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Abstract A new technique for finding the root cause for
problems in a manufacturing process is presented. The new
technique is designated to continuously and automatically
detect quality drifts on various manufacturing processes and
then induce the common root cause. The proposed technique
consists of a fast, incremental algorithm that can process
extremely high dimensional data and handle more than one
root-cause at the same time. Application of such a methodol-
ogy consists of an on-line machine learning system that inves-
tigates and monitors the behavior of manufacturing product
routes.

Keywords Automatic root cause discovery · Data mining ·
Failure analysis · Concept drift · Quality control ·
Fault detection · Yield improvement

Introduction

The semiconductor industry continually seeks to improve
yields in order to meet growing needs. At the same time,
wafer fabrication process becomes more complex as technol-
ogy advances. As with many other manufacturing processes,
wafer fabrication often faces fluctuations in product quality;
random events and subtle environmental changes in might
increase failures.

A major problem in virtually any manufacturing factory is
minimizing the defects that may appear in the manufacturing
process. In the semiconductor industry, the fabrication pro-
cess consists of thousands of variables and interactions that

L. Rokach (B) · D. Hutter
Department of Information Systems Engineering, Ben-Gurion
University of the Negev, 84105 Beersheba, Israel
e-mail: liorrk@bgu.ac.il

create a chaotic, non-linear environment which is little under-
stood and whose outcomes are very hard to predict. Among
the variables are the nature and quality of the tools, environ-
mental factors, such as humidity, temperature, and tool setup
parameters. These are but a few of the many elements where
any slight deviation of one of them, can cause defects leading
to poor yield and increased manufacturing costs. Therefore,
defect inspection is vital in the fabrication process.

Root-cause identification for quality-related problems is
a key issue in quality and productivity improvement in man-
ufacturing. Unfortunately, root-cause identification is also
a very challenging engineering problem, particularly for a
multi-stage manufacturing process.

Statistical Process Control (SPC) (Ben-Gal 2006; Durham
et al. 1995) and Design of Experiments (DOE), (Jemmy et
al. 2005) are very common statistical methods to detect and
analyze variations in semiconductor manufacturing process.
Unfortunately, their extensive use does not ensure high yields
at the end of the process; while they may be very much
necessary, they insufficient for reducing defects. In addition,
although all the inline parameters may be in control accord-
ing to SPC, one can observe significant yield losses. The
inability of these traditional methods to sufficiently reduce
defects necessitates the search for more efficient methods.

Due to the decreased costs of computing in recent years,
data mining represents a new frontier in the evolution of yield
management systems because of its capability to discover
correlations between various types of input data and to link
process parameters in order to determine which parametric
issues are impacting yield (Kenneth et al. 1999). Kittler and
Wang (1999); Choudhary et al. (2009) and Chang et al. (2009)
describe possible applications of data mining in semiconduc-
tor manufacturing.

Analyzing wafer fabrication data poses many challenges
since the fabrication process, as noted above, is complex and
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error-prone. Many factors contribute to fluctuations in the
yield obtained. The entire manufacturing process typically
takes weeks or even months to complete. On the other hand,
the hundreds of operations which the wafers undergo gen-
erate a huge amount of data that is collected and monitored
from various sensors each day. Thus, new tools for analyzing
complicated manufacturing environments are required (Chen
et al. 2009; Haapala et al. 2008; Duan et al. 2009).

There have been many important studies in semiconductor
data mining in recent years. Gardner and Bieker (2000) have
studied the possibility of combining a self-organizing map
(SOM) with neural networks and rule induction. Goodwin
et al. (2004) reviewed Intel’s recent developments of using
data mining to address different problems in semiconductor
manufacturing and compared them to several algorithms. The
solutions have been integrated into a software package, called
Interactive Data Exploration and Learning (IDEAL). Rokach
and Maimon (2006) applied decision trees to Work-in-Pro-
cess (WIP) data. Jemmy et al. (2005) presented a framework
to unify the various data-mining solutions for wafer manu-
facturing data using two-phase clustering algorithm to effi-
ciently group the defect wafers. Hyeon et al. (2006) proposed
an improvement to the ingot fabrication step using bootstrap
method and multiple regression models for data generation
and DPNN (Dynamic Polynomial Neural Network) and deci-
sion tree for extracting rules. Rokach et al. (2008) presented
an effective composited classifier composed of decision tree
induction. They reviewed their new approach on semicon-
ductor data. Bergeret and Le Gall (2003) tested different sta-
tistical approaches, such as: moving average, Markov chain
and Bayesian method. Hu and Shun-Feng (2004) have written
about hierarchal clustering methods to improve manufactur-
ing process scheduling.

All these data mining solutions rely on data mining on
demand. That is to say, the algorithms are usually acti-
vated manually when trends in the manufacturing process
or drifts in the yield are identified. Unfortunately the pro-
posed solutions cannot identify drifts automatically, a factor
that reduces the effectiveness of the data mining solutions.
In addition, most of these data mining solutions exploit data
which has been extracted from machine measurements in
order to conclude on emerging drifts. Unfortunately, this data
is usually characterized by extremely high dimensionality
and missing entries, which automatically reduces the effi-
ciency of the model. Our methodology offers a new method
for identifying the root-cause for quality drifts by constantly
monitoring and inspecting new quality variations in the input
data which consists of manufacturing routes.

A few researchers have incorporated concept drift as
part of the data mining solution for manufacturing solu-
tion. Rodrigues and Gama (2004) presented a method to
on-line check for concept drift in continuous Glass Manu-
facturing Process. Though a lot of progress has been made

Fig. 1 Usability demonstration of decision tree output example. Inter-
pretation may require more efforts

since concept drift was first discovered one cannot avoid
the overhead of integrating methods to detect concept drift.
Furthermore, efficiency always decreases with time, even
when using the most successful detection methods. One of
the greatest advantages of our methodology is overcoming
the concept drift by using sliding window that contains all
the information required to analyze quality drifts.

Another issue that many of the techniques mentioned
above fail to deal with relates to the usability of the data
presented to the user. With traditional data mining solutions
the output of the model tends to be hard to interpret due to the
training data set that is usually composed of measurements
produced by the machines. Further steps are usually required
to fully interpret the model and to draw from it meaningful
conclusions. Figure 1 presents an example of a typical out-
put from a decision tree that was used in a traditional data
mining approach. As can be seen, transforming this model
into useful rules is not that simple.

In this paper we introduce the root-cause problem and
define different types of failure. We present a new methodol-
ogy for finding the root-cause for scraps in a manufacturing
process. The advantages of the new methodology include:

• Automation—Using an incremental model instead of on-
demand operation produces better understanding and sen-
sitivity to the behavior of scraps. In addition, it naturally
overcomes the concept drift.

• Overcoming the dataset problem—Unlike traditional data
mining approaches, the proposed methodology can cope
with difficulties arising from high dimensional data, small
sample sizes and missing data.

• Usability—The model is immediately interpretable and
does not require any additional analytical or computa-
tional effort.
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We also propose a novel method for evaluating mod-
els characterized by multi-classifications and classification
with approximations. We use the new method to evaluate
our methodology and to optimize model parameters and
thresholds.

The root-cause problem

We now define the root-cause problem. We assume that a pro-
cessing batch consists of k identical products {P1,P2, . . ., Pk}.
Each product undergoes w steps {S1, S2, . . ., Sw} in sequence
to be finished. We also assume that there are n manufacturing
machines {M1, M2, . . ., Mn} in the factory. Note that some
machines may be used more than once for producing the
same product. The manufacturing mapping relation maps
each step Si {S1, S2, . . ., Sw} to a list of suitable machines.
The manufacturing process relation, based on the relation
schema {P I D, S1, S2, . . ., Sw, C}, can be used to record the
processing information of each product Pi and its outcome.
Among the attributes in the relation, PID is an identifica-
tion attribute used to uniquely identify the products; Si is a
context attribute associated with a pair 〈step, manufacturing
machine〉 and indicating that the manufacturing machine is
used in a certain step; and C is a classification attribute that
states whether a product is scrap or not.

Figure 2 illustrates a manufacturing mapping relation with
four steps (w = 4) and ten machines (n = 10). Figure 3
shows a manufacturing process relation that uses the man-
ufacturing mapping relation presented in Fig. 2. That is to
say, the relation is used to record five steps (w = 5) and pro-
cessing information from ten machines (n = 10) for a batch
of five products (k = 5). The first tuple shows that product
P1 passed through stage 1 on M1, stage 2 on M2, stage 3 on
M9, stage 4 on M3, and that its classification result shows a
defect (C = 1). Other tuples have similar meanings.

The goal is to identify the root-cause for a given manufac-
turing process relation tuple. In general, we can have more
than one root-cause for a certain scrap, and each root-cause
can contain more then one 〈step, machine〉 pair. From these
notations we can derive the model’s input and output. Given
a product’s manufacturing route and scrap classification, the

Fig. 2 A manufacturing mapping relation with five steps (w = 4)
and ten machines (n = 10). Each tuple represents a step and a list of
machines that can process the step

Fig. 3 A manufacturing process relation that makes use of the manu-
facturing mapping relation presented in Fig. 2

model’s output (root-cause), will be a set of clusters thus
there are chains of 〈step, machine〉 pairs from the product
manufacturing route where each 〈step, machine〉 can appear
only once in the clusters. These notations are best described
using a commonality graph.

The commonality graph spreads the manufacturing routes
to sub-components connected by a commonality feature.
The commonality graph is composed of commonality nodes.
Each commonality node contains a chain of 〈step, machine〉
pairs which represent a portion of the chain from the lower
commonality node connected to it. Taking two or more com-
monality nodes from the same depth can reveal which com-
monality node is directly related to those that have been
selected. From a quick glance, the commonality graph looks
very similar to a lattice network or a combinatorial network
in the process of decomposing into all possible combinatorial
options.

The commonality graph is composed of two main layers.
The upper layer describes all possible root causes for all pos-
sible manufacturing routes. The lower layer describes all pos-
sible manufacturing routes. Crossing from the upper layer to
the lower one will increase the manufacturing route dimen-
sionality in the vertexes while from the inverse way, will
decrease it. The commonality graph best describes the com-
monality relationships between the different components in
the system. Figure 4 presents the commonality graph of a
certain beverage manufacturing process that is composed of
three steps and two possible values for each step.

Failures in the semiconductor manufacturing may arise
from different reasons and contexts. In order to better dis-
tinguish between the different failures, we will review them
and examine how they affect the input data. For any given
time, one or more of the following failures may appear in the
manufacturing process.

• Single machine with a specific failure—We place a fail-
ure in this category if the failure was due to a specific
problem in one of the machines on the manufacturing
floor. This failure may cause only small to medium drift
in the manufacturing yield depending on the excessive
use of the problematic machine. Yield management may
interpret this phenomenon as random failure. This phe-
nomenon has a high probability of occurring and it can
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Fig. 4 A commonality graph of
a certain beverage
manufacturing process
composed of three steps with
two possible values for each step

be tied to human error or environmental changes or other
such similar events. Whenever a problematic machine
is used in many manufacturing steps, scraps will appear
after engaging 〈stepi , problematic machine〉 where stepi
is a group of steps that the problematic machine can pro-
cess.

• Many machines, each with a specific failure—We place
a failure in this category if it was due to a specific prob-
lem in one or more of the machines on the manufactur-
ing floor. This failure will probably cause a high drift
in the manufacturing yield depending on the amount of
problematic machines. Yield management may interpret
as spatial event which may cause a manufacturing stop-
page. This phenomenon has only small probability of
occurring and yet it can be tied to a natural event or sud-
den problem with the clean room or any similar spatial
events. In cases where the problematic machines are used
in many manufacturing steps, scraps will appear after
engaging 〈stepi , problematic-machinei 〉 where stepi is
a group of steps that the problematic machine can pro-
cess and problematic-machinei is a group of problematic
machines.

• Many machines, process combination failure—We place
a failure in this category if the failure was due to
a specific process combination problem arising from
a specific sequence of machines on the manufactur-
ing floor. This failure may cause a small drift in the
manufacturing yield due to the small probability of
a certain product to be processed using the problem-
atic combination of machines. Yield management may
interpret this quality drift as a random event and there-
fore it will not attract further attention. This phenome-
non has only a small probability of occurring. In cases
where the problematic sequence of machines is used,
scraps will appear after engaging 〈step1, machine1〉,
〈step2, machine2〉…〈stepi , machinei 〉, hence the prob-
lematic sequence.

Methodology

In this section we describe in detail the new approach.

Data structure

The methodology’s data structure saves the minimum rele-
vant data for finding the root-cause. The data structure con-
sists of the raw data that corresponds to the lower layer of
the commonality graph. The model constructs an object from
each 〈step, machine〉. For each constructed object, the model
maintains two queues with a predefined size. One queue, the
Non-Scrap PID (NSP) queue saves the latest product IDs of
the products that were classified as non-scrap and were also
engaged through the 〈step, machine〉 pair. The other queue,
Scrap PID (SP) queue is similar to the first queue, but for
those which are classified as scrap.

Updating the model is done with each new transaction,
regardless of whether it was classified as scrap or not. For
each new transaction, we examine its 〈step, machine〉 man-
ufacturing chain. For each 〈step, machine〉 pair, we update
the relevant object in the data structure. If the transaction
was classified as scrap, we update the object’s SP queue with
the new product ID; otherwise we update the NSP queue.
Using the queues with a predefined size denotes the impor-
tant feature of this data structure. At any given moment the
data structure includes a view of each 〈step, machine〉 and its
latest information. The data structure is easy to construct and
extremely compressed. It enables the methodology to handle
extreme highly dimensional data very fast.

The root-cause algorithm: clustering common failures

The root-cause algorithm consists of two steps: clustering
common failures and determining the root cause. Since the
data structure saves data about each possible 〈step, machine〉
in the manufacturing process, the first two types of failures,
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Single machine with a specific failure and Many machines,
each with a specific failure can be easily handled, mainly
because these failures consist of a specific problem in each
of the machines involved . On the other hand, finding connec-
tions between failures is much more complicated since for
each combination described in the upper layer of the com-
monality graph, historical data needs to be saved. Using a
Squeezer algorithm (Zengyou et al. 2002), we successfully
overcome the greatest disadvantage of the brute force strat-
egy of saving data on different combinations, and therefore
we are able to handle the third failure type, Many machines,
process combination failure.

On the assumption that 〈step, machine〉 pairs belonging
to the category Many machines, process combination failure
will have approximately similar values in their SP queue, we
can use clustering methods to find commonalities between
failures. Failures within the category Many machines, pro-
cess combination failure may occur when using a specific
problematic combination of two or more 〈step, machine〉
pairs in the product route. When this happens, this type of
failure will appear in most of the manufacturing scraps and
therefore will eventually end up creating the same SP queue
for each of the objects that are responsible for the common
sequence failure in the data structure.

Since the Squeezer algorithm is incremental, we can use
the data structure to go over each 〈step, machine〉 pair in the
scrap manufacturing route while activating the algorithm on
the objects belonging to the SP queue. Each created cluster
is characterized by a common SP and NSP queues. Since
the clustering algorithm is only done on the SP queue, the
NSP queue will be composed of the intersection of each NSP
queue belonging to the cluster elements.

At the end of the clustering phase, we produce all the clus-
ters with a common SP queue from the manufacturing scrap
route. This group of clusters is eventually a subset of the root-
cause clusters belonging to the manufacturing scrap route in
the commonality graph. This group of clusters contains with-
out exceptions, all 〈step, machine〉 pairs in the manufacturing
route, whether they are clustered into groups or not. A single
〈step, machine〉 pair can only be in one cluster in the group.
In the next phase we will examine each cluster in order to
determine if it can be classified as a root-cause or not.

The root-cause algorithm: determining the root-cause

In the second phase of the root-cause algorithm we develop
a novel method to determine if a single cluster can be clas-
sified as root cause. We exploit both the SP and NSP queues
of the cluster to calculate and distribute weights to each ele-
ment in the NSP queue. We then accumulate the weights and
compare them against a pre-defined threshold to determine if
the cluster can be classified as root-cause. By merging both
the SP and NSP queues into a single queue with respect to

the latest order, we can observe recent changes in the cluster
productivity behavior.

We now describe two interesting merging scenarios. In
the first extreme scenario, all product IDs belonging to SP
queue are larger than the largest product ID found in the NSP
queue. This means that all product IDs in the SP queue are
closer to the current point of view than the product IDs in
the NSP queue. In this extreme scenario, we are very con-
vinced that the cluster is indeed a root-cause of the problem.
Looking at the extreme scenario from the opposite point of
view, in which all the product IDs belonging to the SP queue
are smaller than the smallest product ID found in the NSP
queue, will lead to the opposing conclusion that this cluster
cannot be classified as the root-cause.

These two unique merging scenarios can define the scope
of the weighting calculation method, mainly because they
best define if a cluster can be classified as root-cause or not.
We can also refer to these merging scenarios as the edges
in our weighting function, giving them the highest and the
lowest scores.

We now fully describe our weighting method:b
For each cluster we calculate the following weights

according to the following method:

1. We first merge the cluster’s SP and NSP queues and sort
them from the latest to the older.

2. We then distribute weights to each PID in the NSP queue
according to its place in the merged queue using Eqs. 1,
2 and 3.

W (si ) = (1 − P L AC E(si ) · k) · k (1)

P L AC E (x) =
∑

∀ fi >x

fi (2)

k = 1

q
(3)

3. We then accumulate the weights and compare this value
to a predefined threshold; if the value is smaller than
the predefined threshold we classify the cluster as root-
cause.

In Eq. 3, q refers to the predefined size of the SP and NSP
queues. In Eqs. 1 and 2, si refers to examined product ID
in the NSP queue, while fi refers to certain product ID in
the SP queue. Equation 2 calculates the number of product
IDs in the SP queue which is bigger than si , i.e., the younger
product IDs. Equation 1 denotes a value ranging from 0 to
1/q, where the value of 1/q is given to a non-scrap product
ID which is younger than any product ID in the SP queue.
On the other hand, the value 0 is given to a non-scrap prod-
uct ID which is older than any product ID in the SP queue.
If the queues sizes are even and a non-scrap product ID is
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younger than half of the product IDs in the SP queue, then,
it is assigned a weight equal to half of 1/q.

We can now check our extreme merging scenarios. For
the first one, which represents perfect root-cause classifica-
tion, every product ID in the NSP queue is assigned a 0 value
weight. Since the number of the product IDs is exactly the size
of the queue, accumulating the values will denote 0. Since the
predefined threshold ranges from 0 to 1, we determine that
the first extreme scenario will be classified as root-cause. On
the other hand, in the second scenario that represents rejec-
tion of the root cause classification, every product ID in the
NSP queue is assigned 1/q value weight. Since the number of
the product IDs is exactly the size of the queue, accumulating
the values will denote exactly 1. We will therefore determine
that the second extreme scenario will not be classified as
root-cause.

The predefined threshold represents the sensitivity of the
root-cause algorithm to the root-cause classification. Any
change will affect the performance of the methodology. Of
course, each application requires its own level of sensitiv-
ity that is directly tied with the yield manufacturing perfor-
mance.

In the next section, Evaluation, we examine different
threshold values in order to find the optimal value. Interest-
ingly enough, we demonstrate that other model parameters
can also greatly affect the performance of the model.

Evaluation

Traditionally the evaluation of data mining algorithm has
focused on evaluating two-class classification using ROC
curves (Rokach 2010). However, in the root-cause detec-
tion problem, the classification consists of a set of labels
which represents the set of root causes (also known as
multi-label classification). Moreover, the root causes can be
inter-connected via hierarchical relations as indicated in the
commonality graph.

Classifications which consist of a set of labels can expand
or not the real classification by adding irrelevant information.
In other words, both groups of real and predicted classifica-
tion may contain similar labels, hence the term, classification
with approximations.

Although the approximations that we derive from this
form of classification do not provide us with the exact answer,
nevertheless, regardless of the irrelevant information that has
been added to the classification, our current state of knowl-
edge regarding the root-cause is significantly improved. Fur-
thermore, in real-life, defects can arise from different sources
at a time, multi- classifications, creating more than one prob-
lematic root-cause.

Evaluating classifiers characterized with approximations
using the traditional evaluation methods may not take into

account their proximity to the real classification. For example
if the real classification was: “angry”, “sad” and “embittered”
and the classifier indicates “angry” and “sad”, traditional
methods will indicate that the classifier was wrong. How-
ever, one cannot ignore that the classifier was 66.6% right,
and therefore our knowledge was significantly improved. A
simple approach to evaluate such classifiers with the tradi-
tional methods of confusion matrixes and ROC curves is to
transfer the problem into traditional two-class, binary clas-
sification by deciding that a certain classifier is either right
or wrong by using a 50% rule. If the classification is cor-
rect in more than 50% of the labels, we refer it as correct
classification. Otherwise, if less than 50%, it will be consid-
ered as misclassification. This kind of approach can precisely
evaluate classifiers characterized with approximations when
handling problems which contain small amounts of category
labels. However, when classifications become more complex,
thus include more category labels, this kind of approach fails
to correctly evaluate them.

Figure 5 illustrates the complexity of evaluating classifiers
that classify with approximation. The figure describes the real
classification {3-1}; thus, the root-cause uses machine num-
ber 3 to process step 1. For the example, we will assume that
product X with manufacturing route {1-1, 2-2, 3-1} has been
classified as scrap. By looking at the commonality graph we
also notice other clusters which may have been misclassified
by the classifier. Luckily some of these clusters may signif-
icantly improve our knowledge. For example, if the classi-
fier indicated that the root-cause is cluster {2-2, 3-1}, then a

Fig. 5 Evaluating models with classifications that are close to the
actual classification. The figure shows a commonality graph in which
two close classifications reside next to the actual classification
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portion of the answer still stands—machine 3 in step 1 indeed
caused the failures. Although the classifier added “irrelevant
data”, (2-2), we still saved a third of the energy we would
have invested without using this information since tracking
the root-cause of the full scrap manufacturing route, {1-1,
2-2, 3-1} was the only piece of information we have.

Increasing the manufacturing route dimensionality even
further will increase the complexity of finding the root-cause.
Hence, enhance our appreciation to any knowledge improve-
ment arise from using classifiers characterized with approxi-
mations. The potential of knowledge improvement is the key
advantage of classifiers characterized with approximations
comparing to traditional classifiers when tackling problems
similar to root-cause identification. Therefore, we cannot
ignore the need for strong methods to evaluate these unusual
but potentially useful classifiers.

Another way to evaluate a model’s correctness is by devel-
oping a method that grades classifiers according to the dis-
tance from the predicted root-cause to the real root-cause
cluster on the commonality graph. Naturally, among all pos-
sible clusters, the clusters that improve our knowledge are
those that possess a dimensionality that is equal to or higher
than the real-root cause cluster and which are also connected
in a direct or indirect commonality link to the real root-cause
cluster. Since those clusters with the closest dimensional-
ity are the ones that best improve our knowledge, they will
be compensated with a greater score than those that do not.
Following this intuition, we can define distances between
different root-cause clusters using Eq. 4.

Given a root-cause cluster A with n dimensions and root-
cause cluster B with m dimensions, the distance from A to
B is defined as:

DI ST ANC E(A, B) =
⎧
⎨

⎩

n − c n > mand c > 0
m − c m ≥ nand c > 0

t c = 0
(4)

where c is the commonality dimension between A and B
and t is the manufacturing route dimensionality (c < m, n).
In other words, the similarity distance between A and B is
simply the maximum number of unagreed dimensionalities.
When the common dimensionality is equal to 0, the distance
is the number of dimensions of the manufacturing route. If
c = m = n, then DI ST ANC E(A, B)= 0. If root-cause
clusters A and B have c = 0 then DI ST ANC E(A, B) = t .
So far we described the distance between two clusters, but in
order to address multi-classification cases, we have to also
define the distance between more than two root cause clus-
ters.

Given root-cause clusters, A, B, C and D, and their dis-
tances from each other, we would like to know the distance
between A and C to B and D, meaning, DISTANCE(A ∩
C, B ∩ D). In order to find these distances, we use the fol-
lowing similarity distance matrix:

Reported problematic
B D

Real problematic
A DISTANCE(A, B) DISTANCE(A, D)
C DISTANCE(C, B) DISTANCE(C, D)

Now we can define the full evaluation method as fol-
lows: given n—real problematic root-cause clusters, and m—
reported root-cause clusters and a cost matrix n × m. The
model’s error is simply the minimum cost between all pos-
sible assignments divided by the maximum possible cost.
In order to solve the minimum cost problem, we exploit
the Hungarian algorithm to solve the assignment problem
in computational complexity of O(n3).

Recall the case presented in Fig. 5. The manufacturing
route of product X which has been classified as scrap is {1-
1, 2-2, 3-1}. Assuming that the real root-causes are {3-1}
and the reported root-causes are {2-2, 3-1}, {2-1}, we can
now build the similarity distance matrix for the example:

Reported problematic
{2-2, 3-1} {2-1}

Real problematic
{3-1} d1 d2

{virtual cluster*} d3 d4

where:
d1 DISTANCE ({3-1}, {2-2, 3-1}) = 1
d2 DISTANCE ({3-1}, {2-1}) = 3
d3 DISTANCE ({virtual cluster*}, {2-2, 3-1}) = 3
d4 DISTANCE ({virtual cluster*}, {2-1}) = 3

In order to be able to connect all reported classifica-
tions, we introduce virtual clusters. Without using the vir-
tual cluster, the minimum cost of assignment is 1. But this
situation ignores the extra cluster, {2-1}. Adding a virtual
cluster, where the distance to it always equals the manufac-
turing route dimensions, will achieve the required balance
by increasing the minimal cost to 4 instead of 1. Finally, the
model error is equal to 4 out of 6 (minimum assignment cost
divided by the maximum possible costs), a 66.666% error.
This number also makes sense when looking at the spread
elements in the reported clusters—66.666% of the reported
elements are missed classifications.

Usually, confusion matrixes are used to evaluate two-class
classifiers. However, we can utilize multi-similarity distance
to generalize the confusion matrix for multi-label classifi-
cations with approximations. Since the multi-similarity dis-
tance approach outputs the accuracy in the range of [0,1], we
can easily use these values for creating a confusion matrix.
For example, let’s consider the case that the similarity dis-
tance assigns a 65% accuracy to a certain classifier. Then,
if it was a “positive” instance, meaning that the classifier
was suppose to be 100% accurate, the score will denote 0.65
in the confusion matrix’s positive-positive quarter, and will
decrease the positive-negative quarter by 0.35.
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Experimental setup

Simulation tool

To evaluate our new methodology, we developed a tool to
simulate a production line with a variable number of manu-
facturing steps where each step can be processed on different
machines and each machine can process more than a sin-
gle manufacturing step. The simulation itself consists of two
major phases. In the first phase the simulation fully maps the
relationship between the manufacturing process and the var-
ious machines necessary to implement it by randomizing the
machine list to each manufacturing step from a fixed number
of available machines.

The second phase consists of preparing the dataset. The
dataset itself is also divided into two parts. The first part
consists of normal manufacturing production. In this part we
produce a small portion of data, which is characterized by
a constant scrap rate that has been created from abnormal
behavior which we cannot really relate to any specific root-
cause. The second part of the data is reserved for simulating
poor quality drift, in which our random root-cause produces
more scrap than usual. Basically, we randomize a manufac-
turing route. If the manufacturing route contains our root-
cause cluster, the final classification will have greater chance
of being scrap. A steady period of production followed by
a poor quality drift period completes the full picture of the
simulation. The complete simulation presents a very close
approximation to a real scenario. The simulation assumes a
normal distribution in all coincidental aspects. The simula-
tion produces rows of data ordered by time, meaning that each
following row is newer than the previous one and therefore
the larger the product ID, the newer the lot is. The simu-
lation tool was developed in C# using Virtual Studio 2005.
The output file that the simulation produces is compatible for
Weka software package (Frank et al. 2005).

Datasets

In our experimental study we utilized the simulation tool to
produce datasets that fully simulate a semiconductor fabrica-
tion process line. The datasets simulate three different types
of failures: (1) Single machine with a specific failure; (2)
Many machines, each with a specific failure; and (3) Many
machines, process combination failure. Table 1 summarizes
the three different configurations.

As one can notice, the third configuration is slightly dif-
ferent than the first and second configurations since we sub-
stantially increased the size of the problematic training size
and decreased the number of machines for each operation.
This was done due to the low probability of randomizing an
entry when both of the 〈step, machine〉 pairs are presented
in the manufacturing route (The probability is exactly the

multiplication of both probabilities when using a certain
〈step, machine〉 pair in the manufacturing route). By increas-
ing the size, the model can “feel” the drift caused by this
combined failure. Another difference appears in the third
configuration where the probability for scrap in a stable man-
ufacturing period decreases from 0.1 to 0.05, while the prob-
ability for scrap in an unstable manufacturing period in the
problematic root-cause cluster has been increased from 0.85
to 0.9. The reason for this, as explained below (see next sec-
tion) is related to the model’s ability to locate third configu-
ration failures.

Metrics

In the experiments that we carried out, we evaluated the meth-
odology by focusing on two dimensions, fast detection of
the root-cause, and second, following detection, preserving
accuracy by correctly classifying the incoming scraps that
followed. We will therefore define and describe the metrics
involved:

• Number of scraps until discovery—This parameter counts
each new scrap that is directly related to the simulated
root-cause until the root-cause has been successfully dis-
covered. If more than one root cause exists, an averaging
technique will be used. Of course, the lower the value of
this parameter, the lower the scrap costs.

Confusion matrix—Classification systems are usually eval-
uated using a confusion matrix which contains information
about actual and predicted classifications performed by a
classification system. The performance of such systems is
commonly evaluated using the data in the matrix. As noted
earlier, using our multi-similarity distance approach makes
it possible to generalize the confusion matrix to multi-clas-
sifications with approximations.

Experimental results

In this section we present nine different experiments. In
the First experimental series, we get a first glance into the
model’s performance while discussing the adjustments of
the predefined parameters and thresholds. Each experiment
in the First experimental series is different in respect to two
dimensions, the simulation data set and the model’s parame-
ters. In this first trial, we also outline the model’s advantages
and limitations. In the Second experimental series we present
a configuration approach which overcomes these limitations,
and a general integrated approach that positions this method-
ology as a leading approach. In the Third experimental series
we present more experiments and compare our new method-
ology to the well known decision tree induction algorithm
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Table 1 Three simulation configurations for three datasets used in the experimental section

Simulation parameters First configuration Second configuration Third configuration

Failure type Single machine with a
specific failure

many machines, each with a
specific failure

many machines, process
combination failure

Training size for a stable
manufacturing period

2,000 entries 2,000 entries 2,000 entries

The probability for scrap in
a stable manufacturing
period

10% 10% 5%

Training size for an unstable
manufacturing period

1,500 entries 1,500 entries 5,000 entries

The probability for scrap in
a unstable manufacturing
period traversing the
problematic root cause
cluster

85% 85% 90%

The number of
manufacturing steps

100 100 100

The number of machines
for a manufacturing step

15 15 7

The number of available
machines in the factory

250 250 250

The problematic clusters {〈step45, machine184〉} {〈step17,machine18〉},
{〈step4, machine162〉},
{〈step58, machine41〉}

{〈step85,machine49〉
〈step66,machine207〉}

Each simulates a different type of failure

called C4.5. We evaluate the performance of the algorithms
using our new evaluation method, multi similarity distance.

First experimental series

In this experimental series we focus on introducing the per-
formance of our new methodology while discussing the
model’s parameters and thresholds. We briefly present below
the parameters and thresholds that must be properly adjusted
before using this methodology:

• Queue-size parameter—This parameter controls the max-
imum size of the latest data that is saved for each possibly
〈step, machine〉 pair, in order to find failure commonali-
ties between them. It defines the size of the queues, NSP
and SP that belong to each possible 〈step, machine〉 pair,
according to the methodology’s data structure. Increasing
this value upward will automatically harden the cluster-
ing formalization since clusters will now have to agree
on more entries between their SP queues. This will also
have an impact on root-cause acceptance, making it more
difficult to accept an increased number of entries due to
the fact that the root-cause determination will now “dig
deeper” into the past.

• Squeezer clustering threshold—Although Squeezer algo-
rithm does not require the number of clusters as an input
parameter, it still requires a special threshold to determine

the acceptance of a new instance to an existing cluster.
Increasing this threshold and new instance who wishes
to enter an existing cluster will now have to agree on
more entries between their SP queues, which will auto-
matically harden the clustering formalization, leaving us
with more widespread clusters. On the other hand, care-
lessly decreasing this threshold will cause much fewer,
denser clusters, with little chance of being classified as a
root-cause.

• Root-cause acceptance threshold—This threshold is being
used during the root-cause determination phase. After
accumulating the non-scrap PIDs weight, we compare
it to a predefined threshold, the root-cause acceptance
threshold. Increasing this threshold will cause more root-
cause clusters to be accepted which, in turn, will lower
the model’s precision. On the other hand, it will also raise
the model’s sensitivity to new root-cause clusters.

Tables 2, 3 and 4 present the results of the first experimen-
tal series, each table presenting the results of one of the three
configurations described above. Each table describes nine
different experiments, in which the three parameters/thresh-
olds of the model are configured differently. In addition to
the accuracy (AC) we also report the following measures:

1. The true positive rate (TP) is defined as the proportion
of positive cases that were correctly identified.
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3 2. The false positive rate (FP) is defined as the proportion
of negatives cases that were incorrectly classified as pos-
itive.

3. The true negative rate (TN) is defined as the proportion
of negatives cases that were classified correctly.

4. The false negative rate (FN) is defined as the propor-
tion of positives cases that were incorrectly classified as
negative

5. The precision (P) is defined as the proportion of the pre-
dicted positive cases that were correct

6. Geometric mean (g-mean) of TP and P (g-mean1) and
TP and TN (g-mean2)

In order to properly compare and arrive at a conclusion
regarding the optimal parameter/threshold configuration, the
same configurations were used for each table. For example, in
the first experiment, the first entry in each table consists of the
same parameters: queue- size equals 5; Squeezer acceptance
threshold equals 4; and the root-cause acceptance threshold
equal to 0.2. The structure of the tables is the same and they
contain the same columns and measurements.

The necessity of adjusting these three parameters is partic-
ularly important. As can been seen from Table 2, experiment
9 presents better results than all the other experiments in the
table. By adjusting the sliding window (queue size) to 10
transactions, the same as the Squeezer acceptance threshold
and by using a root-cause acceptance threshold equal to 0.2,
we can achieve a very high accuracy, 96.7% and an over-
all measure of 95.8% (g-mean1 and g-mean2). On the other
hand, observing the worst performance, as presented to us by
experiment 1, with an accuracy of 25.4% and an overall mea-
sure of 29.15% (by averaging g-mean1 and g-mean2) we can
understand the need to properly adjust the model parameters
and thresholds.

In order to properly understand why experiment 9 pre-
sented such a unique performance, we need to look at the
following perception. In Table 2, the experiments which
adjusted their Squeezer acceptance threshold to match their
queue size achieved better performance. By matching the
Squeezer acceptance threshold to the queue size we decrease
the probability of clusters to merge. On the other hand, hard-
ening the ability of clusters to merge is perfectly suitable to
scenarios with failures from Single machine with a specific
failure, category, because the simulate root-cause consists of
single element cluster.

Another observation is the tradeoff resulting from increas-
ing the sliding window, hence the queue size. By increasing
the sliding window we indeed directly improve the general
performance of model. On the other hand, we increase the
number of scraps until the model correctly spots the root-
cause for the first time. In some applications this tradeoff
may be appealing from both points of view.
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Comparing results between Table II and Table III
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Fig. 6 Comparing Tables 2 and 3 using g-mean1 metric. Table 2
presents a better performance since the Table 3 dataset simulates many
machines, each with a specific failure. This type of scenario creates
higher scrap rates that lead to more “noise” in the dataset, making it
more difficult to achieve greater classification accuracy

The results from Table 3 are quiet similar to Table II.
Only a small drift in the performance can be observed. The
results in Table 3 also confirm that experiment 9 excels all
other experiments in the table with an accuracy of 84.8% and
an overall measure of 87.25% (by averaging g-mean1 and
g-mean2). The worst performance presented also belongs to
the first experiment with an accuracy of 16.2% and an overall
measure of 9.75% (by averaging g-mean1 and g-mean2).

Since the scenario in the Table 3 dataset is meant to sim-
ulate many machines, each with a specific failure, we can
expect the same results as with Table 2 since the model still
does not need to formulate clusters with sizes of more than
one. However, the model is now facing an increased scrap
rate in the system due to the increasing number of manufac-
turing routes that can lead to scrap. The high scrap rate creates
more “noise” in the system, which decreases the variations
that the model is looking for. Finally it automatically leads
to more mistakes in the model’s classifications. This phe-
nomenon can be easily seen by comparing each experiment
from Table 2 to the equivalent experiment from Table 3 with
the same model parameters/thresholds. Figure 6 presents a
graph that presents this comparison using a g-mean1 metric.
Putting aside experiment 7, Table 2 presents a better perfor-
mance which strongly emphasize our findings. Nevertheless,
the performance of the model as presented in Table 3 is con-
sidered more than sufficient and the experiments in Table 3
proved that more than one failure can be spotted and handled
accordingly.

The dataset that was used for the experiments in Table 4 is
very unique and different from the basic notations that char-
acterized Tables 2 and 3 datasets. The Table 4 dataset consists
of a failure that can be only related to a specific combination
of two processes. The dataset used in the Table 4 experi-
ments consist of a 5% probability for scrap and 90% prob-
ability for scrap when the product traversed the two 〈step,
machine〉 pairs. Even with a more relaxed scenario, the model

presented a moderate performance compared to the ones pre-
sented in Tables 2 and 3. The best performance with an accu-
racy of 77.6% and an overall measure of 71.6% (by averaging
g-mean1 and g-mean2) was produced from the Table 4 set
of experiments using the configuration of experiment num-
ber 8 The worst performance, with an accuracy of 1.4% and
an overall measure of 1.9% (by averaging g-mean1 and g-
mean2), also belonged to the first experiment.

Another important metric that must be taken in account is
the number of scraps that have been discovered until the root-
cause is detected. In addition to the general decrease in per-
formance relative to the performance presented in Tables 2
and 3, the number of scraps until discovery measurements
also presented a decrease in performance, by climbing from
∼6, 7 scraps to ∼70 scraps compared to other failure types,
when choosing the most accurate configuration. Since the
best configuration configured for maximum accuracy, the
model solved the root-cause mystery, but with more scraps
to be “paid”.

Table 4 results strongly emphasizes model limitations in
discovering root-causes that contain clusters with more than
one element. However, the impact of this limitation is quite
small considering the fact that this kind of failure has a small
chance of occurring.

Second experimental series

In the previous experimental series we focused on introduc-
ing the performance of our new methodology while opti-
mizing the model’s parameters and thresholds. We observed
the model performance and accuracy, observing very good
performances when tackling Single machine with a specific
failure and many machines, each with a specific failure and
moderate performance when trying to solve many machines,
process combination failure type. However, these perfor-
mances can be further improved at the expense of increasing
the number of scraps until discovery measurement. In this
experimental series we investigated even more combinations
of the model’s parameters and thresholds, with the main aim
of drastically improving the performance of the model when
tackling the category many machines, process combination
failure.

Table 5 presents the results of the second experimental
series. Experiments 1–6 present the results obtained from
running the model on a dataset produced from the simulation
tool using the third configuration as described in the exper-
imental setup. Experiment 7 presents the results obtained
from running the model on a dataset produced from the sim-
ulation tool using the first configuration and Experiment 8
presents the results obtained from running the model on a
dataset produced from the simulation tool using the second
configuration.
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1 Experiments 1–6 describe six different experiments in
which the three parameters/thresholds of the model are con-
figured differently. In Experiments 7 and 8 we demonstrate
performance when using our optimal configuration obtained
from Experiments 1–6 on datasets that represent the rest
of the failure types. The optimal configuration is obtained
following adjustment so that queuesize = 33, squeezer accep-
tance threshold= 24, and root cause acceptance threshold =
0.2. The structure of the tables is the same and they contain
the same columns and measurements.

As can be seen from experiments 1–6, further improve-
ment is achieved using different parameter/threshold con-
figurations. Experiment 5 excels compared to experiments
1–6, and we can now achieve better accuracy, 99.1% and an
overall measure of 99.0% (g-mean1 and g-mean2). Compar-
ing these results to the previous experiments, the accuracy
increased from 77.6 to 99.1% and the overall measure from
71.6 to 99.0%.

In order to achieve these impressive results we adjust the
parameters/thresholds by implementing an approach where
we increase the queue size and Squeezer acceptance thresh-
old while preserving the special ratio between them. This
approach necessitates that formulated clusters must accept
more entries in the SP queue. However, at the same time,
the formulated clusters may also disagree on more entries.
Using this approach also reduces the effectiveness of root-
cause acceptance threshold and the model is now far less
sensitive for any slight variation when adjusting the root-
cause acceptance threshold. The reason for this lies with
the increase of the queue size parameter which causes the
model to further investigate the “past”, reducing misclassifi-
cation and increasing the accuracy. However, this approach
to improve accuracy is usually on account of thenumber of
scraps until discovery measurement. Raising the Squeezer
acceptance threshold to 24 automatically hardens the clus-
ters from being formulated by randomly causes. By raising
the queue size to 33 we also increase the disagreed entries to
9, i.e., clusters can now be formulated with much more accu-
racy. This configuration approach even reduced the number of
scraps until discovery measurement from ∼70 to ∼60 com-
pared to Table 4. However, dropping to ∼30 scraps will be
at the expense of accuracy and performance, as can be seen
when comparing experiments 5 and 6.

Experiments 7 and 8 in Table 5 present the effectiveness of
using the optimized approach on other failure types, Single
machine with a specific failure and many machines, each with
a specific failure. As can be seen, the performances are even
further improved. In the case of the first configuration dataset,
accuracy improved from 96.7 to 100% and the overall mea-
sure improved from 95.8 to 100% (g-mean1 and g-mean2).
In the second configuration dataset, accuracy improved from
84.8 to 98.7% and the overall measure improved from 87.25
to 99.1% (g-mean1 and g-mean2). However, as mentioned
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before, this high level performance usually comes at the
expense of increasing the number of scraps until discovery
measurement. In the case of the first configuration dataset,
the number of scraps until discovery increased from 6 to 27
and in the second configuration dataset, the number of scraps
until discovery increased from 6 to 24.

We now present below some guidelines for choosing the
optimal model configuration. Using historical data, one can
estimate the probabilities for each failure type and derive
from them the desired configuration approach. If the possi-
bility for Single machine with a specific failure and many
machines, each with a specific failure is relatively high com-
pared to Many machines, process combination failure, then
the model’s parameters/thresholds should be adjusted as fol-
lows: the queue size is set to around 10; the squeezer accep-
tance threshold is the same as queue size; and the root cause
acceptance threshold is set to 0.2. This approach will guaran-
tee a fast reaction and great sensitivity to any new root-cause.
On the other hand, if the possibility for Single machine with a
specific failure and many machines, each with a specific fail-
ure is relatively low, compared to Many machines, process
combination failure, then the model’s parameters/thresholds
should be adjusted as follows: the queue size is set to 33;
the squeezer acceptance threshold to 24; and the root cause
acceptance threshold to 0.2.

This approach will guarantee high level performance on
account of the fast reaction to any new root-cause. How-
ever, these probability assumptions may lead to poor per-
formance since, as mentioned above, the wafer fabrication
process is chaotic and unpredictable and therefore proba-
bilities and assumptions are not recommended. In addition,
tackling a situation without prior knowledge about the prob-
abilities for each failure type will require a general integrated
approach. Therefore, our approach for adjusting the model
parameters and thresholds is simply to configure both at the
same time. This involves running both methodologies on the
same dataset where each model adjusted for different pur-
pose. One, called sensitivity component, will be responsible
for sensitivity and fast reaction to any new root-cause, while
the other, called accuracy component, will be responsible
mainly for discovering Many machines, process combination
failure types and on enhancing the performance. In addition,
the sensitivity component classifications only count when the
accuracy component has nothing to indicate. Since both con-
figurations are independent. This means that the sensitivity
component, that consists of setting the queue size to around
10, and the Squeezer acceptance threshold to the same set-
ting as the queue size will harden the threshold and make
it almost impassible to any new cluster to formulate and
will guarantee that there is no false clustering. The accuracy
component consists of setting the queue size to 34, and the
squeezer acceptance threshold to 24. Based on the exper-
iments, this will guarantee almost 100% accuracy without

creating any false alarms. These rules are based on empiri-
cal results and therefore will not always guarantee an opti-
mal configuration. However, following these guidelines will
guarantee good results.

Comparative study

In this experimental series, we compare our methodology
with the general integrated approach to the well known C4.5
algorithm. Comparing an incremental algorithm to algorithm
that optimizes its current state is not trivial. While the algo-
rithm at the core of our methodology changes incrementally
the C4.5 algorithm optimize its current dataset to formulate
a decision tree that does not change over time. We will there-
fore exploit the C4.5 algorithm using the following method.
We first precisely measure the number of scraps until discov-
ery of the root-cause. This provides us with the first metric
that we need for the comparison between our algorithm and
C4.5. Afterwards, in order to estimate the consistency of the
two algorithms, we build a new decision tree with each five
related scrap intervals. For each new measurement, we trun-
cate the data set accordingly and then run both algorithms in
order to compare them.

Figure 7 presents the results of the third experimental
series. Figure 7a, d, g presents the results obtained from run-
ning C4.5 (a); proposed methodology—sensitivity compo-
nent (d); proposed methodology—accuracy component (g)
on a dataset produced from the simulation tool using the first
configuration as described in the experimental setup. Fig-
ure 7b, e, h presents the results obtained from running C4.5
(b); proposed methodology—sensitivity component (e); pro-
posed methodology—accuracy component (h) on a dataset
produced from the simulation tool using the second config-
uration. Figure 7c, f, i presents the results obtained from
running C4.5 (c); proposed methodology—sensitivity com-
ponent (f); proposed methodology—accuracy component (i)
on a dataset produced from the simulation tool using the
third configuration. As mentioned above, we compare perfor-
mances using five related scrap intervals. The axes in the fig-
ure are exactly the same. Axis X represents the related scrap
timeline, while axis Y represents the accuracy level which is
calculated using the multi-similarity distance approach.

In each graph we can visually compare the discovery
phase, hence the number of scraps till discovery, and approx-
imately the extent to which classification accuracy has been
preserved. As can be seen from Fig. 7a, d, g and Fig. 7b, e, h,
the discovery rate of the proposed methodology was seven to
nine times greater than that of the C4.5 algorithm. However,
in Fig. 7c, f, i, the tables are turned when C4.5 overcomes
the proposed methodology by presenting a discovery rate that
was twice as effective.h

Figure 7c, f, i results together with those from Table 4 in
the first experimental series demonstrate one of the model’s
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Fig. 7 Results of comparing C4.5 algorithm to the proposed methodol-
ogy using the first configuration data set (a, d, g); second configuration
set (b, e, h); and the third configuration set (c, f, i). C4.5 algorithms

results (a, b, c); proposed methodology—sensitivity component results
(d, e, f); and proposed methodology—accuracy component results
(g, h, i)

weaknesses in quickly discovering root-causes that contain
clusters with more than one element. The second experimen-
tal series demonstrates the tradeoff between preserving accu-
racy and quickly discovering root-causes. To cope with this
tradeoff and to ensure or preserve the possibility of quick
root-cause discovery, experiment number 2 in Table 5 from
the second experimental series can serve as an alternative to
the C4.5 algorithm. However, as noted above, this comes at
the cost of preserving accuracy, The experiment mentioned
above, presented 30 related scraps until discovery and with
an overall accuracy of 75% (by averaging g-mean1 and g-
mean2). The performance is quite poor compared to the 100%
accuracy achieved by the C4.5 algorithm, Nevertheless, con-
sidering the fact that Many machines, process combination
failure has a small chance of occurring. And when it does
occur its impact on the manufacturing yield is negligible since
the probability of a certain product traversing the problem-
atic combination is very small. Furthermore, the weakness is
quiet small compared to the results achieved in Fig. 7a, d, g
and Fig. 7b, e, h.

Conclusions

Identification of the root-cause to quality drifts in man-
ufacturing cannot only reduce manufacturing costs, but
also improve manufacturing performance. However, con-
ventional methodologies for identifying root-causes are
restricted and dependent on experience and expertise. In this
paper we have introduced the root-cause problem and defined
different failure types. We presented a new methodology for
finding the root-cause for scraps in a manufacturing pro-
cess. The methodology consists of fast, incremental algo-
rithm that can process extremely high dimensional data and
handle more than one root-cause cluster at the same time.
The methodology consists of three main stages: first, updat-

ing the model with each new instance and its classification;
second, if the instance classified as scrap, common failures
are then clustered using the Squeezer categorical clustering
algorithm; and finally, determining for each cluster whether it
can be a root-cause or not. Since the methodology classifica-
tions characterize with multi- classification and classification
with approximations, we introduced a novel approach, multi-
similarity distance for evaluating classifiers whose classifica-
tion consists of a vector of categorical values, hence the term
classification with approximations. And since there are times
more than one classification vector, the term multi- classifi-
cation. The new evaluation method can be easily adjusted
for use with the known measurements, confusion matrix and
ROC to compare and analyze.

The experimental results show that root-causes belonging
to Single machine with a specific failure or many machines,
each with a specific failure can be spotted with great accu-
racy and in a very short time compared to the C4.5 algorithm
even with a fixed scrap rate and when the probability for
scrap, when traversing through the root-cause, is less than
100% (experimental tests were measured at 85%). However,
the performance slightly decreases in many machines, each
with a specific failure with the number of root-cause clusters
in the system due to the high scrap rate which causes lack of
variation, which in turn weakens the ability of the model to
spot the root-cause without projecting false alarms.

In the category many machines, process combination fail-
ure performance was moderate compared to the C4.5 algo-
rithm. However, this limitation was totally removed in the
second experimental series by increasing the queue size
parameter, which caused the model to further investigate the
“past”. This feature was achieved at the cost of finding the
root cause in a longer period of time. Tracking a root-cause
to failure belonging to many machines, process combination
failure category is indeed extremely hard, and will require
high variation in the dataset. However, considering the fact
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that this kind of failure has only a small chance of occur-
ring and when it does occur its impact on the manufacturing
yield is negligible, this limitation is relatively unimportant.
These failures are usually swept away under the table. Thus,
using the proposed methodology; this kind of failure can be
discovered, even if it takes more scraps compared to other
types of failures. Future research may propose and empiri-
cally compare other categorical clustering algorithms, pro-
pose alternatives to the root-cause determination algorithm,
and evaluate the methodology on a real dataset.
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