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Abstract In this paper, we study a structure issued from a
real case. Raw materials (RMs) are sent by suppliers to a dis-
tribution center (DC) and then transported to a unique plant
where they can be stored. The inventory capacity is limited
in the plant as well as in the DC. The transportation capacity
between the DC and the plant is also limited. The objective
is to determine the flows between suppliers and the DC, and
from the DC to the plant in order to satisfy the demand dur-
ing the planning horizon while minimizing the global cost. A
mixed-integer programming (MIP) formulation is presented
and a Lagrangean relaxation solution procedure is proposed.
Computational experiments are carried out.

Keywords Lot-sizing · Capacitated storage · Lagrangean
heuristic

Introduction

Coordination in supply chains represents a crucial factor of
competitiveness for companies. This paper deals with coor-
dination in a two-echelon supply chain extracted from a real
case. More precisely, Raw Materials (RMs) are sent by sup-
pliers to a distribution center (DC) and then shipped to a
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unique plant where they can be stored. The inventory capacity
is limited in the plant as well as in the DC and the transporta-
tion capacity is also limited. The objective is to minimize the
global cost generated by the various activities in the supply
process of RMs (procurement, transportation, storage).

Several papers in the literature deal with coordination in
supply chains. In the paper of Samiento and Nagi (1999),
one can find a state of the art of contributions in this field.
The classical Lot-Sizing Problem (LSP), which consists of
determining lot sizes to produce in order to minimize pro-
duction and inventory costs, can be cited among the first
integrated planning problems (Akbalik et al. 2008). Brahimi
et al. (2006) give a literature review for different variants
of one-echelon lot-sizing problem. For the multi-echelon
LSP, (van Hoesel et al. 2005) consider a model in which
production, multi-level storage, and transportation decisions
are integrated under production capacities and concave cost
functions. They present algorithms which are polynomial in
the size of the planning horizon. Another relevant paper con-
cerning a multi-echelon LSP is due to Kaminsky and Simchi-
Levi (2003).

In this paper, we use Lagrangean relaxation (LR) in
order to get a lower bound for our problem. Starting from
the solution of the Lagrangean problem, we develop an
efficient heuristic procedure which builds a good feasible
solution for the initial problem. Lagrangean relaxation is
a method which has been widely and successfully used in
supply chain coordination. Jayaraman and Pirkul (2001) in
the resolution of their model on “planning and coordination
of production and distribution facilities for multiple com-
modities”, dualize three constraints in their initial problem.
They subdivide the lagrangean problem thus obtained, into
three sub-problems which are easier to solve. More recently,
Chen and Chu (2003) developed a heuristic procedure for
a supply chain planning problem modeled as a multi-item
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multi-level capacitated lot-sizing problem. Their heuristic
combines (LR) with local search. Other relevant references
in this area can be found in the following papers Robinson
and Lawrence (2004), Sambasivan and Yahya (2005).

Some industrial cases related to the supply chain
coordination can also be cited. For example, Sharma (1990)
optimizes a fertilizer distribution system in India, while inte-
grating the production and inventory activities. Dhaenens-
Flipo and Finke (2001) study the coordination between the
production and distribution activities in a multi-plant, multi-
product and multi-period environment for a steel industry.
In a study carried out in “Digital Equipment Corporation”,
Arntzen et al. (1995) show a profit more than 100 M$ after a
global optimization of the chain. Haq et al. (1991) study a real
case (manufacturer of urea fertilizer), where they coordinate
production-inventory-distribution activities in one model to
find the quantity to produce, to store and to distribute each
period. Matta and Miller (2004) integrate production, stor-
age and transportation decisions between two plants. They
study the influence of different parameters on the integrated
decisions and on the total profit in the chain. They use data
obtained from a pharmaceutical firm. Gnoni et al. (2003)
study the scheduling and lot sizing problems in multi-site and
multi-product environment, under the assumptions of capac-
ity constrained production and stochastic demands. They pro-
pose a hybrid model to solve the integrated problem issued
from the automotive industry.

The rest of the paper is organized as follows. Section
“Description of the problem” presents the problem descrip-
tion and the structure studied in this paper. In section “Prob-
lem formulation”, the mathematical formulation is given. The
Lagrangean problem and the solution approach are presented
in section “Lagrangean relaxation”. In the section “The
lagrangean heuristic solution procedure”, the different steps
of the Lagrangean heuristic procedure are described. The
computational experiments are given in section “Computa-
tional experiments”. Finally, some concluding remarks and
on-going work are presented in section “Concluding remarks
and on-going work”.

Description of the problem

The problem that we consider here originates from a real case
previously described in Akbalik et al. (2008). It deals with
a plant of an international firm that is located in Morocco.
Several RMs are assembled in order to produce multiple
finished goods. These RMs come from various suppliers
located throughout the world (Asia, Europe, USA). Some
of them are firstly stored in a distribution center DC located
in Europe (because of foreign currency exchange consider-
ations), before being sent to the plant by trucks. Each supplier
delivers only one RM and a RM comes from only one sup-

Fig. 1 The supply chain structure

plier. The transportation of RMs from a supplier to the DC
generates a fixed cost depending on the supplier localization.
In Akbalik et al. (2008), we assumed that the storage of RMs
was not allowed at the plant. This enabled us to reduce the
model to the supply of RMs between suppliers and the DC.
Here, we take into account the possibility of storing RMs
in the plant. The storage capacity in the plant is limited, as
well as in the DC. We also assume, in accordance with the
practice, that the number of trucks transporting RMs from
the DC to the plant is constant over the planning horizon (see
Fig. 1).

The objective of our study is to optimize simultaneously
the physical flows in this supply chain. The different coordi-
nated activities are the supply of RMs from suppliers to the
DC, their storage at DC, their transportation between the DC
and the plant and their storage in the plant. The aim is to get a
procurement planning, which can be used at the tactical and
operational levels. This planning must take into account the
suppliers capacities constraints, while minimizing transpor-
tation and inventory costs.

Problem formulation

We use the following notations for the parameters:

– M : the number of RMs (or equivalently suppliers),
– T : the number of periods in the planning horizon,
– dm,t : the customer aggregated demand at period t for RM

m (assumed to be integer),
– Pm,t : the capacity of the supplier m at period t (assumed

to be integer),
– p fm,t : the setup cost of RM m at period t ,
– V DC

m : the capacity of the vehicles supplying RM m
between the supplier m and the DC,

– t f DC
m,t : the fixed transportation cost per vehicle between

the supplier m and the DC, at period t ,
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– I C DC
t : the inventory capacity of the DC at period t ,

– iu DC
m,t : the unit inventory cost at the DC for RM m at

period t ,
– V P : the constant transportation capacity between the DC

and the plant,
– t f P : the fixed transportation cost between the DC and the

plant (which will be incurred at every period and there-
fore does not figure in the objective function of the MIP
below),

– I C P
t : the inventory capacity of RMs at the plant at period

t ,
– iu P

m,t : the unit inventory cost at the plant for RM m at
period t .

The decision variables are:

– Ym,t : the quantity of RM m supplied at period t at the DC,
– Xm,t : the quantity of RM m shipped from the DC to the

plant, at period t ,
– I DC

m,t : the inventory level of RM m at period t at the DC,
– I P

m,t : the inventory level of RM m at period t at the plant,
– zDC

m,t : the number of vehicles shipped from supplier m to
the DC at period t ,

– qm,t : a binary variable set to 1 if RM m is supplied at
period t , 0 otherwise.

A MIP formulation is given below:

(P) = min
M∑

m=1

T∑

t=1

[
p fm,t .qm,t + iu DC

m,t .I
DC
m,t + iu P

m,t .I
P
m,t

+t f DC
m,t .zDC

m,t

]

I DC
m,t = I DC

m,t−1 + Ym,t − Xm,t ; ∀t, ∀m (1)

I P
m,t = I P

m,t−1 + Xm,t − dm,t ; ∀t, ∀m (2)

Ym,t ≤ Pm,t .qm,t ; ∀m, ∀t (3)

Ym,t ≤ zDC
m,t .V

DC
m ; ∀m, ∀t (4)

M∑

m=1

I P
m,t ≤ I C P

t ; ∀t (5)

M∑

m=1

I DC
m,t ≤ I C DC

t ; ∀t (6)

M∑

m=1

Xm,t ≤ V P ; ∀t (7)

Ym,t , I DC
m,t ≥ 0; ∀t, ∀m (8)

qm,t ∈ {0, 1}; zDC
m,t ≥ 0 and integer; ∀t, ∀m (9)

Xm,t , I P
m,t ≥ 0; ∀m, ∀t (10)

The objective function minimizes the total cost which con-
sists of the fixed procurement costs, the inventory costs at the
DC and at the plant and the fixed transportation cost. Con-
straints (1) and (2) represent respectively the material balance
for each period and for each RM at the DC and at the plant.
The supplier capacity restriction per period for each RM is
expressed by constraint (3). In constraint (4), the number of
vehicles sent from each supplier to the DC is computed as a
function of the quantity supplied for each RM at each period.
Constraints (5) and (6) impose the limitation of inventory
capacity in the DC and in the plant respectively. Constraint (7)
expresses the limitation of shipment capacity between the DC
and the plant. Constraint (9) ensures that the variable relat-
ing to the decision “to supply or not” in each period is binary
and imposes the integrality restriction on the decision vari-
able zDC

m,t . Constraints (8) and (10) impose the non-negativity
restriction on the decision variables Xm,t , Ym,t , I DC

m,t , I P
m,t .

Lagrangean relaxation

The major difficulty in the resolution of our model lies in
the coupling constraints (5), (6) and (7) (for details on (LR),
the reader is referred to Beasley (1993). Let (LRP) be the
Lagrangean problem resulting from the dualization of these
constraints using the Lagrange multipliers α, β, γ respec-
tively. Observe that each RM in (LRP) can now be treated
independently. Our approach consists of solving each of the
resulting problems in a sequential way, i.e by considering two
sub-problems. The first sub-problem (LRP1) is related to the
procurement of RMs from the DC to the plant. The opti-
mal quantities (Xm,t ) thus obtained are considered as “the
demands” for the second sub-problem (LRP2) which relates
to the procurement of RMs from the suppliers to the DC. The
two sub-problems are as follows:

Sub-problem (LRP1): (L R P1) = min
∑M

m=1
∑T

t=1

[(
iu P

m,t

+αt ) · I P
m,t + γt · Xm,t

]−∑T
t=1

[
αt · I C P

t + γt · V P
]

Sub-
ject to constraints (2) and (10).

Sub-problem (LRP2): (L R P2) = min
∑M

m=1
∑T

t=1

[
p fm,t ·

qm,t +
(
iu DC

m,t + βt
) · I DC

m,t + t f DC
m,t · zDC

m,t

]−∑T
t=1 βt · I C DC

t
Subject to constraints (1), (3), (4), (8), (9).

In order to solve (LRP1), we use the dynamic program-
ming algorithm developed by Shaw and Wagelmans (1998).
(LRP2) is solved using the dynamic programming formula
presented in Akbalik et al. (2008).

In Akbalik et al. (2008), these two solution approaches to
solve the disaggregated model were proved to perform better
than CPLEX for many instances.

The objective function of (LRP) is the sum of the objec-
tive functions of (LRP1) and (LRP2). The value that we get

123



2480 J Intell Manuf (2012) 23:2477–2483

for the objective function of (LRP) is not necessarily a lower
bound of the objective function of the initial problem (P).
However, the corresponding solution of (LRP) yields through
the Lagrangean heuristic (LH) described below a good feasi-
ble solution of (P), and for the determination of the Lagrange
multipliers, a subgradient optimization method is used based
on that value in place of the usual optimum of the current
Lagrangean problem. By generating a solution starting from
the data of the specific problem we are facing, we obtain an
initial upper bound for (P) that is updated after each iteration
of the Lagrangean heuristic solution procedure.

The Lagrangean heuristic solution procedure

Step 1: Satisfaction of the storage constraint at the plant (5).

The aim is to check if at each period t, constraint (5) is satis-
fied. If it is not true, then we must reduce some values of I P

m,t .
Note that the expression of inventory balance (2) in period
t + 1 is:

I P
m,t = I P

m,t+1 − Xm,t+1 + dm,t+1; ∀t, ∀m

If constraint (5) is violated at period t then compute the

extra-quantity to store E P
t =

[∑M
m=1 I P

m,t − I C P
t

]
. Choose

among the M RMs one that has the highest inventory cost
(say RM k). Set e = min(E P

t , I P
k,t , Xk,t ). Substract e from

I P
k,t and in order to satisfy the inventory balance (2), substract

e from Xk,t , that is:

I P
k,t := I P

k,t − e

Xk,t := Xk,t − e

At period t +1, add e to the amount of RM k to be supplied
Xk,t+1, that is:

Xk,t+1 := Xk,t+1 + e

Finally, substract e from the extra-quantity to store E P
t ,

that is:

E P
t := E P

t − e

Continue the same process until the extra-quantity to store
becomes equal to 0. Update the inventories I DC

m,t accordingly.

Step 2: Satisfaction of the storage constraint at the DC (6).

We start by updating the inventories I DC
m,t because in step 1,

some of the values Xm,t might have changed.
Set e′

m,t the reductions to be carried out on the inventory
of RM m at period t . Inventory balance constraints in periods
t and t + 1 at the DC are:

[
I DC
m,t − e

′
m,t

]
= I DC

m,t−1 +
[
Ym,t − e

′
m,t

]
− Xm,t ;

[
I DC
m,t+1 − e

′
m,t+1

]
=

[
I DC
m,t − e

′
m,t

]

+
[
Ym,t+1 + e

′
m,t − e

′
m,t+1

]

− Xm,t+1;
The following linear program (LP) allows us to determine

such reductions (we set E DC
t = ∑M

m=1 I DC
m,t − I C DC

t ).

min
M∑

m=1

T∑

t=1

[(
e

′
m,t−1 − e

′
m,t

)
.
t f DC

m,t

V DC
m

− e
′
m,t .iu

DC
m,t

]

s.t.

0 ≤ e
′
m,t ≤ I DC

m,t ; ∀t, ∀m (11)

0 ≤ Ym,t + e
′
m,t−1 − e

′
m,t ≤ Pm,t ; ∀t, ∀m (12)

M∑

m=1

e
′
m,t = E DC

t ; ∀t,

∣∣∣∣∣

M∑

m=1

I DC
m,t ≥ I C DC

t (13)

T∑

t=1

M∑

m=1

e
′
m,t ≤

∑

t,|∑M
m=1 I DC

m,t ≥I C DC
t

E DC
t ; (14)

e
′
m,t ≥ 0 and integer (15)

The objective is to minimize the impact of inventory
reductions at the DC on the transportation cost. Constraint
(11) ensures the non-negativity of the inventory levels at the
DC. Constraint (12) imposes the respect of suppliers capac-
ities. According to constraint (13), after reduction of the
inventory levels, a violated inventory capacity constraint at
the DC becomes satisfied with equality. Constraint (14) says
that the sum of all reductions is less than or equal to the sum
of over-stocked quantities at the DC in the planning hori-
zon. Having obtained the reductions, we update the values of
decision variables (I DC

m,t , Ym,t , zDC
m,t ).

Step 3: Satisfaction of the transportation constraint between
the DC and the plant (7).

If constraint (7) is violated at period t then compute the

gap ET r
t =

[∑M
m=1 Xm,t − V P

]
and increase the volume of

transportation between the DC and the plant. Recall that this
volume V P was initially assumed to be constant with a fixed
transportation cost t f P . The extra transportation volume cor-

responding to ET r
t is � ET r

t
V P � and the extra-transportation cost

is t f P × � ET r
t

V P �.

Computational experiments

The objective of the computational experiments is to compare
the performances of this Lagrangean heuristic with an exact
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method (CPLEX 10.1 applied to the MIP with a gap param-
eter fixed to 0.0% to the optimal solution) on a Pentium Dual
Core E4600 (2.40 Ghz, 0.99 Gb RAM) with respect to total
cost and CPU time. The MIP and the Lagrangean heuristic
were programmed in Java+Concert Technology.

Suppliers capacities are uniformly distributed in the inter-
val [10, 20] and [100, 200] (notice that they may depend on
the period). Tests have been conducted with demands varying
with respect to the supplier capacity and inventory costs for
RM m varying with respect to the fixed transportation cost
between supplier m and the DC. For each test value of the
parameters (M, T and the distribution of production capaci-
ties), ten different instances were generated. Each time, two
gaps are computed, one is (L H − M I P)/M I P in order to
compare the cost obtained through the heuristic with the opti-
mum cost, the other is (L H − L B)/L B in order to evaluate
the gap between the lower bound and the upper bound of the
cost given by the heuristic. The average CPU time and the
average gaps of these instances are reported in the tables.

The notations used are: tL H average heuristic CPU time,
tM I P average MIP CPU time where the presolving time is
included, U B “upper bound” for the Lagrangean heuristic,
L B “lower bound” provided by (LRP); u represents the inter-
val in which Pm,t/dm,t vary; u′ and u′′ are defined similarly.

For the subgradient optimization method, the stop condi-
tion is defined by a maximum number of iterations equals
to 50.

In the tests, the unit inventory cost in the DC is lower than
the inventory cost in the plan. The storage capacities both
in the DC and the plant as well as the volume of vehicles
between the DC and the plant have been generated in func-
tion of the demand distribution and the supplier capacity.

The results of the computational experiments show that,
in the case of small suppliers capacities, the heuristic per-
forms better than CPLEX as the demands get bigger com-
pared with supplier capacities, and unit inventory costs (in
the DC and the plant) get bigger compared with trans-
portation fixed cost between suppliers and the DC (Tables
1, 2).

In Table 1, we observe that both gaps decrease when
the number of RMs and the number of periods increase. At
the same time, CPLEX running time increases compared to
the heuristic running time. These gaps become very small in
Table 2.

In the case of large suppliers capacities, the heuris-
tic seems to behave badly compared with CPLEX. The
instances reported in Table 3 have been selected so that
they yield small inventory levels (this is why the gaps are
equal to zero). However in some large instances ((M=15,

R = 24) and (M = 20, R = 18)), CPLEX is much
more time consuming compared with the Lagrangean heu-
ristic.

In general, we noticed that when (LRP) solution vio-
lates many inventory capacity constraints because of low unit
inventory costs or low demands, then CPLEX is better than
the Lagrangean heuristic and that in the opposite case, the
Lagrangean heuristic is better than CPLEX.

Concluding remarks and on-going work

In this paper, a model of an inbound supply chain planning
problem issued from an industrial case is presented. It con-
tains three different families of coupling constraints. One

Table 1 Comparison of MIP and LH for small capacities: part I

dm,t I DC
m,t I P

m,t M T tL H (s) tM I P (s) L H−M I P
M I P (%) L H−L B

L B (%)
u.Pm,t u

′
. t f DC

m,t u
′′
. t f DC

m,t

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 5 6 0.47 0.067 6.71 9.04

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 5 12 1.09 0.38 2.64 3.91

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 5 18 1.94 12.73 2.20 3.12

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 10 6 0.78 0.32 5.28 6.69

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 10 12 1.93 10 min 1 s 2.64 3.27

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 15 6 1.38 2.11 5.55 6.78

[0.3, 0.5] [0.2, 0.4] [0.6, 0.8] 20 6 4.41 4.34 5.12 6.14

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 5 6 0.37 0.05 2.99 4.20

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 5 12 0.87 0.25 1.85 2.70

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 5 18 1.45 4.76 1.98 2.46

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 5 24 11.24 7 min 17 s 0.69 1.02

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 10 6 0.63 0.17 3.45 4.31

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 10 12 1.33 13 min 31 s 1.91 2.34

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 15 6 1.05 0.56 2.84 3.21

[0.6, 0.8] [0.2, 0.4] [0.6, 0.8] 20 6 4.96 1.54 3.08 3.40
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Table 2 Comparison of MIP and LH for small capacities: part II

dm,t I DC
m,t I P

m,t M T tL H (s) tM I P (s) L H−M I P
M I P (%) L H−L B

L B (%)
u.Pm,t u

′
. t f DC

m,t u
′′
. t f DC

m,t

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 5 6 0.14 0.09 0.34 0.45

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 5 12 0.33 0.051 0.2 0.20

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 5 18 0.78 0.12 0.27 0.35

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 5 24 0.93 0.19 0.08 0.12

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 10 6 0.22 0.054 0.45 0.51

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 10 12 0.41 0.26 0.19 0.20

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 18 1.21 3.85 0.15 0.19

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 24 1.94 31.77 0.11 0.13

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 15 6 0.13 0.068 0.08 0.08

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 12 1.08 1.04 0.23 0.25

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 18 1.75 29.15 0.12 0.13

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 24 2.69 11 min 41 s 0.079 0.082

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 20 6 0.39 0.16 0.27 0.30

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 20 12 0.074 4.01 0 0

[0.3, 0.5] [0.6, 0.7] [0.8, 0.9] 20 18 1.91 7 min 37 s 0.04 0.06

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 5 6 0.086 0.06 0.21 0.29

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 5 12 0.01 0.042 0.06 0.06

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 5 18 0.015 0.071 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 5 24 0.24 0.12 0.006 0.012

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 6 0.057 0.037 0.036 0.060

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 12 0.16 0.12 0.006 0.012

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 18 0.30 0.43 0.020 0.020

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 10 24 0.065 1.86 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 6 0.003 0.067 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 12 0.31 0.29 0.04 0.04

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 18 0.073 9.02 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 15 24 0.15 2 min 30 s 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 20 6 0.012 0.062 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 20 12 0.054 1.2 0 0

[0.6, 0.8] [0.6, 0.7] [0.8, 0.9] 20 18 0.13 3 min 33 s 0 0

Table 3 Comparison of MIP and LH for large capacities

dm,t I DC
m,t I P

m,t M T tL H (s) tM I P (s) L H−M I P
M I P (%) L H−L B

L B (%)
u.Pm,t u

′
. t f DC

m,t u
′′
. t f DC

m,t

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 5 6 0.17 0.04 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 5 12 7.94 0.042 0.144 0.146

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 5 18 10.02 0.079 0.078 0.09

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 5 24 3.07 0.16 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 10 6 0.37 0.04 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 10 12 1.71 0.11 0 0

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 10 18 23.58 0.9 0.014 0.018

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 10 24 7.86 2.62 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 15 6 0.94 0.043 0 0

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 15 12 4.37 0.79 0 0
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Table 3 continued

dm,t I DC
m,t I P

m,t M T tL H (s) tM I P (s) L H−M I P
M I P (%) L H−L B

L B (%)
u.Pm,t u

′
. t f DC

m,t u
′′
. t f DC

m,t

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 15 18 10.24 2.42 0 0

[0.6, 0.8] [0.05, 0.1] [0.1, 0.3] 15 24 18.52 4 min 35 s 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 20 6 8.94 0.048 0.067 0.068

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 20 12 7.12 1.06 0 0

[0.3, 0.5] [0.05, 0.1] [0.1, 0.3] 20 18 16.48 1 min 30 s 0 0

family is related to the limitation of the transport capac-
ity between the DC and the plant, and the two others are
related to storage capacity of RMs in the DC and in the plant.
Using Lagrangean relaxation, these three different families
are dualized into the objective function. The Lagrangean
problem thus obtained is separated into two easier sub-prob-
lems which are solved by dynamic programming. Finally,
an efficient heuristic solution procedure that uses the solu-
tion generated from Lagrangean relaxation is presented and
tested computationaly.

Some improvements or extensions can be made. First of
all, by adding valid inequalities to the MIP, the computation
time could be reduced using CPLEX and therefore larger
instances could be solved by this way. A comparison between
MIP and LH on larger instances could then be interesting.
Concerning the model, it could be more realistic to consider
explicitely the transportation between the DC and the plant.
We would then have to take into account the number of trucks
and their volumes between the DC and the plant. This exten-
sion of our model would increase the difficuly of the problem,
but the Lagrangean heuristic could be a good way to solve
the problem.
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