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Abstract Since Facility Layout Problem (FLP) affects the
total manufacturing cost significantly, it can be considered as
a critical issue in the early stages of designing Flexible Man-
ufacturing Systems (FMSs), particularly in volatile environ-
ments where uncertainty in product demands is inevitable.
This paper proposes a new mathematical model by using
the Quadratic Assignment Problem formulation for design-
ing an optimal machine layout for each period of a dynamic
machine layout problem in FMSs. The product demands are
considered as independent normally distributed random vari-
ables with known Probability Density Function (PDF), which
changes from period to period at random. In this model, the
decision maker’s defined confidence level is also considered.
The confidence level represents the decision maker’s atti-
tude about uncertainty in product demands in such a way
that it affects the results of the problem significantly. To val-
idate the proposed model, two different size test problems
are generated at random. Since the FLP, especially in multi-
period case is a hard Combinatorial Optimization Problem
(COP), Simulated Annealing (SA) meta-heuristic resolution
approach programmed in Matlab is used to solve the math-
ematical model in a reasonable computational time. Finally,
the computational results are evaluated statistically.
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Introduction

A Flexible Manufacturing System (FMS) consists of at least
four automated and multifunctional machine centres such as
Computer Numerical Control (CNC) machine tools, which
are linked together mechanically by an automated material
handling system and electronically by a distributed computer
control system. The problems in the FMS can be catego-
rized into designing, programming, scheduling and control-
ling. One of the most important steps in the design of the FMS
is the arrangement of facilities (machines) called FLP. The
Material Handling Cost (MHC) is one of the most appropri-
ate measures to evaluate the efficiency of a facility layout so
that an efficient layout has the minimum MHC. According to
Tompkins et al. (2003), the MHC forms 20–50% of the total
manufacturing costs and it can be decreased at least 10–30%
by an efficient layout design. The MHC is calculated as the
product of the flow of materials between facilities and travel
distance between locations. Considering the known facility
locations leads to the known and fixed travel distance. In this
case, the MHC can be regarded as a function of the flow of
materials. According to the nature of the flow of materials,
the FLP can be static or dynamic.

In the Static Facility Layout Problem (SFLP), the flow
of materials is deterministic and constant over the entire
time planning horizon. In this problem, the optimum rela-
tive location of each facility is determined so that the total
MHC is minimized. It is very difficult to forecast the product
demands in a long period of time. Therefore, in the SFLP,
the single time planning horizon is divided into several time
periods so that each period has different and fixed product
demand requirements. By doing so, the SFLP is become a
multi-period layout problem named Dynamic Facility Lay-
out Problem (DFLP). Actually, in the DFLP, the demand for
products is deterministic and constant for each period, but
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it changes from period to period. Changes in the product
demands lead to changes in the flow of materials. Increase in
the flow of materials in the transition from the current period
to the next period increases the MHC, which in turn leads to
an inefficient layout. Therefore, it is necessary to rearrange
the facilities in the next period to obtain the optimal layout.
The rearrangement of facilities is a costly process. This cost is
named the rearrangement cost. The objective of the DFLP is
to design an optimum layout for each period so that the total
material handling and rearrangement costs are minimized.
The rearrangement cost consists of the rewiring cost of both
material-handling devices and workstations, labour cost, dis-
mantling and reconstruction costs, setup costs, and the cost
due to some loss in production capacity throughout the rear-
rangement process (Afentakis et al. 1990; Benjaafar et al.
2002). According to Kochhar and Heragu (1999), the rear-
rangement cost can be classified into fixed and variable costs.
The fixed cost is because of some loss in production capac-
ity throughout the rearrangement process. This cost is also
independent of present and future layouts. On the other hand,
the variable cost is due to moving the facilities from current
locations to the next locations. The variable cost depends on
the travelling distance of facilities and also the dimensions
of facilities. However, in this paper, the fixed relocating cost
of facilities is considered.

The product demands are usually obtained by using inac-
curate techniques such as forecasting methods or historical
trends. Therefore, it would be more realistic if we con-
sider the product demands as random variables. Considering
uncertainty in the product demands in both of the aforemen-
tioned static (single period) and dynamic (multi-period) FLPs
leads to two stochastic FLPs called Stochastic Static Facility
Layout Problem (SSFLP) and Stochastic Dynamic Facility
Layout Problem (SDFLP) respectively. Similar to the SFLP,
in the SSFLP an optimal facility layout is designed in a sin-
gle time planning horizon by minimizing the MHC. Like the
DFLP, in the SDFLP, the objective is to find an optimum
layout for each period so that the total material handling
and rearrangement costs are minimized. However, this paper
proposes a new mathematical model to design an optimal
machine layout for each period of the SDFLP in FMSs.

Literature review

The research on FLP has been formally started since the
early 1950s. Webster and Tyberghein (1980) regarded a lay-
out with the lowest MHC over several product demand sce-
narios as the most flexible layout. Gupta (1986) used the
Monte Carlo simulation approach to generate the materials
flow between all pairs of facilities in the FLP with facilities,
which are square in shape and equal in size. They also con-
sidered the independent product demands as random vari-

ables with known normal distribution functions. Kouvelis
and Kiran (1991) solved the SSFLP and the SDFLP by using
the QAP and Dynamic Programming (DP) respectively. They
also considered changes in product mix, part routings, and
process plans. Palekar et al. (1992) designed the SDFLP
using quadratic integer programming model. They consid-
ered three degrees of uncertainties named optimistic, most
likely, and pessimistic for product demands by assigning a
probability of happening to these degrees. Rosenblatt and
Kropp (1992) designed the SSFLP with multiple demand
scenarios assigned to randomly generated probability of hap-
pening. Montreuil and Laforge (1992) addressed the SDFLP
by a scenario tree of probable futures. Virtual layout (McLean
et al. 1982; Drolet 1989), hybrid layout (Irani et al. 1993), and
fractal layout (Venkatadri et al. 1997; Montreuil et al. 1999)
were developed as dynamic layouts to cope with uncertainty
in product demands. Yang and Peters (1998) suggested a
design method named Expected Flow Density (EFD) with
regard to multiple demand scenarios for each period of an
unequal area SDFLP. Enea et al. (2005) proposed a fuzzy
model for the stochastic FLP to design a robust layout that
has an effectual performance over the possible demand sce-
narios. Tavakkoli-Moghaddam et al. (2007) proposed a new
mathematical model to concurrent design of the optimal
machine and cell layouts in a single time planning horizon
of a cellular manufacturing system by considering the sto-
chastic product demands with known normal PDF. Krishnan
et al. (2008) proposed three mathematical models for design-
ing both of the SSFLP and SDFLP by considering multiple
product demand scenarios. Kulturel-Konak (2007) reviewed
different approaches in the DFLP, SSFLP, and SDFLP. The
above-mentioned review of the literature on the stochastic
FLP is summarized in Table 1.

Quadratic Assignment Problem (QAP)

TheQAPisanonlinearCOP.Ingeneral, theFLPisusually for-
mulated as the QAP by considering the following conditions:
(i) The facilities are equal in size, (ii) A number of facilities are
assigned to the same number of locations, (iii) Discrete rep-
resentation is considered. In discrete representation the shop
floor is divided into a number of squares, which are equal in
size. The squares are considered as the locations of the facili-
ties. The first mathematical model of the QAP for the FLP was
introduced by Koopmans and Beckman (1957) as follows:

Minimize
M∑

l=1

M∑

q=1

fπ(l)π(q)dlq over all permutationsπ ∈ SM

where, SM is the set of all permutations of the set of positive
integernumbers N = {1, 2, . . . , M}, M is thenumberoffacil-
ities (or locations), π(l) denotes the facility assigned to the
location l, fπ(l)π(q) represents the flow of materials between
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Table 1 Stochastic FLP review

Authors (year) SSFLP SDFLP Approach

Webster and Tyberghein (1980)
√

Minimizing MHC

Gupta (1986)
√

Monte Carlo simulation

Kouvelis and Kiran (1991)
√ √

QAP/DP

Palekar et al. (1992)
√

QAP

Rosenblatt and Kropp (1992)
√

QAP

Montreuil and Laforge (1992)
√

Scenario tree

McLean et al. (1982); Drolet (1989)
√

Virtual layout

Irani et al. (1993)
√

Hybrid layout

Venkatadri et al. (1997), Montreuil et al. (1999)
√

Fractal layout

Yang and Peters (1998)
√

EFD

Enea et al. (2005)
√

Fuzzy model

Tavakkoli-Moghaddam et al. (2007)
√

Bi-QAP

Krishnan et al. (2008)
√ √

Mathematical models

Kulturel-Konak (2007)
√ √

Survey

the facilitiesπ(l)andπ(q), and dlq is the distance between the
location l and the location q. The optimal solution of the prob-
lem is the permutation π∗ ∈ SM so that the objective function
is minimized.

The more suitable form of the QAP formulation for mod-
elling of the SFLP is the following 0–1 integer programming:

Minimize
M∑

i=1

M∑

j=1

M∑

l=1

M∑

q=1

fi j dlq xil x jq (1)

Subject to:
M∑

i=1

xil = 1; ∀l (2)

M∑

l=1

xil = 1; ∀i (3)

xil =
{

1 if machine i is assigned to location l
0 otherwise

The QAP mathematical model includes three components,
decision variables, objective function, and constraints. The
decision variables xil are the solution of the problem so that
they determine the location of each facility. The objective
function Eq. (1) is a second-degree (quadratic) function of
the decision variables. In this equation, fi j denotes the flow
of materials between facilities i and j . The distance between
locations l and q is denoted by dlq . In fact, the objective
function represents the total MHC, which is calculated as the
summation of the product of materials flow between facili-
ties and distance between the locations of these facilities. The
constraints Eqs. (2) and (3) ensure that each facility must be
assigned to exactly one location and each location must have
only one facility.

According to Balakrishnan et al. (1992) the QAP mathe-
matical model for the DFLP can be written as follows:

Minimize
T∑

t=1

M∑

i=1

M∑

j=1

M∑

l=1

M∑

q=1

fti j dlq xtil xt jq

+
T∑

t=2

M∑

i=1

M∑

l=1

M∑

q=1

atilq ytilq (4)

Subject to:
M∑

i=1

xtil = 1; ∀t, l (5)

M∑

l=1

xtil = 1; ∀t, i (6)

xtil =
{

1 if machine i is assigned to location l in period t
0 otherwise

(7)

ytilq = x(t−1)il × xtiq (8)

where,
i, j index for machines (i, j = 1, 2, . . . , M); i �= j
l, q index for machine locations (l, q = 1, 2, . . . , M);

l �= q
t index for period (t = 1, 2, . . . , T )

fti j total material flow between machines i and j
in period t

atilq fixed cost of shifting machine i from location l
to location q in period t

dlq distance between machine locations l and q
xtil decision variable
T number of periods under consideration
M number of machines/machine locations
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The objective function Eq. (4) is the sum of two terms. The
first term is the total MHC and the second term is the total
rearrangement cost of the layout during the planning horizon.
Equation (5) ensures that each location in each period con-
tains only one facility. Equation (6) ensures that each facility
in each period is located in only one location. Equation (8)
indicates that ytilq = 1 if the facility i is shifted from loca-
tion l in period t −1(i.e. x(t−1)il = 1) to location q in period
t (i.e. xtiq = 1).

Simulated Annealing (SA)

It can be proved that to solve the DFLP with M facilities
and T periods a very large number of possible solutions (i.e.
(M !)T ) must be checked. For example, for the DFLP with
six facilities and five periods, a very large number of pos-
sible solutions (1.93 × 1014) must be evaluated. The QAP
is an NP-complete (Nondeterministic Polynomial) problem
(Sahni and Gonzalez 1976). The computational time, which
is needed for solving the QAP, is exponentially proportional
to the size of the problem (Foulds 1983). Therefore, it is
very difficult to be solved by the exact solution approaches.
SA is one of the promising tools for solving the COPs such
as the FLP (Alvarenga et al. 2000). In this paper, due to the
above-mentioned reasons and the complexity of the proposed
model, the SA meta-heuristic is used to solve the problem.
The SA algorithm is a simulation of physical annealing pro-
cess of solids in statistical mechanics. It has been used as a
good method to solve hard COPs in a reasonable computa-
tional time since the early 1980s. In the physical annealing
process in thermodynamics, the perfect structure of crystals
can be obtained by melting a solid and then reducing the tem-
perature very slowly so that the crystal can reach this min-
imum energy level named ground state. Consider the COP
(S, f ), where S is the solution space, including all of the pos-
sible solutions and f is the objective (cost) function. The SA
algorithm finds the best solution s = s∗ ∈ S so that f (s∗)
is the minimum value of the objective function f . A general
SA algorithm is illustrated in Fig. 1.

Proposed model

In this section, the new mathematical model is formulated
with the following assumptions:

1. According to the definition of the FMS, at least four
equal-sized facilities (machines) are considered.

2. The SDFLP is considered.
3. The product demands whose parts are made in the FMS

are independent normally distributed random variables

Fig. 1 A general simulated annealing algorithm

with known expected value and variance, changing from
period to period at random.

4. The parts are flowed in batches between machines.
5. Both of the material handling and machine rearrangement

costs are known.
6. Machines are laid out in a u-shaped configuration as

shown in Fig. 2. In this figure, L1, . . . , L12 are the known
machine locations.

7. There isn’t any constraint for dimensions and shapes of
the shop floor.

8. The candidate machine locations are known in advance,
which in turn leads to the known distance between loca-
tions.

9. The same number of machines and locations are consid-
ered.

Due to the assumption of using the same number of equal-
sized machines and the known machine locations, the QAP
model for the DFLP (Eqs. 4–8 in the preceding section) is
used to obtain the new mathematical model for the SDFLP.
The data on machine sequence, transfer batch size, part
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Fig. 2 Layout configuration for each period

movement cost, distance between machine locations, rear-
rangement costs, and normally distributed product demands
with known expected value and variance, are the inputs of the
model. The output of the model is the best layout for each
period in the planning horizon. Actually, considering each
period as a stage, the multi-period problem can be consid-
ered as a multi-stage dynamic system with optimal behaviour
from stage to stage. The following indexes and parameters
are used in this model besides the ones introduced in the pre-
vious section:

k index for parts (k = 1, 2, . . . , K )
Nki operation number for the operation

done on part k by machine i
fti jk materials flow for part k between machines i

and j in period t
fti j materials flow for all parts between

machines i and j in period t
Dtk demand for part k in period t
Bk transfer batch size for part k
Ctk cost of movements for part k in period t
C(π) total MHC for layout π

Rc rearrangement cost
Z p standard normal Z value for percentile

(confidence level) p
E() expected value of a parameter
Var() variance of a parameter
Pr() probability of a parameter

The flow of materials for part k between machines i and
j in period t can be calculated as follows:

fti jk =
{

Dtk
Bk

Ctk if
∣∣Nki − Nkj

∣∣ = 1
0 otherwise

(9)

where, the condition |Nki − Nkj | = 1 refers to two consec-
utive operations, which are done on part k by machines i
and j .

As mentioned in the assumptions of the problem, the
demand for part k in period t (Dtk) is a random variable
with normal distribution. Therefore, according to Eq. (9), the
materials flow for part k between machines i and j in period
t ( fti jk) is also a normally distributed random variable with
the following expected value and variance:

E
(

fti jk
) =

{
E(Dtk )

Bk
Ctk if

∣∣Nki − Nkj
∣∣ = 1

0 otherwise
(10)

V ar
(

fti jk
) =

{
V ar(Dtk)

B2
k

C2
tk if

∣∣Nki − Nkj
∣∣ = 1

0 otherwise
(11)

The total flow between machines i and j in period t result-
ing from all parts (i.e. fti j ) can be written as follows:

fti j =
K∑

k=1

fti jk (12)

Since fti jk is a random variable with normal distribution,
fti j is also a normally distributed random variable with the
following expected value and variance:

E
(

fti j
) =

K∑

k=1

E
(

fti jk
)

(13)

If we insert Eq. (10) into Eq. (13), then

E
(

fti j
) =

K∑

k=1

E (Dtk)

Bk
Ctk (14)

Since we assumed the part demands as independent vari-
ables, the variance of fti j can be calculated as follows:

V ar
(

fti j
) =

K∑

k=1

V ar
(

fti jk
)

(15)

In a similar way, if we combine Eq. (11) with Eq. (15),
then

V ar
(

fti j
) =

K∑

k=1

V ar (Dtk)

B2
k

C2
tk (16)

According to Eq. (4), the MHC for the layout (permuta-
tion) π, (i.e. C(π)) and the rearrangement cost (i.e. Rc) are
defined as follows:

C(π) =
T∑

t=1

M∑

i=1

M∑

j=1

M∑

l=1

M∑

q=1

fti j dlq xtil xt jq (17)

Rc =
T∑

t=2

M∑

i=1

M∑

l=1

M∑

q=1

atilq ytilq (18)

If we insert Eq. (8) in Eq. (18), the rearrangement cost Rc

can be rewritten as Eq. (19):

Rc =
T∑

t=2

M∑

i=1

M∑

l=1

M∑

q=1

atilq x(t−1)il xtiq (19)

The total cost Tc is the summation of the MHC (C(π))
and the rearrangement cost Rc as given in Eq. (20):

Tc = C(π) + Rc (20)
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Since fti j is a random variable with normal distribution,
then according to Eq. (17), C(π) is also a normally distrib-
uted random variable with the following expected value and
variance :

E (C(π)) =
T∑

t=1

M∑

i=1

M∑

j=1

E
(

fti j
) M∑

l=1

M∑

q=1

dlq xtil xt jq (21)

Inserting the Eq. (14) into the Eq. (21) leads to the follow-
ing equation:

E (C(π)) =
T∑

t=1

M∑

i=1

M∑

j=1

K∑

k=1

E (Dtk)

Bk
Ctk

M∑

l=1

M∑

q=1

dlq xtil xt jq (22)

Similarly, the variance can be calculated as follows:

V ar (C(π)) =
T∑

t=1

M∑

i=1

M∑

j=1

V ar
(

fti j
)
⎛

⎝
M∑

l=1

M∑

q=1

dlq xtil xt jq

⎞

⎠
2

(23)

Inserting the Eq. (16) into the Eq. (23) results in the fol-
lowing equation:

V ar (C(π)) =
T∑

t=1

M∑

i=1

M∑

j=1

K∑

k=1

V ar (Dtk)

B2
k

C2
tk

⎛

⎝
M∑

l=1

M∑

q=1

dlq xtil xt jq

⎞

⎠
2

(24)

If the decision maker considers U (π, p) as the maximum
value (upper bound) of C(π) with the confidence level p,
then U (π, p) can be minimized instead of minimizing C(π).
According to this assumption:

Pr (C(π) ≤ U (π, p)) = p (25)

This equation can be standardized as follows:

Pr

(
C(π) − E (C(π))√

V ar (C(π))
≤ U (π, p) − E (C(π))√

V ar (C(π))

)
= p

(26)

If we assume that Z = C(π)−E(C(π))√
V ar(C(π))

, then the Eq. (26)
can be rewritten in the following form:

Pr

(
Z ≤ U (π, p) − E (C(π))√

V ar (C(π))

)
= p (27)

Thus, Z ∼ N (0, 1), i.e. Z is a variable with standard
normal distribution. We assume that F(z) is the Cumula-
tive Distribution Function (CDF) of the random variable Z .
Therefore:

F

(
U (π, p) − E (C(π))√

V ar (C(π))

)
= p (28)

If we consider F−1 as the inverse function for F , then the
Eq. (28) can be rewritten as follows:

F−1 (p) = U (π, p) − E (C(π))√
V ar (C(π))

(29)

Since Z p is a standard normal Z value for percentile p,
therefore, we can write the following equation:

F
(
Z p

) = p (30)

The Eq. (30) can be rewritten in the following form by
using the inverse function for F :

F−1 (p) = Z p (31)

If we compare Eq. (29) with Eq. (31), then we can have
the following equation:

U (π, p) − E (C(π))√
V ar (C(π))

= Z p (32)

The Eq. (32) can be rearranged as follows:

U (π, p) = E (C(π)) + Z p

√
V ar (C(π)) (33)

To obtain the optimal layout for each period, the Eq. (20)
(objective function) must be minimized. In this equation,
instead of minimizing C(π), its upper bound i.e. U (π, p)

can be minimized. Therefore, the objective function Eq. (20)
can be rewritten as follows:

Minimize U (π, p) + Rc (34)

Using Eqs. (19, 22, 24, 33, 34), the mathematical model
can be written as follows:

Minimize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∑
t=1

M∑
i=1

M∑
j=1

K∑
k=1

E(Dtk )
Bk

Ctk

M∑
l=1

M∑
q=1

dlq xtil xt jq

+Z p

√√√√ T∑
t=1

M∑
i=1

M∑
j=1

K∑
k=1

V ar(Dtk )

B2
k

C2
tk

(
M∑

l=1

M∑
q=1

dlq xtil xt jq

)2

+
T∑

t=2

M∑
i=1

M∑
l=1

M∑
q=1

atilq x(t−1)il xtiq

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

Subject to:
M∑

i=1

xtil = 1; ∀t, l (36)

M∑

l=1

xtil = 1; ∀t, i (37)

xtil =
{

1 if machine i is assigned to location l in period t
0 otherwise

(38)

∣∣Nki − Nkj
∣∣ = 1 (39)

Notice that the constraints (35), (36), (37), and (38) are the
same as the Eqs. (5), (6), (7), and (8) respectively. They have
been written again because of their importance. As men-
tioned, the Eq. (39) refers to two consecutive operations,
which are done on part k by machines i and j .
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Simulation results and discussion

To validate the proposed model, two randomly generated test
problems are solved by the SA algorithm programmed in
Matlab. These problems are different in size. Both of them
have the same number of facilituies (M = 12), but they are
different in the number of time periods (T = 5 for problem
I and T = 10 for problem II). A personal computer with
Intel 2.10 GHZ CPU and 3 GB RAM is used to run the SA
algorithm. The example of input data for parts, including the
data on machine sequence, batch size, and cost of movements
are given in Table 2. In this table, for example the machine
sequence for part 3 is 1 → 12 → 8. It means that the first,
second, and third operations on part 3 are done by machines
1, 12, and 8 respectively. In other words, according to the
parameter Nki , which denotes the operation number for the
operation done on part k by machine i (please see the previ-
ous section), in this example N31, N3(12), and N38 are equal
to 1, 2, and 3 respectively.

The distance between machine locations and shifting cost
for machines are given in Tables 3 and 4 respectively. Accord-
ing to the assumption (3) in the preceeding section, the prod-
uct demands are assumed to be normally distributed random
variables with randomly generated means and variances for
each time period in the multi-period planning horizon. Each
time period is considered as a year. The randomly generated
mean and variance of part demands for each period is given
in Table 5 (for problems I and II) and Table 6 (for problem
II). Actually, in spite of the stochastic nature of the product
demands, the proposed mathematical model has deteminis-
tic and known parameters. The solution of the problem is
given as a matrix where each row represents a period, each
column represents a location, and each element represents
a machine number. For example, in Table 9 the element 1
placed at intersection of the row 2 and the column 6 indi-
cates that the machine 1 is placed at location 6 in period 2.
The initial solutions required by the SA algorithm to solve
the problems I and II are given in Tables 7 and 8 respectively.

Table 2 Input data
Parts Machine sequence Batch size Cost of movements for all periods

1 5 → 3 → 10 → 9 → 11 50 5

2 11 → 10 → 3 → 9 → 5 50 5

3 1 → 12 → 8 50 5

4 12 → 8 → 1 50 5

5 8 → 1 → 12 50 5

6 7 → 2 → 6 50 5

7 2 → 4 → 7 → 6 50 5

8 6 → 7 → 4 → 2 50 5

9 2 → 6 50 5

10 5 → 10 → 3 50 5

Table 3 Distance between machine locations

To 1 2 3 4 5 6 7 8 9 10 11 12

From

1 0 10 20 30 40 50 70 60 50 40 30 20

2 10 0 10 20 30 40 60 50 40 30 20 30

3 20 10 0 10 20 30 50 40 30 20 30 40

4 30 20 10 0 10 20 40 30 20 30 40 50

5 40 30 20 10 0 10 30 20 30 40 50 60

6 50 40 30 20 10 0 20 30 40 50 60 70

7 70 60 50 40 30 20 0 10 20 30 40 50

8 60 50 40 30 20 30 10 0 10 20 30 40

9 50 40 30 20 30 40 20 10 0 10 20 30

10 40 30 20 30 40 50 30 20 10 0 10 20

11 30 20 30 40 50 60 40 30 20 10 0 10

12 20 30 40 50 60 70 50 40 30 20 10 0
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Table 4 Shifting cost for machines

Machine number 1 2 3 4 5 6 7 8 9 10 11 12

Shifting cost 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 5 Input data for part demands for periods 1–5

Part Period 1 Period 2 Period 3 Period 4 Period 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 6,220 1,073 5,656 1,118 3,764 2,584 6,503 2,629 6,503 1,553

2 2,565 2,824 8,863 2,442 6,636 1,609 9,101 1,344 7,589 2,940

3 7,623 1,893 9,120 2,318 3,543 1,372 4,554 1,668 5,948 1,388

4 2,067 1,573 4,347 2,578 2,646 2,986 9,746 2,262 8,496 1,812

5 8,965 1,283 2,358 2,251 2,720 1,909 7,540 1,898 8,085 1,663

6 8,736 2,892 9,998 1,190 7,804 1,045 3,677 1,417 2,066 2,998

7 6,823 1,373 8,104 2,493 6,861 2,062 4,910 2,499 8,772 1,856

8 6,088 1,030 9,696 2,751 3,116 1,195 9,253 1,052 8,257 2,355

9 6,907 1,641 7,493 2,087 4,458 1,854 5,141 1,384 6,664 2,676

10 4,093 2,316 5,496 1,447 1,606 1,177 7,172 2,648 5,258 1,236

Table 6 Input data for part demands for periods 6–10

Part Period 6 Period 7 Period 8 Period 9 Period 10

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

1 5,468 1,713 6,510 1,464 1,060 2,562 7,409 2,923 2,132 2,190

2 7,614 1,907 2,045 2,356 1,231 2,389 2,802 1,073 4,250 2,045

3 7,543 2,469 8,514 2,561 6,809 1,738 3,857 1,720 1,380 2,752

4 3,220 2,587 1,847 1,439 6,784 2,841 4,097 1,464 1,386 2,403

5 3,502 1,871 7,706 2,098 6,153 1,587 9,746 1,673 5,346 2,680

6 1,784 2,296 3,538 1,882 8,842 2,395 2,321 2,437 4,873 2,881

7 2,627 1,332 2,278 2,642 2,833 2,193 1,311 2,632 6,757 2,135

8 1,487 2,122 6,682 1,391 1,104 2,158 3,767 1,999 6,488 2,999

9 8,362 2,277 9,602 2,681 5,478 1,933 7,343 1,850 6,680 2,676

10 4,417 2,322 2,105 2,501 2,384 1,881 8,405 2,703 4,007 2,499

Table 7 Initial solution for
problem I Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 2 3 4 5 6 7 8 9 10 11 12

3 1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 3 4 5 6 7 8 9 10 11 12

5 1 2 3 4 5 6 7 8 9 10 11 12
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Table 8 Initial solution for
problem II Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 1 2 3 4 5 6 7 8 9 10 11 12

2 1 2 3 4 5 6 7 8 9 10 11 12

3 1 2 3 4 5 6 7 8 9 10 11 12

4 1 2 3 4 5 6 7 8 9 10 11 12

5 1 2 3 4 5 6 7 8 9 10 11 12

6 1 2 3 4 5 6 7 8 9 10 11 12

7 1 2 3 4 5 6 7 8 9 10 11 12

8 1 2 3 4 5 6 7 8 9 10 11 12

9 1 2 3 4 5 6 7 8 9 10 11 12

10 1 2 3 4 5 6 7 8 9 10 11 12

Table 9 The best solution for problem I with confidence level P = 0.75 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 2 6 5 3 10 9 11 12 1 8 7 4

2 2 6 5 8 12 1 11 10 3 9 7 4

3 1 5 9 3 10 11 6 2 7 4 8 12

4 1 8 12 11 10 3 5 9 2 4 7 6

5 1 8 12 11 10 3 5 9 2 4 7 6

OFV = 1,265,500 P = 0.75 Elapsed time = 6.245991
(Objective Function Value) (Confidence level) (Second)

The following results are obtained by running the SA algo-
rithm 10 times: Tables 9, 10, 11 (problem I) and Tables 13,
14 and 15 (problem II) display the results, including the best
solution, Objective Function Value (OFV), and elapsed com-
putational time for three different confidence levels. These
results show that the larger problem (problem II) needs to
more computational time than the smaller one (problem I).
The computational time for problems I and II are about 6 and
17 seconds, respectively. The results obtained from statistical
evaluation, including the worst, best, and Standard Deviation
(Std. Dev.) of the Objective Function Values (OFVs) for three
different values of the confidence level (p) for problems I and
II are given in Tables 12 and 16 respectively. These results
indicate that the objective function is directly proportional
to the confidence level (p). These results also show that the
OFVs are pretty nearly to each other.

According to the results shown in Tables 9, 10, 11, 13, 14
and 15, different optimal layouts are achieved by different
confidence levels. In sensitivity analysis point of view, the
optimal layout as the output of the model is changed consid-
erably by little changes in the confidence level as the sensitive
input parameter. In addition, the confidence level affects the
stability of the output layout. The stability of a layout is de-
finded as “the property of a layout to exhibit little sensitivity

to demand variability” Braglia et al. (2005). In other words,
a layout with minimum variance of product demands is the
most stable layout. According to the Eq. (35), decrease in Z p

decreases the effect of the variance of the product demands,
which in turn increases the stability of the output layout.
Since the confidence level (p) is directly proportional to Z p,
therefore, the stability of the output layout is increased by
decreasing the confidence level.

Conclusion

This paper proposed a new nonlinear mathematical model
for designing a dynamic layout in uncertain environment of
the FMS where the independent product demands are nor-
mally distributed random variables with known PDF, which
changes from period to period. Two randomly generated test
problems with 10 parts, 12 machines, but with two different
time periods (T = 5 and T = 10) were solved by SA approach
with three different confidence levels in a reasonable com-
putational time. Finally, this work can be continued in the
future researches as follows:

1. Design of a robust layout as the best layout over the entire
multi-period time planning horizon.
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Table 10 The best solution for problem I with confidence level P = 0.85 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 11 6 2 7 4 8 1 12 5 3 10 9

2 11 10 3 9 5 1 12 8 4 7 2 6

3 11 10 3 9 5 1 12 8 4 7 2 6

4 11 9 6 7 4 2 1 8 12 5 3 10

5 11 9 10 3 5 12 1 8 2 4 7 6

OFV = 1,274,300 P = 0.85 Elapsed time = 6.161677
(Objective Function Value) (Confidence level) (Second)

Table 11 The best solution for problem I with confidence level P = 0.95 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 8 5 3 10 9 11 6 2 7 4 12 1

2 2 6 1 12 8 11 10 3 9 5 7 4

3 1 8 12 5 9 11 10 3 6 2 7 4

4 1 8 12 5 3 10 11 9 4 2 7 6

5 3 10 11 1 8 12 6 7 4 2 9 5

OFV = 1,301,100 P = 0.95 Elapsed time = 6.498778
(Objective Function Value) (Confidence level) (Second)

Table 12 Statistical evaluation
for problem I (10 trials) Confidence level (P) Objective Function Value (OFV)

Worst Mean Best Std. Dev.

0.75 1,328,800 1,293,950 1,265,500 26,050.8584

0.85 1,382,300 1,308,990 1,274,300 28,707.0046

0.95 1,362,600 1,325,380 1,301,100 18,900.6055

Table 13 The best solution for problem II with confidence level P = 0.75 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 8 12 1 5 10 3 11 9 6 2 7 4

2 8 12 1 11 10 3 5 9 4 2 7 6

3 6 2 7 4 11 10 3 9 5 8 12 1

4 6 5 9 3 10 11 1 8 12 4 2 7

5 5 9 3 10 11 12 8 1 2 4 7 6

6 4 7 2 6 1 12 8 5 3 10 9 11

7 11 9 10 3 5 4 7 2 6 8 12 1

8 11 9 4 7 2 6 1 8 12 3 10 5

9 11 8 1 12 2 6 7 4 5 3 10 9

10 2 4 10 3 9 5 8 1 12 11 7 6

OFV = 2,155,600 P = 0.75 Elapsed time = 17.143283
(Objective Function Value) (Confidence level) (Second)
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Table 14 The best solution for problem II with confidence level P = 0.85 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 12 1 8 5 3 10 11 9 4 7 2 6

2 3 10 11 1 12 8 4 2 7 6 9 5

3 11 10 3 9 5 4 7 2 6 1 12 8

4 7 6 11 1 8 12 5 9 3 10 2 4

5 7 6 10 3 9 5 12 1 8 11 2 4

6 6 2 7 4 9 11 10 3 5 1 12 8

7 6 2 7 4 1 12 8 11 9 10 3 5

8 11 9 6 2 7 4 8 12 1 3 10 5

9 7 2 6 12 1 8 11 9 10 3 5 4

10 5 9 3 10 11 8 1 12 4 2 7 6

OFV = 2,173,000 P = 0.85 Elapsed time = 16.570847
(Objective Function Value) (Confidence level) (Second)

Table 15 The best solution for problem II with confidence level P = 0.95 (10 trials)

Location 1 2 3 4 5 6 7 8 9 10 11 12

Period

1 4 7 2 6 9 11 10 3 5 8 1 12

2 4 7 2 6 3 10 11 9 5 8 12 1

3 4 7 2 6 1 12 8 11 10 3 9 5

4 12 11 10 3 9 5 2 4 7 6 1 8

5 4 2 5 9 3 10 11 1 8 12 6 7

6 1 5 9 3 10 11 4 7 6 2 8 12

7 12 1 8 11 9 10 3 5 6 2 7 4

8 9 11 8 12 1 4 7 2 6 3 10 5

9 7 2 6 12 1 8 5 3 10 9 11 4

10 11 8 1 12 2 4 7 6 5 3 10 9

OFV = 2,241,200 P = 0.95 Elapsed time = 17.912468
(Objective Function Value) (Confidence level) (Second)

Table 16 Statistical evaluation for problem II (10 trials)

Confidence level (P) Objective Function Value (OFV)

Worst Mean Best Std. Dev.

0.75 2,231,800 2,192,690 2,155,600 23,805.4359

0.85 2,236,000 2,205,950 2,173,000 21,140.7584

0.95 2,397,000 2,295,900 2,241,200 47,104.1871

2. Further investigation of the stability of the output layout
by considering the confidence level as a fuzzy variable.

3. A new hybirid meta-heuristic approach can be developed
by combining the SA with other intelligent approaches
to solve this problem.

4. The proposed model in this paper can be used for concur-
rently design of inter- cell and intra-cell layout design in
the FMS.

5. Moreover, the constraints such as unequal-sized mach-
ines, closeness ratio, aisles, routing flexibility, budget
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constraint for total cost, and dependent product demands
can also be considered in the future researches.
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