incorporating Higher-the-
better criteria of the response S/N ratio. Optimal parametric
combination has been valuated from the plot in Fig. 6. Opti-
mal setting becomes: V1F1S5N1. Predicted value (S/N Ratio)
of MPCI becomes −1.06947 (highest among all entries of
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Fig. 3 Membership functions for desirability of individual responses

Fig. 4 Membership functions for MPCI

MPCI values in Table 3) whereas in confirmatory test it has
been computed as −1.0589. So quality has improved by using
this optimal setting (increment of S/N ratio).

The mean value of MPCIs for each level of control fac-
tors have been computed and summarized in Table 5. The
term ‘delta’ in Table 5 represents maximum change of MPCI

due to factorial variation. If change in factors greatly affects
delta value; it can be concluded that the response is sig-
nificant with respect to the factors under consideration. In
other words, the factors are highly significant in affecting the
response. According to various values of delta for each and
every factor level; the degree of importance of the factors

Table 4 Fuzzy rule matrix
MPCI Bead width

Small Medium Large

Penetration Small

Reinforcement Small VS S M

Medium S M L

Large M L L

Penetration Medium Small Medium Large

Reinforcement Small S M L

Medium M L L

Large L L VL

Penetration Large Small Medium Large

Reinforcement Small M M L

Medium M L VL

Large VL VL VL
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Fig. 5 Membership functions for MPCI

Fig. 6 S/N ratio plot of MPCI
(evaluation of optimal setting)

Table 5 Mean value table of
MPCI

Delta = (maximum
value−minimum value)

Level V F S N

1 0.6930 0.7114 0.5106 0.6796

2 0.6566 0.6396 0.6390 0.6694

3 0.6480 0.6574 0.7128 0.6512

4 0.6538 0.6468 0.6990 0.6610

5 0.6510 0.6472 0.7410 0.6412

Delta 0.0450 0.0718 0.2304 0.0384

Rank 3 2 1 4
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on the response variable (factor ranking) can be made. Fac-
tors corresponding to negligible delta value may be assumed
insignificant. From Table 5 it has been inferred that welding
speed is the most important factor influencing MPCI; next
significant factor is wire feed, then voltage. Electrode stick-
out shows negligible influence.

Conclusions

In the foregoing study, the fuzzy rule based model has
been developed using three input variables (corresponding
to three process responses to be optimized) and one output
variable i.e. MPCI. By this way, a multi-response optimi-
zation problem has been converted into an equivalent sin-
gle objective optimization problem which has been solved
by Taguchi philosophy. The proposed procedure is simple
and effective in developing a robust, versatile and flexible
welding process. Optimization of MPCIs of the process can
easily be achieved through proper system model simulation
in order to fulfill customers demand. Degree of influence of
various process control factors can be investigated easily.
Accuracy in prediction of the model analysis can be sub-
sequently increased by increasing number of membership
function in the fuzzy system.

The unique features of the proposed approach are:

1. Exploration of desirability function approach can take
care contradicting requirements of response features such
as Higher-the-better, Lower-the-better, and Target-the-
Best.

2. Desirability function approach can convert various
response values into a non-dimensional index (ranging
from zero to unity).

3. In the proposed desirability function based fuzzy approach,
individual response priority weights need not to be
assigned.

4. The proposed approach converts numerical response into
linguistic so that issue of response correlation can be
avoided.
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