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Abstract The production system of a wafer fabrication
factory is a very complicated process. Job scheduling in a
wafer fabrication factory is a very difficult task. To solve this
problem, two intelligent scheduling rules are proposed in this
study. The intelligent scheduling rules are modified from the
well-known fluctuation smoothing rules with some innova-
tive treatments. To evaluate the effectiveness of the proposed
methodology, production simulation was also applied in this
study. According to experimental results, the proposed meth-
odology outperformed some existing approaches by reduc-
ing the average cycle time and cycle time standard deviation,
the most important objectives of job scheduling in a wafer
fabrication factory.

Keywords Intelligent · Wafer fabrication · Scheduling ·
Fuzzy · Neural

Introduction

The process of semiconductor manufacturing typically
consists of four phases: wafer fabrication, wafer probe,
assembly, and final testing. The production system of a wafer
fabrication factory is a very complicated process with typical
characteristics such as: fluctuating demand, jobs with various
product types and priorities, un-balanced capacity, reentry of
jobs into machines, hundreds of processing steps, alternative
machines with unequal capacity, shifting bottlenecks, and
others. This makes scheduling in a wafer fabrication factory
a very difficult task. Pan and Chen (2004) studied the prob-
lem of scheduling reentrant job shops and flow shops with
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the objectives of minimizing makespan and mean flow time.
Some heuristics were proposed in their study. Chen (2006)
established a branch and bound procedure for the reen-
trant permutation flow-shop scheduling problem. Topaloglu
and Kilincli (2009) proposed a modified shifting bottleneck
heuristic (MSBH) for the reentrant job shop scheduling prob-
lem to minimize makespan. However, it is impossible to con-
struct an optimization model and then to derive heuristics for
a large-scale re-entrant production system like a wafer fab-
rication factory.

Wein (1998) demonstrated that a good job release policy
leads to a significant improvement in the average cycle time,
while many wafer fabrication factories (especially foundry
factories) had to release the jobs associated with an order as
soon as possible after the order is received. In addition, many
studies have shown that applying general scheduling rules
(such as first-in first out (FIFO), earliest due date (EDD), least
slack (LS), shortest processing time (SPT), shortest remain-
ing processing time (SRPT), critical ratio (CR), FIFO+,
SRPT+, and SRPT++) to a wafer fabrication factory does not
lead to very good results. Nevertheless, the research focusing
on scheduling a wafer fabrication factory has become a very
important issue at present (Gupta and Sivakumar 2006). In
short, the existing approaches have the following problems:

(1) Most scheduling rules in this field consider only the
attributes of the jobs gathered at the same place and
lack an effective way of taking into consideration the
conditions of the entire factory. However, in a wafer
fabrication environment, we have access to real-time
shop-floor status information for the entire factory.

(2) Most scheduling approaches are deterministic and do
not reflect the changes in a wafer fabrication factory.
Although there are a few scheduling rules that incor-
porates stochastic variables, such as the fluctuation
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smoothing (FS) rules, fluctuation smoothing policy for
variance of cycle time (FSVCT) and fluctuation smooth-
ing policy for mean cycle time (FSMCT), they use the
average values for these stochastic variables, and in
fact are not responsive to environmental changes. As
a result, such a treatment leads to mis-scheduling.

(3) Most data-mining based approaches were developed for
relatively small manufacturing systems like a job shop.
In addition, these approaches attempt to simulate the
best practices of the past for future scheduling applica-
tions. However, a wafer fabrication factory is a highly
dynamic environment in which future conditions might
be very different from those in the past. It is also very
difficult to determine the so-called best practices for
such a highly dynamic and complicated manufacturing
system.

(4) Most scheduling rules are not tailored to a specific wafer
fabrication factory.

(5) There is scant literature in which the historical data of a
real wafer fabrication factory have been collected, since
most studies in this field used simulated data.

To solve these problems and to further improve the per-
formance of scheduling jobs in a wafer fabrication factory,
two intelligent scheduling rules are proposed in this study.
The intelligent scheduling rules are modifications from the
well-known FS rules with the following treatments:

(1) Estimate the remaining cycle time with the self-
organization map and fuzzy back propagation network
(SOM-FBPN) approach (Chen and Wu 2008). Although
“scheduling” is a hot topic, there are few published stud-
ies incorporating “remaining cycle time estimation” and
“heuristic rule”. Chang et al. (2009) proposed the hybrid
SOM and case-based reasoning approach that can also
be applied for this purpose.

(2) Normalize the components of the FS rules. Then apply
the division operator instead of the traditional subtrac-
tion operator: The purpose is to enhance both the bal-
ancing (i.e. all parameters are of equal importance) and
responsiveness (i.e. the correlation between any param-
eter and the slack is high) of the FS rules.

(3) Tailor the contents of the rules for the specific wafer
fabrication factory with two adjustment factors.

With these innovative treatments, the intelligent scheduling
rules are expected to achieve a better scheduling perfor-
mance, as measured in terms of the average cycle time and
cycle time standard deviation, in a wafer fabrication factory.
It is obviously of great economic importance to reduce the
average cycle time and cycle time standard deviation.

The remainder of this paper is organized as follows.
A literature review is given in Sect. “Literature review”.

Section “Methodology” is divided into three parts. The first
part describes the application of the SOM-FBPN approach
to estimate the remaining cycle time of a job. Then the com-
ponents of the FS rules are normalized and the division
operator is applied instead of the traditional subtraction oper-
ator, in order to magnify the difference in the slack and to
improve the responsiveness of the rules. Finally the rules
are tailored to the wafer fabrication factory to be scheduled
with two adjustment factors in the third part. To evaluate
the effectiveness of the proposed methodology, production
simulation is conducted in Sect. “Production simulation for
generating test data”. Based on the results of the analysis,
some points are discussed in Sect. “Results and discussions”.
Finally, we draw our conclusions and provide some direc-
tions for future research in Sect. “Conclusion and directions
for future research”.

Literature review

Parameters that will be used in this study are defined as
follows:

(1) Rn : the release time of job n.
(2) B Qn : the total queue length before bottlenecks at Rn .
(3) CTn : the cycle time (actual value) of job n.
(4) CT En : the estimated cycle time of job n.
(5) D(i)

n : the delay of the i-th recently completed job, i =
1 ∼ 3.

(6) F Qn : the total queue length in the whole factory at Rn .
(7) Qn : the total queue length on the processing route of

job n at Rn .
(8) RCTnj : the remaining cycle time (actual value) of job

n at step j .
(9) RCT Enj : the estimated remaining cycle time of job n

at step j .
(10) SCTnj : the step cycle time (actual value) of job n at step

j .
(11) SCT Enj : the estimated step cycle time of job n at step

j .
(12) Un : the average factory utilization at Rn .
(13) W I Pn : the factory WIP at Rn .

In addition, the fuzzy variable X̃ is derived by multiplying
the importance of its crisp value X .

Kim et al. (2001) classified the problems of scheduling
a wafer fabrication factory into three categories: job release
control, job scheduling in serial processing workstations, and
batch scheduling in batch processing workstations. There are
two types of scheduling approaches: global approaches and
local approaches. The intelligent scheduling approaches
belong to the second category. Local scheduling approaches
are usually focused on photolithography workstations, while
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global scheduling approaches can be applied to all work-
stations in a wafer fabrication factory. Gupta and Sivaku-
mar (2006) classified the existing scheduling approaches for
a wafer fabrication factory into four categories: heuristic
rules, mathematical programming techniques, neighbor-
hood search methods, and artificial intelligence techniques.
Zhang et al. (2007) mentioned there are four classes of
real-time scheduling approaches: semi-Markov decision
modeling, dynamic programming, rule-based methods, and
knowledge-based approaches. Most existing scheduling rules
are “deterministic”. Namely, the data used in these schedul-
ing rules (e.g. the release time, the total processing time, and
the due date of a job) do not change over time. Conversely,
Lu et al. (1994) proposed two “stochastic” scheduling rules,
FSVCT and FSMCT, in which the remaining cycle time of
a job is considered and therefore needs to be estimated. The
remaining cycle time of a job is highly stochastic because it
is dependent not only on the factory conditions but also on
the progresses of the other jobs (Chen 2003b). Other useful
information when implementing the scheduling rules is the
remaining processing time. Scheduling rules considering the
remaining processing time include CR and LS. In these rules,
the remaining processing time is known, while the remain-
ing cycle time needs to be estimated. Theoretically, rules
that consider the remaining cycle time are more effective
than those considering the remaining processing time. Both
scheduling rules have been shown to be effective in reduc-
ing the average cycle time and cycle time standard deviation.
However, the problem is that the remaining cycle time is
difficult to estimate. Another way of designing a stochastic
scheduling rule is to combine some deterministic schedul-
ing rules, and every time pick only the most suitable one.
For example, Hsieh et al. (2001) used a combination of five
scheduling rules including FSMCT, FSVCT, largest devia-
tion first (LDF), one step ahead (OSA), and FIFO jointly.
The problem with this approach is that, each time an exten-
sive simulation experiment is required to estimate the per-
formance of each candidate in order to determine the most
suitable one. Nevertheless, Hsieh et al. addressed at a broad
scope (including wafer release, short term scheduling, and
rule composition) and proposed an intelligent use of efficient
simulation for that scope.

Recently, some agent technologies have been applied in
this field. Yoon and Shen (2008) constructed a multiple-agent
system for scheduling a wafer fabrication factory, in which
four types of agents (scheduling agents, workcell agents,
machine agents, and product agents) were used. The optimal
scheduling plan was found by the scheduling agent through
enumerating a few possible scenarios. Their proposed meth-
odology was only compared with the two basic scheduling
rules FIFO and EDD. In addition, the common batch pro-
cessing of jobs was not considered, and therefore the case
was not proven to be practical. Recently, data-mining has

been applied also in scheduling manufacturing systems. For
example, in Li and Sigurdur (2004), historical schedules
were transformed into appropriate data files that were mined
in order to find out which past scheduling decisions corre-
sponded to the best practices. Youssef et al. (2002) proposed
a hybrid genetic algorithm (GA) and data mining approach
to determine the optimal scheduling plan for a job shop, in
which GA was used to generate a learning population of
good solutions. These good solutions were then mined to
find some decision rules that could be transformed into a
meta-heuristic. Koonce and Tsai (2000) proposed a similar
methodology. In addition, various priorities are assigned to
jobs in a wafer fabrication factory, which has not explored in
the past studies.

Methodology

Step 1: Estimating the remaining cycle time with the
SOM-FBPN approach

The intelligent scheduling rules consist of three steps. First,
the SOM-FBPN approach is applied to estimate the remain-
ing cycle time of each job to be scheduled. With more
accurate remaining cycle time estimation, the proposed meth-
odology is expected to achieve a better scheduling perfor-
mance.

In the SOM-FBPN approach, jobs to be scheduled are
pre-classified into different categories with SOM. Other clas-
sification methods (e.g. k-means, fuzzy c-means) are also
applicable. The structure of SOM is 10*10, and the number of
output nodes is 100. Let xn denotes the eight-dimensional fea-
ture vector (Un, Qn, B Qn, F Qn,W I Pn, D(1)

n , D(2)
n , D(3)

n )

corresponding to job n. The feature vectors of all jobs are fed
into an SOM network with the following learning algorithm:

(1) Set the number of output nodes and the number of input
nodes. Initialize the learning rate, the neighborhood
size, and the number of iterations.

(2) Initialize the weights (wi j ) randomly where i = 1 ∼ p
and p stands for the number of output nodes; j = 1 ∼ 8.

(3) (Iteration) Provide an input vector to the network.
(4) Find the output node (winner) based on the similarity

between the input vector and the weight vector. For an
input vector xn , the winning unit can be determined by
distance ||xn −wc|| = min

i
||xn −wi ||, where wi is the

weight vector of the i-th unit and the index c refers to
the winning unit.

(5) Update the weight vector of the winner node using
Kohonen’s learning rule (Kohonen 1995).

wi (t + 1) = wi (t)+ α (t) (xn − wi ) for each

i ∈ Nc (t) , (1)
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where t is the discrete-time index of the variables; the
factor α(t) ∈ [0, 1] is a scalar that defines the relative
size of the learning step; Nc(t) specifies the neighbor-
hood around the winner in the map array.

(6) Stop if the number of iterations has been completed.
Otherwise, go to step 3.

Subsequently, examples of different categories are then
learned with different FBPNs but with the same topology.
Fuzzy approach have been applied to various research fields
(e.g. Falda et al. 2010; Chen 2010). Shiue and Su (2002) con-
structed a neural network-based adaptive scheduling system
for scheduling a flexible manufacturing system. Although
a flexible manufacturing system considers the uncertainty
in the manufacturing process, most flexible manufacturing
systems are considerably smaller than a wafer fabrication
factory. A back propagation network was constructed in
Shiue and Su’s study to capture the mapping between system
state attributes and the dispatching rule under various per-
formance criteria. The approach for scheduling the flexible
manufacturing system was then chosen from some common
dispatching rules.

The configuration of the FBPN is established as follows:

(1) Inputs: eight parameters associated with the n-th exam-
ple/job including Un, Qn, B Qn, F Qn,W I Pn , and
D(i)

n (i = 1 ∼ 3). These parameters were most influen-
tial to the cycle time of a job according to the results of
the backward elimination of regression analysis (Chen
2003a; Chang et al. 2005). These parameters are nor-
malized and weighted as per Chen and Wu (2008).

(2) Single hidden layer: Generally one or two hidden lay-
ers are beneficial for the convergence property of the
network.

(3) The number of neurons in the hidden layer is the same
as in the input layer. This treatment has been adopted
by many studies (e.g. Chen 2003a).

(4) Output: the (normalized) estimated cycle time (CT En)

or the (normalized) step cycle time (SCT Enj ) of the
example. In other words, there will be two groups of
FBPNs. The first group is for estimating the CT En’s
of all the jobs to be scheduled, while the other group
is for estimating their SCT Enj ’s. Then, the estimated
remaining cycle time (RCT Enj ) can be derived in the
following way:

RCT Enj = (
CT En − SCTnj

)

∗ (
1 + log

(
SCTnj/SCT Enj

))
(2)

(5) Network learning rule: Delta rule.

(6) Transformation function: Sigmoid function,

f (x) = 1/(1 + e−x ). (3)

(7) Learning rate (η) : 0.01 ∼ 1.0.
(8) Batch learning.

The procedure for determining parameter values is briefly
described. After pre-classification, a portion of the adopted
jobs in each category are fed into the FBPN as “training
examples” to determine the parameter values for the cat-
egory. The training stage consists of two phases. In the
forward phase, inputs are multiplied with weights, added
together, and transferred to the hidden layer. Then, acti-
vated signals from the hidden layer are transferred to the
output layer using the same procedure. Finally, the output
of the FBPN õn is generated. õn is defuzzified according to
the centroid-of-area (COA) formula, and then, the defuzz-
ification result on is compared with the actual value (the
normalized cycle time or the normalized step cycle time)
an to evaluate the accuracy of the FBPN which is repre-
sented with root-mean-squared-error (RMSE) or mean abso-
lute percentage error (MAPE). Finally, the FBPN can be
applied to estimate the cycle time or the step cycle time
of a new job. When a new job is released into the fac-
tory, the eight parameters associated with the new job are
recorded. Then the FBPN is applied to estimate the cycle
time or the step cycle time of the new job. In this study,
a VB.NET program has been constructed to implement the
FBPN.

Step 2: Improving the responsiveness of the FS rules

In traditional FS rules there are two different formulation
methods, depending on the purpose. One way is aimed at
minimizing the mean cycle time with the FSMCT rule (Lu
et al. 1994):

SKnj = n/λ− RCT Enj . (4)

where λ indicates the mean release rate. The other method is
to minimize the variance of the cycle time with the FSVCT
rule (Lu et al. 1994):

SKnj = Rn − RCT Enj . (5)

In the traditional FSMCT rule, RCT Enj might be much
greater than n/λ. As a result, the slack of a job becomes
determined solely by RCT Enj . To deal with this problem,
both terms in the FSMCT rule are normalized as follows:
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Table 1 A practical example (λ = 0.026)

n Rn n/λ RCT Enj

1 102 39 1399

2 163 77 647

3 197 116 743

4 208 154 530

5 457 193 810

6 469 232 1116

7 478 270 942

8 497 309 883

9 523 347 1851

10 596 386 2047

11 625 425 1036

12 652 463 1822

13 699 502 995

14 756 540 1127

15 783 579 2040

16 798 618 1146

17 800 656 2366

18 804 695 2092

19 826 733 1223

20 836 772 2151

Nor(RCT Enj ) = (RCT Enj − min(
all n

RCT Enj ))/

(max(
all n

RCT Enj )− min(
all n

RCT Enj )),

(6)

Nor(n/λ) = (n/λ− min(
all n

n/λ))/

(max(
all n

n/λ)− min(
all n

n/λ))

= (n/λ− 1/λ)/(N/λ− 1/λ))

= (n − 1)/(N − 1). (7)

After normalization, both terms now range from 0 to 1.
Since the FS policies are based on differentiating SKnj ’s

values, magnifying the differences in SKnj seems to be a
good way of enhancing the performance of the FS policy.
To improve the balancing and responsiveness of the FSMCT
rule, the division operator is applied instead of the traditional
subtraction operator:

Nonlinear FSMCT rule : SKnj = Nor(n/λ)/Nor(RCT Enj )

(8)

To evaluate the balancing of the nonlinear FSMCT rule,
the absolute value of the correlation coefficientρx,y is defined
as follows:

ρx,y =
(∑

xy − nx̄ ȳ
) /

(√∑
x2 − nx̄2 ·

√∑
y2 − n ȳ2

)

(9)

ρx,y between SKnj and RCT Enj can be calculated and com-
pared with that between SKnj and n/λ. Taking the practical
data in Table 1 as an example. With the traditional FSMCT
rule, the absolute value of the correlation coefficient between
SKnj and RCT Enj is 0.92, while that between SKnj and
n/λ is only 0.28. The deviation is up to 0.64 or 69% (over
the larger value 0.92). Conversely, with the new rule, the
absolute value of the correlation coefficient between SKnj

and Nor(RCT Enj ) is 0.34, while that between SKnj and
Nor(n/λ) is 0.26. The deviation shrinks to only 0.08 or 23%
over the larger value. Obviously, the balancing of the non-
linear FSMCT rule is much better than that of the traditional
FSMCT rule.

On the other hand, the responsiveness of the nonlinear
FSMCT rule can be evaluated with the absolute value of the
coefficient of variation (CV) of SKnj ,

|CV
(
SKnj

) |=| δSKnj /μSKnj , (10)

which is equal to 4.46, while that of the traditional FSMCT
rule is only 0.49. δSKnj and μSKnj denote the standard
deviation and the average value of SKnj , correspondingly.
Obviously, the responsiveness can be improved with the non-
linear FSMCT rule. Similar analyses can be done on the non-
linear FSVCT rule:

Nonlinear FSVCT rule : SKnj = Nor(Rn)/

Nor(RCT Enj ), (11)

where

Nor(Rn) = (Rn− min(
all n

Rn))/(max(
all n

Rn)− min(
all n

Rn)). (12)

Step 3: Tailoring the nonlinear FS rules with two
adjustment factors

Most scheduling rules in this field cannot be tailored to the
wafer fabrication factory that is to be scheduled. To address
this problem, the transition from a traditional FSMCT rule
to its nonlinear form is analyzed as follows. The nonlinear
form can be re-written as
Nonlinear FSMCT rule:

SKnj = Nor(n/λ)/Nor(RCT Enj )

= (n/λ− 1/λ)/(N/λ− 1/λ)

(RCT Enj − min(RCT Enj ))/(max(RCT Enj )− min(RCT Enj ))

= β

α
· n/λ− 1/λ

RCT Enj − min(RCT Enj )

= β

α
· n/λ− 1/λ− RCT Enj + RCT Enj

RCT Enj − min(RCT Enj )
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Table 2 The performances of various approaches in reducing the average cycle time

Average cycle time (h) A (normal) A (hot) A (super hot) B (normal) B (hot) C (normal) C (hot)

p-FIFO 1256 401 320 1278 457 1418 574

p-EDD-5.0 1087 346 306 1433 478 1755 585

p-EDD-5.5 1074 346 302 1464 464 1822 611

p-EDD-6.0 1047 350 298 1488 481 1863 590

p-EDD-6.5 1033 347 304 1556 484 1928 580

p-EDD-7.0 1022 353 302 1570 493 1945 592

p-EDD-7.5 1012 352 302 1593 476 1951 580

p-SRPT 966 350 309 1737 483 1971 580

p-FSMCT 1401 405 320 1408 430 1352 484

p-FSVCT 1046 385 317 1745 519 1884 606

TNFSMCT (ξ = 0.25, ζ = 0.5) 1369 379 306 1361 399 1337 471

TNFSMCT (ξ = 0.5, ζ = 0.5) 1337 384 295 1336 415 1329 510

TNFSMCT (ξ = 0.585, ζ = 0.5) 1342 379 296 1336 397 1339 478

TNFSMCT (ξ = 1, ζ = 1) 1353 379 298 1271 409 1253 496

TNFSMCT (ξ = 1.322, ζ = 1.5) 1076 368 302 1660 462 1689 528

TNFSMCT (ξ = 1.5, ζ = 1.5) 1371 404 299 1229 424 1271 491

TNFSMCT (ξ = 2.25, ζ = 1.5) 1519 396 292 1338 400 1442 487

TNFSVCT (ξ = 0.25, ζ = 0.5) 1437 371 291 1465 408 1375 477

TNFSVCT (ξ = 0.5, ζ = 0.5) 1419 395 298 1413 418 1361 479

TNFSVCT (ξ = 0.585, ζ = 0.5) 1417 393 308 1405 428 1419 477

TNFSVCT (ξ = 1, ζ = 1) 1345 385 302 1460 434 1391 479

TNFSVCT (ξ = 1.322, ζ = 1.5) 1087 354 307 1725 480 1639 553

TNFSVCT (ξ = 1.5, ζ = 1.5) 1113 363 313 1721 479 1599 559

TNFSVCT (ξ = 2.25, ζ = 1.5) 1567 379 304 1338 429 1430 479

= β

α(RCT Enj − min(RCT Enj ))

·(n/λ− RCT Enj + RCT Enj − 1/λ)

=
(
α

(
RCT Enj − min(RCT Enj )

)

β

)−1

· (n/λ− RCT Enj + (
RCT Enj − 1/λ

)) · 1) (13)

where α = N/λ − 1/λ and β = max(RCT Enj ) −
min(RCT Enj ). Conversely, the linear form can also be re-
written as
Linear FSMCT rule:

SKnj = n/λ− RCT Enj

=
(
α(RCT Enj − min(RCT Enj ))

β

)−0

·(n/λ− RCT Enj + (RCT Enj − 1/λ) · 0) (14)

These two formulas can be generalized into the following
form:

Tailored nonlinear FSMCT rule with two adjustment fac-
tors ξ and ζ , TNFSMCT(ξ, ζ ):

SKnj = 0.1 + 0.8 ·
(
α

(
RCT Enj − min(RCT Enj )

)

β

)−ξ

· (n/λ− RCT Enj + (RCT Enj − 1/λ) · ζ ) (15)

where ξ and ζ are positive real numbers satisfying the fol-
lowing constraints:

If ξ = 0 then ζ = 0, and vice versa (16)

If ξ = 1 then ζ = 1, and vice versa. (17)

There are many possible models to form the combinations of
ξ and ζ . For example,

Linear model : ξ = ζ (18)

Nonlinear model : ξ = ζ k, k30 (19)

Logarithmic model : ξ = ln (1 + ζ )/ ln 2 (20)

With any model, the proposed methodology tries various
combinations of ξ and ζ to optimize the scheduling perfor-
mance in the target wafer fabrication factory. In this way,
the nonlinear FSMCT rule becomes tailored to the specific
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Table 3 The performance of various approaches in reducing the cycle time standard deviation

Cycle time standard deviation (h) A (normal) A (hot) A (super hot) B (normal) B (hot) C (normal) C (hot)

p-FSVCT 319 35 28 222 55 290 54

p-FIFO 56 24 23 87 40 72 31

p-EDD-5.0 130 25 23 50 39 134 23

p-EDD-5.5 103 34 17 60 28 147 60

p-EDD-6.0 101 31 22 41 49 144 34

p-EDD-6.5 90 25 20 38 53 141 36

p-EDD-7.0 83 24 13 35 47 141 34

p-EDD-7.5 74 30 17 42 42 151 33

p-SRPT 246 32 23 106 30 250 37

p-FSMCT 42 44 23 35 28 80 34

TNFSMCT (ξ = 0.25, ζ = 0.5) 75 37 17 47 19 132 24

TNFSMCT (ξ = 0.5, ζ = 0.5) 71 40 23 44 34 150 54

TNFSMCT (ξ = 0.585, ζ = 0.5) 70 42 20 48 30 163 41

TNFSMCT (ξ = 1, ζ = 1) 82 40 22 52 13 129 47

TNFSMCT (ξ = 1.322, ζ = 1.5) 209 33 24 198 49 307 42

TNFSMCT (ξ = 1.5, ζ = 1.5) 98 48 14 53 24 174 45

TNFSMCT (ξ = 2.25, ζ = 1.5) 143 49 19 108 21 194 41

TNFSVCT (ξ = 0.25, ζ = 0.5) 87 43 20 45 35 155 31

TNFSVCT (ξ = 0.5, ζ = 0.5) 91 47 25 70 28 167 54

TNFSVCT (ξ = 0.585, ζ = 0.5) 90 47 20 72 40 183 39

TNFSVCT (ξ = 1, ζ = 1) 35 34 26 29 21 131 29

TNFSVCT (ξ = 1.322, ζ = 1.5) 372 36 18 213 69 218 38

TNFSVCT (ξ = 1.5, ζ = 1.5) 360 29 29 200 59 228 32

TNFSVCT (ξ = 2.25, ζ = 1.5) 177 43 22 113 31 218 45

wafer fabrication factory. In addition, the values of ξ and
ζ can be dynamically adjusted to reflect the changes in the
production conditions of the wafer fabrication factory. On
the other hand, the tailored nonlinear FSVCT rule with two
adjustment factors can be obtained in a similar way:

Tailored nonlinear FSVCT rule with two adjustment fac-
tors ξ and ζ , TNFSVCT(ξ, ζ ):

SKnj = 0.1 + 0.8 ·
(
α

(
RCT Enj − min(RCT Enj )

)

β

)−ξ

· (Rn − RCT Enj + (RCT Enj − min(Rn)) · ζ )

(21)

To consider two performance measures simultaneously,
TNFSMCT and TNFSVCT can be aggregated as follows:

Bi-criteria nonlinear fluctuation smoothing rule:

SKnj = 0.1 + 0.8 ·
(
α

(
RCT Enj − min(RCT Enj )

)

β

)−ξ

· (Rn − RCT Enj + (RCT Enj − min(Rn)) · ζ )

· (n/λ− RCT Enj + (RCT Enj − 1/λ) · η) (22)

where ξ, ζ , and η are positive real numbers satisfying the
following constraints:

If ζ = 0 then h = 0, and vice versa (23)

ξ = ζ + h or max(ζ, h) (24)

Production simulation for generating test data

To generate test data, a simulation program using Microsoft
Visual Basic .NET is developed to simulate a wafer fabrica-
tion environment with the following assumptions:

(1) Jobs are uniformly released into the factory. The sim-
ulated factory is a dynamic random access memory
(DRAM) manufacturing factory. The uniform release
policy is commonly adopted in such make-to-stock fac-
tories instead of the Poisson release policy. Improving
the balancing of FS rules is considered especially impor-
tant to a factory with the uniform release policy.

(2) The distribution of the interarrival times of machine
downs is exponential.
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Table 4 The improvement by each approach in reducing the average cycle time

Average cycle time (h) A (normal) A (hot) A (super hot) B (normal) B (hot) C (normal) C (hot)
(%) (%) (%) (%) (%) (%) (%)

p-FIFO – – – – – – –

p-EDD-5.0 13 14 4 −12 −5 −24 −2

p-EDD-5.5 14 14 6 −15 −2 −28 −6

p-EDD-6.0 17 13 7 −16 −5 −31 −3

p-EDD-6.5 18 13 5 −22 −6 −36 −1

p-EDD-7.0 19 12 6 −23 −8 −37 −3

p-EDD-7.5 19 12 6 −25 −4 −38 −1

p-SRPT 23 13 3 −36 −6 −39 −1

p-FSMCT −12 −1 0 −10 6 5 16

p-FSVCT 17 4 1 −37 −14 −33 −6

TNFSMCT (ξ = 0.25, ζ = 0.5) −9 5 4 −6 13 6 18

TNFSMCT (ξ = 0.5, ζ = 0.5) −6 4 8 −5 9 6 11

TNFSMCT (ξ = 0.585, ζ = 0.5) −7 5 8 −5 13 6 17

TNFSMCT (ξ = 1, ζ = 1) −8 5 7 1 11 12 14

TNFSMCT (ξ = 1.322, ζ = 1.5) 14 8 6 −30 −1 −19 8

TNFSMCT (ξ = 1.5, ζ = 1.5) −9 −1 7 4 7 10 14

TNFSMCT (ξ = 2.25, ζ = 1.5) −21 1 9 −5 12 −2 15

TNFSVCT (ξ = 0.25, ζ = 0.5) −14 7 9 −15 11 3 17

TNFSVCT (ξ = 0.5, ζ = 0.5) −13 1 7 −11 9 4 17

TNFSVCT (ξ = 0.585, ζ = 0.5) −13 2 4 −10 6 0 17

TNFSVCT (ξ = 1, ζ = 1) −7 4 6 −14 5 2 17

TNFSVCT (ξ = 1.322, ζ = 1.5) 13 12 4 −35 −5 −16 4

TNFSVCT (ξ = 1.5, ζ = 1.5) 11 9 2 −35 −5 −13 3

TNFSVCT (ξ = 2.25, ζ = 1.5) −25 5 5 −5 6 −1 17

(3) The distribution of the time required to repair a machine
is uniform.

(4) The percentages of jobs with different product types in
the factory are predetermined. Therefore, this study is
focused only on fixed-product-mix cases.

(5) The percentages of jobs with different priorities released
into the factory are controlled.

(6) A job has equal chances to be processed on each alter-
native machine/head available at each step.

(7) A job cannot proceed to the next step until the fabrica-
tion on all its pieces has been finished.

(8) No preemption is allowed.

The basic configuration of the simulated wafer fabrica-
tion factory is simplified from a real-world wafer fabrication
factory which is located in the Science Park of Hsin-Chu,
Taiwan, R.O.C. Assumptions (1)∼(3), and (6)∼(8) are com-
monly adopted in related researches (e.g. Chen 2003a; Chen
and Wu 2008), while assumption (5) is made to simplify the
situation. There are more than ten products in the wafer fab-
rication factory. Only five major products (labeled as A∼E)
are considered in the simulation model. The percentages of

these products in the factory’s product mix are assumed to
be 35, 24, 17, 15, and 9%, respectively. The simulated wafer
fabrication factory has a monthly capacity of 20,000 pieces
of wafers with 100% utilization. Jobs are released into the
wafer fabrication factory one by one every 0.85 h. Namely,
the mean release rateλ = 1/0.85 = 1.18 jobs per hour. Three
types of priorities (normal, hot, and super hot) are randomly
assigned to jobs. The percentages of jobs with these priorities
released into the wafer fabrication factory are restricted to be
approximately 60, 30, and 10%, respectively. Each product
has 150∼200 steps and 6∼9 re-entrances to the most bottle-
necked machine. A total of 102 machines (including alterna-
tive machines) are provided to process single-wafer or batch
operations in the wafer fabrication factory. The simulation
model is not only large and complicated but also capable of
demonstrating the characteristics of the real wafer fabrication
factory. The conclusions drawn here are therefore meaning-
ful to the control of the real wafer fabrication factory.

Thirty simulation replications are run successively. The
time required for each simulation replication is about 15 min
on a PC with 256MB RAM and AthlonTM 64 Proces-
sor 3000+ CPU. A horizon of 24 months is simulated.
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Table 5 The improvement by each approach in reducing the cycle time standard deviation

Cycle time standard deviation (h) A (normal) (%) A(hot) (%) A (super hot) (%) B (normal) (%) B (hot) (%) C (normal) (%) C (hot) (%)

p-FSVCT – – – – – – –

p-FIFO 82 31 18 61 27 75 43

p-EDD-5.0 59 29 18 77 29 54 57

p-EDD-5.5 68 3 39 73 49 49 −11

p-EDD-6.0 68 11 21 82 11 50 37

p-EDD-6.5 72 29 29 83 4 51 33

p-EDD-7.0 74 31 54 84 15 51 37

p-EDD-7.5 77 14 39 81 24 48 39

p-SRPT 23 9 18 52 45 14 31

p-FSMCT 87 −26 18 84 49 72 37

TNFSMCT (ξ = 0.25, ζ = 0.5) 76 −6 39 79 65 54 56

TNFSMCT (ξ = 0.5, ζ = 0.5) 78 −14 18 80 38 48 0

TNFSMCT (ξ = 0.585, ζ = 0.5) 78 −20 29 78 45 44 24

TNFSMCT (ξ = 1, ζ = 1) 74 −14 21 77 76 56 13

TNFSMCT (ξ = 1.322, ζ = 1.5) 34 6 14 11 11 −6 22

TNFSMCT (ξ = 1.5, ζ = 1.5) 69 −37 50 76 56 40 17

TNFSMCT (ξ = 2.25, ζ = 1.5) 55 −40 32 51 62 33 24

TNFSVCT (ξ = 0.25, ζ = 0.5) 73 −23 29 80 36 47 43

TNFSVCT (ξ = 0.5, ζ = 0.5) 71 −34 11 68 49 42 0

TNFSVCT (ξ = 0.585, ζ = 0.5) 72 −34 29 68 27 37 28

TNFSVCT (ξ = 1, ζ = 1) 89 3 7 87 62 55 46

TNFSVCT (ξ = 1.322, ζ = 1.5) −17 −3 36 4 −25 25 30

TNFSVCT (ξ = 1.5, ζ = 1.5) −13 17 −4 10 −7 21 41

TNFSVCT (ξ = 2.25, ζ = 1.5) 45 −23 21 49 44 25 17

The maximal cycle time is less than 3 months. Therefore,
4 months and an initial WIP status (obtained from a pilot
simulation run) are sufficient to drive the simulation into a
steady state. The statistical data were collected starting at
the end of the fourth month. For each replication, data of
30 jobs were collected and classified by their product types
and priorities. In total, the data of 900 jobs were collected.
A trace report was generated every simulation run for veri-
fying the simulation model. Simulated average cycle times
were compared with actual values to validate the simulation
model.

Results and discussions

To evaluate the effectiveness of the proposed methodology
and to make a comparison with some existing approaches—
p-FIFO, p-EDD, p-SRPT, p-FSVCT, and p-FSMCT, all these
methods were applied to schedule the simulated wafer fabri-
cation factory so as to collect the data of 900 jobs that were
then separated by their product types and priorities. In total,
the data of 7*900 = 6300 jobs were collected. Subsequently,

the average cycle time and cycle time standard deviation of
jobs with every product type and priority were calculated to
evaluate the scheduling performance. The manner in which
the competition for machines by jobs is resolved in a wafer
fabrication factory has a clear bearing on these two perfor-
mance measures. The results are summarized in Tables 2
and 3. The percentages of improvement by each approach
are shown in Tables 4 and 5.

In p-FIFO, jobs were sequenced on each machine first by
their priorities, then by their arrival times at the machine. In
p-EDD, jobs were sequenced first by their priorities, then by
their due dates. The performance of p-EDD is dependent on
the way of determining the due date of a job. In the experi-
ment, the due date of a job was determined as follows:

Due date = release time

+(ψ − 1.5 ∗ priority) ∗ total processing time

(25)

where ψ indicates the cycle time multiplier.
In p-FSVCT and p-FSMCT, there were two stages. First,

jobs were scheduled with the p-FIFO policy, for which the
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Table 6 Some feasible combinations of ξ and ζ

Rule (ξ, ζ )

Linear (0, 0), (0.5, 0.5), (1, 1), (1.5, 1.5), etc.

Nonlinear (k = 2) (0, 0), (0.25, 0.5), (1, 1), (2.25, 1.5), etc.

Logarithmic (0, 0), (0.585, 0.5), (1, 1), (1.322, 1.5), etc.
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Fig. 1 The effect of ξ on reducing the average cycle times
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Fig. 2 The effect of ζ on reducing the average cycle times

remaining cycle times at each step of all jobs were recorded
and averaged. Then, the p-FSVCT/p-FSMCT policy was
applied to schedule jobs based on the average remaining
cycle times obtained previously. In other words, jobs were
sequenced on each machine first by their priorities, then by
their slack values, which was equal to their release times
minus the average remaining cycle times.

In the proposed methodology, the eight combinations of ξ
and ζ in Table 6 were tried. Note that when they are equal to
0, the proposed methodology is equivalent to the traditional
FS rules.

With respect to the average cycle time, the p-FIFO policy
was adopted as the basis for comparison. For the cycle time
standard deviation, the p-FSVCT policy was adopted as the
basis for comparison.
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Fig. 3 The effect of ξ on reducing the cycle time standard deviations
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Fig. 4 The effect of ζ on reducing the cycle time standard deviations

According to the experimental results, the following
points can be made:

(1) With respect to the average cycle time, the proposed
TNFSMCT rule outperformed the baseline approach,
the p-FIFO policy, in most cases. The most obvious
advantage occurred when (ξ, ζ ) = (1, 1), where the TNF-
SMCT rule surpassed the p-FIFO policy in 6 out of 7
cases with an average advantage of 6%. Putting more
stress on n/λ in TNFSMCT than in FSMCT seems to
be beneficial to the scheduling performance in a wafer
fabrication factory with the uniform release policy.

(2) At the same time, the proposed TNFSVCT rule also
achieved very good performances in reducing the cycle
time standard deviations. The most obvious advantage
happened when (ξ, ζ ) = (1, 1), where the TNFSVCT
rule surpassed the baseline p-FSVCT policy signifi-
cantly in all cases with an average advantage of up to
50%. In TNFSVCT, the weights of the release time and
the remaining cycle time are better balanced. Experi-
mental results revealed that such a treatment did indeed
reduce the fluctuation in the cycle time and improve the
performance of the traditional FSVCT policy.

(3) The TNFSMCT rule also performed very well with
respect to the cycle time standard deviation. The
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most obvious advantage happened when (ξ, ζ ) =
(0.25, 0.5). The TNFSMCT rule reduced the cycle time
standard deviation by 52% on average.

(4) The performances of the TNFSMCT rule using vari-
ous values of ξ with respect to the average cycle time
for several cases are compared in Fig. 1. We noticed
that when ξ was equal to 1.322, the performance of the
proposed methodology was not satisfactory. The reason
is discussed as follows. The proposed methodology is
equal to the traditional (linear) FSMCT rule when ξ
is equal to 0. As ξ increases, the proposed methodol-
ogy becomes more and more nonlinear. One problem
of the traditional (linear) FSMCT is that the slack is
determined solely by the remaining cycle time. For this
reason, in the nonlinear FSMCT rule, the weight put
on the remaining cycle time should be reduced. There-
fore, according to Eq. (15) it is better to choose a small
value of −ξ/ζ . Among the tested combinations (except
ξ = 0.25 that was not nonlinear enough), when ξ was
equal to 1.322 the value of −ξ/ζ was the largest, which
led to the poor performance of the proposed method-
ology in this case. On the other hand, the effects of ζ
on reducing the average cycle time are shown in Fig. 2.
The performances of the TNFSVCT rule using various
values of ξ in reducing the cycle time standard devia-
tions for several cases are compared in Fig. 3. On the
other hand, the effect of ζ on reducing the cycle time
standard deviations is shown in Fig. 4.

(5) The traditional p-FSVCT policy performed poorly in
the simulation experiment. This might be due to the
diversification in the product type and priority that made
the remaining cycle time of a job highly uncertain and
very difficult to estimate. As a result, estimating with
the average value might be far from accurate and may
impair the scheduling performance of the traditional
p-FSVCT policy.

(6) As expected, p-SRPT performed well in reducing the
average cycle times, but might give an exceedingly bad
performance with respect to the cycle time standard
deviation.

(7) Among the various EDD rules, the performance of
p-EDD-5.0 was the best in reducing the average cycle
times, while p-EDD-7.0 was the best choice if the cycle
time standard deviations were to be minimized.

(8) The effects of the three treatments have been analyzed.
Taking product type B (normal priority) as an example,
the results are shown in Table 7. First, the SOM-FBPN
approach was also applied to the traditional FSVCT
rule. We noticed that with better remaining cycle time
estimation, the performances of the traditional FSVCT
rule were indeed improved. In addition, incorporating
the SOM-FBPN approach with the nonlinear schedul-
ing rule could reduce the cycle time standard deviation

further. After tailoring the content of the new rule for
the target wafer fabrication factory, such advantages
became more obvious.

(9) To statistically compare the performance of these
approaches in all cases, we first ranked them in each
case, and then added up the ranks of the same approach
for comparison. The results are summarized in Table 8.
To consider both aspects, the performances of all
approaches were compared in Table 9, which supported
the Pareto optimality of the proposed methodology
because most of its variants were not dominated by
any of the traditional approaches. Namely, the perfor-
mances of the proposed methodology in both respects
were not simultaneously inferior to those of any other
approach. In addition, TNFSMCT (ξ = 0.25, ζ = 0.5)
and TNFSVCT (ξ = 1, ζ = 1) dominated all tradi-
tional approaches. On the other hand, p-FSVCT was
dominated by the other approaches. Namely, the per-
formances of p-FSVCT in both respects were worse
than those of any other approach. The p-SRPT pol-
icy was dominated by the other approaches except
p-FSVCT and TNFSVCT (ξ = 0.5, ζ = 0.5), while
the p-FIFO policy was only dominated by TNFSMCT
(ξ = 0.25, ζ = 0.5) and TNFSVCT (ξ = 1, ζ = 1).

(10) In the experiment, TNFSMCT even surpassed
TNFSVCT in reducing cycle time standard deviation.
The possible reasons are discussed as follows. The tra-
ditional FSVCT rule attempts to make every job equally
late or equally early, thereby reducing the standard devi-
ation of lateness. Therefore, FSVCT or TNFSVCT is
especially effective when all jobs have equal priori-
ties. Conversely, in the simulation model, jobs had var-
ious priorities, and it became very difficult to make
them equally late or equally early, which led to the
poor performance of TNFSVCT in this case. Never-
theless, TNFSVCT still outperformed the five existing
approaches in reducing cycle time variation.

(11) As stated above, only some values of ξ and ζ are feasi-
ble. The performance of the three models for generating
(ξ, ζ ) combinations are compared in Table 10. In this
experiment, the nonlinear model seems to be the best
choice for this purpose, which implies that a two-factor
adjustment is better than a single-factor adjustment in
which two parameters are equal.

To ascertain whether there were significant differences
between the performances of the proposed scheduling rules
and those of traditional scheduling rules, we applied Wilco-
xon sign-rank test to test the following hypotheses:

Ha0: The performance of the proposed TNFSMCT (ξ =
0.25, ζ = 0.5) is the same as those of traditional
scheduling rules in the average cycle time respect.
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Table 7 The effects of the three
treatments Approach Average cycle time (h) Cycle time standard deviation (h)

p-FSVCT 1745 319

p-FSVCT + SOM-FBPN 1448 (−17%) 163 (−27%)

Nonlinear + SOM-FBPN 1370 (−21%) 31 (−86%)

Tailored + nonlinear + SOM-FBPN 1229 (−30%) 29 (−91%)

Table 8 The sum of the ranks
of each approach Sum of ranks Average cycle

time
Total rank # Cycle time

standard
deviation

Total rank #

p-FIFO 99 #18 56 #5

p-EDD-5.0 92 #15 67 #8

p-EDD-5.5 88 #11 83 #13

p-EDD-6.0 91 #14 75 #11

p-EDD-6.5 98 #17 65 #7

p-EDD-7.0 104 #20 46 #3

p-EDD-7.5 92 #15 57 #6

p-SRPT 110 #23 105 #18

p-FSMCT 101 #19 55 #4

p-FSVCT 135 #24 147 #24

TNFSMCT (ξ = 0.25, ζ = 0.5) 60 #4 42 #1

TNFSMCT (ξ = 0.5, ζ = 0.5) 57 #3 86 #14

TNFSMCT (ξ = 0.585, ζ = 0.5) 44 #1 77 #12

TNFSMCT (ξ = 1, ζ = 1) 52 #2 71 #9

TNFSMCT (ξ = 1.322, ζ = 1.5) 90 #13 130 #23

TNFSMCT (ξ = 1.5, ζ = 1.5) 70 #6 91 #15

TNFSMCT (ξ = 2.25, ζ = 1.5) 77 #8 104 #17

TNFSVCT (ξ = 0.25, ζ = 0.5) 63 #5 74 #10

TNFSVCT (ξ = 0.5, ζ = 0.5) 76 #7 112 #19

TNFSVCT (ξ = 0.585, ζ = 0.5) 89 #12 102 #16

TNFSVCT (ξ = 1, ζ = 1) 80 #9 44 #2

TNFSVCT (ξ = 1.322, ζ = 1.5) 105 #21 122 #21

TNFSVCT (ξ = 1.5, ζ = 1.5) 109 #22 124 #22

TNFSVCT (ξ = 2.25, ζ = 1.5) 83 #10 117 #20

Ha1: The performance of the proposed TNFSMCT (ξ =
0.25, ζ = 0.5) is better than those of traditional sched-
uling rules in the average cycle time respect.

Hb0: The performance of the proposed TNFSVCT (ξ =
1, ζ = 1) is the same as those of traditional schedul-
ing rules in the cycle time standard deviation respect.

Hb1: The performance of the proposed TNFSVCT (ξ =
1, ζ = 1) is better than those of traditional scheduling
rules in the cycle time standard deviation respect.

Hc0: The performance of the proposed TNFSMCT (ξ =
0.25, ζ = 0.5) is the same as those of traditional
scheduling rules in the cycle time standard deviation
respect.

Hc1: The performance of the proposed TNFSMCT (ξ =
0.25, ζ = 0.5) is better than those of traditional sched-
uling rules in the cycle time standard deviation respect.

Hd0: The performance of the proposed TNFSVCT (ξ =
1, ζ = 1) is the same as those of traditional schedul-
ing rules in the average cycle time respect.

Hd1: The performance of the proposed TNFSVCT (ξ =
1, ζ = 1) is better than those of traditional scheduling
rules in the average cycle time respect.

The results of hypothesis testing are summarized in
Table 11. The performance of the proposed TNFSMCT
(ξ = 0.25, ζ = 0.5) rule was significantly better than

123



J Intell Manuf (2012) 23:897–911 909

Table 9 The results of Pareto
analysis # Approach Dominated by #

1 p-FIFO 11, 21

2 p-EDD-5.0 11, 21

3 p-EDD-5.5 11, 13, 14, 18, 21

4 p-EDD-6.0 11, 14, 18, 21

5 p-EDD-6.5 7, 11, 21

6 p-EDD-7.0 11, 21

7 p-EDD-7.5 11, 21

8 p-SRPT 1–7, 9, 11–14, 16–18, 20–21

9 p-FSMCT 11, 21

10 p-FSVCT 1–9, 11–24

11 TNFSMCT (ξ = 0.25, ζ = 0.5) None

12 TNFSMCT (ξ = 0.5, ζ = 0.5) 13, 14

13 TNFSMCT (ξ = 0.585, ζ = 0.5) None

14 TNFSMCT (ξ = 1, ζ = 1) None

15 TNFSMCT (ξ = 1.322, ζ = 1.5) 3, 11–14, 16–21, 24

16 TNFSMCT (ξ = 1.5, ζ = 1.5) 11–14, 18

17 TNFSMCT (ξ = 2.25, ζ = 1.5) 11–14, 16, 18

18 TNFSVCT (ξ = 0.25, ζ = 0.5) 11, 14

19 TNFSVCT (ξ = 0.5, ζ = 0.5) 11–14, 16, 18

20 TNFSVCT (ξ = 0.585, ζ = 0.5) 3, 11–14, 16, 18, 21

21 TNFSVCT (ξ = 1, ζ = 1) 11

22 TNFSVCT (ξ = 1.322, ζ = 1.5) 1–7, 9, 11–14, 16–21, 24

23 TNFSVCT (ξ = 1.5, ζ = 1.5) 1–7, 9, 11–14, 16–22, 24

24 TNFSVCT (ξ = 2.25, ζ = 1.5) 11–14, 16–19, 21

the traditional FSMCT rule in the cycle time respect. On
the other hand, the advantage of the proposed TNFSVCT
(ξ = 1, ζ = 1) rule over p-EDD-5.5, p-EDD-6.0,
p-SRPT, and p-FSVCT with respect to the cycle time stan-
dard deviation was also statistically significant. Further,
TNFSMCT (ξ = 0.25, ζ = 0.5) also outperformed
three traditional rules in reducing the cycle time standard
deviations.

Conclusion and directions for future research

Two intelligent scheduling approaches, TFSMCT and
TFSVCT, were proposed in this study to further improve
the performance of scheduling jobs in a wafer fabrication
factory. The intelligent scheduling approaches were mod-
ified from the well-known FS rules with three innovative
treatments. First, the remaining cycle time of a job was esti-
mated by applying the SOM-FBPN approach to improve
the estimation accuracy. Second, the components of the FS
rules were normalized, and then the division operator was
applied instead of the traditional subtraction operator to

Table 10 The performances of the various models

Sum of the ranks in all cases

Average cycle time Cycle time standard deviation

Linear 615 531

Nonlinear 586 486

Logarithmic 631 519

enhance the responsiveness of the rule. Third, the content
of the intelligent scheduling rules can be tailored for the
wafer fabrication factory to be scheduled with two adjust-
ment factors. TFSMCT and TFSVCT generalize the FS
rules by relaxing the constraints on the orders in the slack
formulae.

To evaluate the effectiveness of the proposed methodology
and to compare it with some existing approaches, production
simulation was also conducted in this study, and then the pro-
posed methodology and some existing approaches were all
applied to schedule the simulated wafer fabrication factory.
The experimental results were as follows:
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Table 11 The results of testing
hypotheses using Wilcoxon
sign-rank test

∗ p < 0.05
∗∗ p < 0.025
∗ ∗ ∗ p < 0.01

Ha0 Hb0 Hc0 Hd0

p-FIFO W = 12 W = 12 W = 14 W = 12

p-EDD-5.0 8 8 6 11

p-EDD-5.5 9 3* 2* 10

p-EDD-6.0 9 3* 4 10

p-EDD-6.5 9 4 6 8

p-EDD-7.0 9 8 12 8

p-EDD-7.5 9 4 9 8

p-SRPT 8 3* 1** 8

p-FSMCT 0** 8 10 6

p-FSVCT 5 0** 1** 6

(1) The proposed TNFSMCT rule outperformed the tradi-
tional approaches in reducing the average cycle time
and the cycle time standard deviation at the same time.

(2) The proposed TNFSVCT rule outperformed the tradi-
tional approaches in reducing the cycle time standard
deviation.

(3) To tailor the content of the intelligent scheduling rules,
two-factor adjustment was shown to be better than sin-
gle-factor adjustment.

(4) Considering both the average cycle time and the cycle
time standard deviation, the proposed methodology was
also a Pareto optimal solution.

However, to further evaluate the effectiveness and effi-
ciency of the proposed methodology, it has to be applied to
various types of wafer fabrication factories including foundry
factories. Also, the content of the intelligent scheduling
rules could be optimized through other methods such as the
response surface methodology (RSM) (Zhang et al. 2007).
Further, whether the proposed TNFSMCT and TNFSVCT
are still effective under various release policies and loading
levels needs to be examined in future studies.
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