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Abstract Tool wear detection is a key issue for tool
condition monitoring. The maximization of useful tool life
is frequently related with the optimization of machining pro-
cesses. This paper presents two model-based approaches for
tool wear monitoring on the basis of neuro-fuzzy techniques.
The use of a neuro-fuzzy hybridization to design a tool wear
monitoring system is aiming at exploiting the synergy of
neural networks and fuzzy logic, by combining human rea-
soning with learning and connectionist structure. The turning
process that is a well-known machining process is selected for
this case study. A four-input (i.e., time, cutting forces, vibra-
tions and acoustic emissions signals) single-output (tool wear
rate) model is designed and implemented on the basis of three
neuro-fuzzyapproaches(inductive, transductiveandevolving
neuro-fuzzy systems). The tool wear model is then used for
monitoring the turning process. The comparative study dem-
onstrates that the transductive neuro-fuzzy model provides
better error-basedperformance indices fordetecting toolwear
than the inductive neuro-fuzzy model and than the evolving
neuro-fuzzy model.
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Introduction

The strong international competition that exists in the field
of manufacturing requires intelligent systems for provid-
ing greater value to the process and/or product (Rubio and
Teti 2009). Machining processes play a crucial role in the
field of manufacture and, therefore, it is an open field to
deal with any kind of process improvement (Liang et al.
2004). Four basic types of machining operations are turning,
drilling, milling, and grinding, which are performed by
different machine tools. Indeed, the importance of maximiz-
ing a tool’s working time and doing the utmost to keep tools
from breaking is directly related to process optimization. The
key issue is to find an appropriate trade-off between tool wear
and productivity, considering the tool’s cost, its replacement
cost, the cost of writing off the machine’s idle time, and so
forth. Avoiding breakage derived from excessive tool wear
is another important factor. The tool can be replaced after
it breaks but it means increased costs, since the post-break-
age stage is one of the trickiest, most unpredictable times,
aside from the damage that may be done to the part and, not
unusually, to the whole machine itself.

In the turning process, the tool is influenced by the com-
bined action of large mechanical stress, high temperatures,
and corrosion caused in part by cutting fluids. Thus, edges
are gradually worn down and in extreme cases, it leads to
premature catastrophic failure. Some important causes of
tool breakage are plastic deformation, the material fluency
at high temperature, and fatigue and brittle fracture because
of combined stresses and low tenacity of the tool (Sharma
et al. 2008b). For all these reasons, modeling, estimation and
monitoring of tool wear are essential in any turning process
(Rehorn et al. 2005).

However, due to the complexity of tool wear, its non-
linearity and the uncertainties of the process, there have
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been many approaches that have dealt with this problem
through artificial intelligence techniques (Wang et al. 2008;
Warnecke and Kluge 1998; Pal et al. 2009; Purushothaman
2009; Sharma et al. 2008a). Several of these approaches
use artificial neural networks for modeling or monitoring
tool wear in turning process (Sick 2002). The use of neural
networks provides certain advantages, such as the capabil-
ity of developing a model without requiring physical pro-
cess knowledge. Nevertheless, this black box approach has a
drawback because the model’s structure is unable to offer any
physical meaning. It means that it is not possible to extract
information or knowledge from the created model (Sjoberg
et al. 1995). In order to solve some of these drawbacks, the
neuro-fuzzy systems emerge in the nineties combining the
excellent ability to model any nonlinear function provided
by neural networks and the semantic transparency provided
by fuzzy logic (Jang 1993).

The simplest and easiest way to obtain a neuro-fuzzy
model is to create its knowledge base using verbalization
techniques. Frequently, however, a complete verbal descrip-
tion of how a complex process behaves is quite difficult to
obtain. In such situations a procedure based on identification
from input-output data is required. Therefore, a neuro-fuzzy
model can be built from measured input/output (black box)
data using engineering knowledge about the process vari-
ables, goals, and disturbances (white box) by applying recur-
sive identifications techniques (error backpropagation, least
squares, singular value decomposition, etc.).

The application of neuro-fuzzy system for modelling is
not new and thousands of contributions have been reported
in last decades. The complete review of the state-of-the-
art in this field goes beyond the scope of this paper. Some
interesting approaches are recently reported in the litera-
ture (Cakmakci et al. 2010; Hayati et al. 2009; Perez et al.
2010; Sargolzaei and Kianifar 2010; Ubeyli 2009). Several
neuro-fuzzy systems have been applied to optimize manufac-
turing processes through a new generation of model-based
approaches. However, the use of neuro-fuzzy systems for
modeling and monitoring tool wear is scarce (Abellan-Nebot
and Romero Subiron 2010). In the case of turning processes,
there are only few approaches based on the Adaptive Net-
work Fuzzy Inference System (ANFIS) or in some variation
of itself (Dinakaran et al. 2009; Li et al. 2000, 2004; Sharma
et al. 2007, 2008a).

This paper presents two approaches for tool wear monitor-
ing in turning processes based on neuro-fuzzy models. The
main motivation is to perform a thorough comparative study
to assess the suitability of state-of-art neurofuzzy strategies
for tool wear monitoring. Previous works showed the first
approximation using adaptive network-based fuzzy inference
system (ANFIS) (Sharma et al. 2008a) and a transductive
neuro-fuzzy system (TWNFIS) (Gajate et al. 2009). This
work extends a preliminary comparative study (Gajate et al.

2009) by including another neurofuzzy system, a dynamic
evolving neural-fuzzy inference system (DENFIS) (Kasabov
and Song 2002), not previously reported. One contribution
of this paper is a complete comparative study of neuro-fuzzy
based model techniques applied to tool wear monitoring.

Moreover, in order to evaluate the suitability of the pro-
posed strategy for tool wear monitoring, another material is
used in the turning process. The change of material is consid-
ered a relevant disturbance for tool wear monitoring, and the
three neuro-fuzzy systems are compared before this new situ-
ation. The main question is therefore whether the transductive
neuro-fuzzy model achieves better error-based performance
indices for detecting tool wear than other methods or not.

This paper is organized as follows: Section “Tool wear in
turning process” describes the problem of tool wear in turning
process; section “Neuro-fuzzy inference systems” presents
the different neuro-fuzzy strategies to deal with the problem
of tool wear monitoring; Section “Experimental setup” shows
the experimental setup and the results of tool wear monitoring
by the proposed systems. Finally, in section “Conclusions”
the conclusions are showed.

Tool wear in turning process

Toolwear isgenerallycausedbyacombinationofvariousphe-
nomena, although it is an intrinsic event of cutting processes.
Toolwearcanoccurgraduallyor indrasticbreakdowns.Grad-
ual wear may occur by adhesion, abrasion, or diffusion, and it
may appear in two ways: wear on the tool’s face or wear on
its flank. Contact with the chip produces a crater in the tool’s
face. Flank wear, on the other hand, is commonly due to fric-
tion between the tool and the workpiece material.

The importance of maximising a tool’s working time and
doing the utmost to keep tools from breaking is directly
related with cutting-process optimisation. One of the main
goals in turning (as in other machining processes) is to
achieve an economic tool-life through wisely chosen cutting
speeds, cutting feeds and depths of cut. The key issue is to
find an appropiate trade-off between tool wear and productiv-
ity considering the tool’s cost, its replacement cost, the cost
of writing off the machine’s idle time, and so forth. Avoiding
breakage is another capital factor, because replacing the tool
after it breaks means increased costs, since the post-break-
age stage is one of the trickiest, most unpredictable times,
aside from the damage that might be done to the part and,
not unusually, to the whole machine itself.

Tool wear is not a physical variable value which is easily
measured by some specific method, but rather a subjective
estimate a specialist can make, depending on the condition
of the tool’s edges and surfaces. Since there is no single cri-
terion for deciding when a tool needs sharpening, different
lifetimes may be predicted for the same tool employed in
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Fig. 1 Lathe machine in detail

Fig. 2 Tool wear model

the same process. Two widely used criteria are catastrophic
failure and changes in tool geometry. Other criteria that are
sometimes used are a degraded tool-surface finish, deviation
in cutting forces, increased power consumption, overheating,
non-tolerant pieces, and the appearance of chattering. This
paper deals with the tool wear modeling of the turning pro-
cess (Fig. 1). The ultimate goal is to implement the developed
model in a process for monitoring on-line the tool wear in
a turning process. Due to this objective, it is interesting to
know what is exactly happening in the process through pro-
cess signals that provide the most information about the tool
wear process and therefore, to monitoring the process itself.

In order to be consistent with the state of the art, input-
output data measured from sensoring signals such as acous-
tic emissions signals (AE S), vibrations (accelerations) (at ),
cutting forces (Fz) and time (t) (Fig. 2) are used as model
inputs to estimate tool wear (Sharma et al. 2008a). There-
fore, a multiple-input/single-output model is designed and
implemented for monitoring tool wear.

The cutting force, vibration, time, and acoustic emission
variables are selected because quite often the tool wear phe-
nomenon is reflected by time-domain and frequency domain
analysis of these variables. The acoustic emission can be used
to detect gradual and abrupt tool wear. Cutting tool vibra-
tions during machining are produced due to rubbing action
at the work-piece tool flank interface, formation of built-up
edge, and waviness of the work surface. Cutting force is a
variable that is relatively easy to be measured in real-time.

The tangential component of force (Fz) is more sensitive to
tool wear as compared to axial component (Fx ) and radial
component (Fy). The literature in the field of machining pro-
cesses (and turning processes) reflects this fact (Dimla 2000).
Moreover, the value Fz determines the torque on the main
drive mechanism, the deflection of the tool, and the required
power.

Neuro-fuzzy inference systems

Neuro-fuzzy inference techniques combine the paradigms
of fuzzy logic and neural networks in order to take advan-
tage of both techniques, achieving the simplicity of model-
ing (neural networks), while providing knowledge explicitly
expressed in a set of if-then rules. Neuro-fuzzy systems have
been widely used in modeling, identification and monitor-
ing of complex systems. Since its origin in the early nine-
ties, neuro-fuzzy systems have undergone various changes
over the years, giving rise to various trends in research. For
example, depending on the type of inference that the neuro-
fuzzy system uses, or according to the structure of the neuro-
fuzzy system, it can distinguish various sub-groups within
the neuro-fuzzy approaches.

In terms of learning procedures (type of inference), most
evolutionary neuro-fuzzy strategies apply inductive reason-
ing systems. In inductive reasoning the key issue is to find
a general model (function) drawn from the entire set of
input/output data representing the whole system. The model
is later used for designing the required control system.
In contrast, there are transductive reasoning methods that
generate a model at a single point of the workspace, giving
rise to transductive neuro-fuzzy inference systems.

According to the structure, an evolving neuro-fuzzy sys-
tem is able to update its knowledge and refine the model
through interaction with the environment. The main advan-
tage in the use of these systems for modeling and monitoring
process is that the structure of the evolving neuro-fuzzy sys-
tem changes depending on what the process demands, unlike
the current neuro-fuzzy systems which have fixed structure.

Transductive methods have some advantages over induc-
tive methods, because sometimes creating a valid model for
the entire space or region of operation is a difficult task, yield-
ing inadequate performance in some cases. The dynamic gen-
eration of local models enables the knowledge represented as
the set of known data facilitating incremental on-line learn-
ing to be expanded easily. In addition, these strategies are
capable of functioning correctly with a small training set.

Based on the above definitions, this paper presents three
neuro-fuzzy systems that combine these characteristics. On
the one hand we have the neuro-fuzzy system par excellence:
ANFIS. It has inductive inference and fixed structure. On the
one hand, it has showed a Dynamic Evolving Neural-Fuzzy
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Fig. 3 ANFIS architecture

Inference System (DENFIS), which is considered one of the
first systems with the evolving and neuro-fuzzy principles.
It has inductive inference. Finally it has presented a Transduc-
tive-Weighted Neuro-Fuzzy Inference System (TWNFIS),
which is a relatively new transductive reasoning system that
consists of a dynamic neuro-fuzzy inference system with
local generalization. It is also considered an evolving neuro-
fuzzy systems because its structure changes over the time.

Adaptive-network-based fuzzy inference system (ANFIS)

ANFIS system is one of the first neuro-fuzzy systems to be
developed (Jang 1993). Its principle is based on extracting
fuzzy rules in each level of a neural network. Once the rules
have been obtained, they provide the necessary information
on the global behavior of the system.

ANFIS implements the Takagi-Sugeno model. The
ANFIS architecture has five layers, as shown in Fig. 3. The
nodes represented with squares are nodes with adjustable
parameters, whereas the nodes represented by circles are
fixed nodes. The first layer represents fuzzy membership
functions. The second and the third layer contain nodes that
form the antecedent parts in each rule. The fourth layer calcu-
lates the first-order Takagi-Sugeno rules for each fuzzy rule.
The fifth layer (output layer) calculates the weighted global
output of the system.

ANFIS uses error back propagation as the learning strat-
egy to determine the antecedent parameters of the rules. The
consequentparametersofeachrulearedeterminatedusing the

least squares method. A step in the learning procedure has got
two passes: in the first or forward pass, the input patterns are
propagated, and the optimal consequent parameters are esti-
mated by an iterative least mean square procedure, while the
premise parameters are assumed to be fixed for the current
cycle through the training set. In the second or backward pass
thepatternsarepropagatedagain,andin thisepoch,backprop-
agation is used to modify the premise parameters, while the
consequent parameters remain fixed. This procedure is then
iterated until the error criterion is satisfied (Denai et al. 2007).

Dynamic evolving neural-fuzzy inference system (DENFIS)

The Dynamic Evolving Neural-Fuzzy Inference System
(DENFIS) is an application of the ECoS principles to an ANN
that implements a Takagi-Sugeno fuzzy inference system and
triangular membership functions (Watts 2009). DENFIS is
thoroughly described in Kasabov and Song (2002).

DENFIS utilizes a dynamic inference for adaptive online
and offline learning. DENFIS evolves through incremental
learning and accommodate new input data including new fea-
tures through local element tuning. New fuzzy rules are cre-
ated and updated during the operation of the system. At each
time moment, the output of DENFIS is calculated through
a fuzzy inference system based on m-most activated fuzzy
rules which are dynamically chosen from a fuzzy rule set.
A set of fuzzy rules can be inserted into DENFIS before or
during its learning process. Fuzzy rules can also be extracted
during or after the evolving process.
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DENFIS use the so-called Evolving Clustering Method
(ECM) (Song and Kasasbov 2001). This is based on the con-
cept of dynamically adding and modifying the clusters as
new data are presented, where the modification to the clus-
ters affects both the position of the clusters and the size of
the cluster, in terms of a radius parameter associated with
each cluster that determines the boundaries of that cluster.
ECM has only one parameter, which drives the addition of
clusters, known as the distance threshold Dthr . When new
clusters are added, their centers are set to equal the example
that triggered their creation, and the radius R of a new cluster
is initially set to zero. R grows as more vectors are allocated
to the cluster. Due to the mechanism by which R is updated,
it cannot exceed Dthr .

The main ECM function is to support the inference of
fuzzy rules from data in DENFIS. This is done in two phases,
first forming the antecedents, followed by the consequent
functions. The antecedents are formulated by finding which
combination of input Membership Functions (MFs) activates
most highly for the center of the cluster, i.e., the values
represented by the cluster center are fuzzified by the input
MF set and the winning, most highly activated, MFs are taken
as the antecedents for that rule.

The consequent functions are then calculated using a
least means estimation process over the examples within the
cluster. Thus, each cluster is used as the basis of a single
rule. Clustering and reformulation of the rules are performed
whenever a new training example is presented to the network.
For any input vector, the output of the DENFIS in calculated
as the combined output of the most strongly activated m rules.
There is no adjustment of the MF during training.

Transductive-weighted neuro-fuzzy inference system
(TWNFIS)

The Transductive-Weighted Neuro-Fuzzy Inference System
(TWNFIS) is a relatively new transductive reasoning system
that consists of a dynamic neuro-fuzzy inference system with
local generalization (Song and Kasabov 2006). TWNFIS is
endowed with three important characteristics:

– Neural: Excellent ability to model any nonlinear func-
tion with a high accuracy in addition to possessing a high
learning capacity.

– Fuzzy: Semantic transparency, ability to represent human
thought as well as excellent behavior when there is uncer-
tainty and imprecision.

– Transductive: Estimation of the model in a single input/
output set of the space, using only information related
with the corresponding set.

In this work it has used a modification of the original work
(Song and Kasabov 2006) that was already shown in Gajate

Fig. 4 Diagram of the transductive neuro-fuzzy inference system
algorithm

et al. (2009). The modified TWNFIS algorithm differs in two
main issues from the original algorithm: normalization data
procedure and clustering algorithm. The normalization pro-
cedure is based on mean and standard deviation of the overall
data set unlike the max- min normalization reported in Song
and Kasabov (2006). Quality threshold (QTCA) clustering
is applied instead of the Evolving Clustering Method (ECM)
suggested by the same authors. Quality is ensured in QT
clustering by finding large clusters whose diameter does not
exceed a given user-defined diameter threshold. This method
prevents that dissimilar data is included in the same cluster
and it ensures that only good quality clusters will be created.
Gaussian membership functions and Mamdani-type systems
are used in both approaches. Figure 4 shows the different
steps of the proposed approach to create each local neuro-
fuzzy model. The explanations of each step are given as
follows.

Firstly, the model’s inputs in each sample time (e.g.,
time, acceleration, force) can be treated in different kinds
of physics units but normalization is recommended. In this
paper, each input data x ′ is normalized according to (1):

x = x ′ − μx

σx
(1)
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where μx is the mean and σx is the standard deviation of the
set of known data or training set.

The different local models are created using data from
the training set that are the closest to each new input datum.
The weighted Euclidean distance is used for selecting each
data subset (2), in other words, the nearest neighbors. The
size of the subset of neighbors (Nq ) is one parameter of the
algorithm. Weights (w j ) of each element of the input vector
(w j ∈ [0, 1]) are computed in an a posteriori model-adjusting
process, reflecting the importance of each variable. Initially
they all have unitary value. Once it has computed the near-
est neighbors, the algorithm calculates the weights for each
calculated distance (3).

‖x̄ − ȳ‖ =
⎡
⎣ 1

P

P∑
j=1

w j
∣∣x j − y j

∣∣2

⎤
⎦

1
2

(2)

vi = 1 − (
di − min

(
d̄
))

(3)

where P is the number of elements in the input data vector, x̄
is the input data vector, ȳ is each of the vectors in the training
set, min(d̄) is the minimum element in the distance vector
d̄ = [d1, d2, . . . , dNq ], and i = 1, 2, . . . , Nq is the index
representing the number of closest neighbors.

When the subset has been chosen and the distance weights
have been calculated, fuzzy rules and membership functions
(with their initial parameters value) are built iteratively on
the basis of the closest data. The next step of TWNFIS is
the use of the Evolving Clustering Method (ECM) (Kasabov
and Song 2002) to create these neuro-fuzzy local models. The
main difference with regard to the approach proposed herein
is the use of a clustering algorithm more suitable for real-time
modeling of dynamic systems instead of ECM. A cluster-
ing strategy called the Quality Cluster Algorithm (QTCA) is
then applied (Heyer et al. 1999). This algorithm utilizes two
parameters: a threshold to indicate a maximum diameter of
the clusters and a minimum number of elements (data) in a
cluster. A candidate cluster is created using the first datum.
The other elements are iteratively added without exceeding
the maximum diameter. A second candidate cluster is formed
starting with the second datum and repeating the procedure.
The number of candidate clusters is equal to the number
of closest data. At this point, the largest candidate cluster
is selected and retained. Data are removed from consider-
ation and the entire procedure is repeated on the smaller set.
A stopping criterion is when the largest remaining cluster has
fewer elements than a pre-specified number of elements. The
resulting clusters are ellipsoids. The center and the radius of
the clusters set the center and width of the Gaussian member-
ship functions, respectively. Each fuzzy rule is created based
on a cluster.

Considering P inputs, one output and M fuzzy rules ini-
tially defined by the clustering algorithm, the lth rule has the
form:

Rl : If xl is φl1 and x2 is φl2 and…xP is φl P , then y is γl .
(Cluster l)

φl j = αl j exp

[
−

(
x j − ml j

)2

2a2
l j

]
(4)

γl = exp

[
− (y − nl)

2

2δl
2

]
(5)

where m and n are the centers of the Gaussian functions
for the inputs and outputs, a and δ are the widths, i =
1, 2, . . . , Nq is the index representing the number of closest
neighbors, j = 1, 2, . . . , P represents the number of input
variables, and l = 1, 2, . . . , M represents the number of
fuzzy rules.

Defuzzification is carried out using a modified center
of area method. The resulting error function is stated as a
weighted quadratic error function that is derivable:

f (x̄i ) =
∑M

l=1
nl
δl

2

∏P
j=1 αl j · exp

[
−w j

2(xi j −ml j)
2

2a2
l j

]

∑M
l=1

1
δl

2

∏P
j=1 αl j · exp

[
−w j

2(xi j −ml j)
2

2a2
l j

] (6)

E = 1

2
vi [ f (x̄i ) − qi ]

2 (7)

where f (xi ) is the defuzzification function that yields the
output, qi are the target values, and vi indicates the distance
weight (the proximity of each target to the expected predic-
tion).

The weight of each variable is adjusted according to its
relevance within each sub-space. A gradient-descent algo-
rithm to optimize the weights and parameters of the fuzzy
rules is then applied after deriving (7). If the closest neigh-
bors do not change due to the new adjusted weights of the
variables, a new model is created setting the weights obtained
in the previous iteration. Finally, the model is used to predict
the system output (Fig. 5). A more in-depth explanation of
the different steps made can be found in Song and Kasabov
(2006).

Experimental setup

Monitoring of tool wear for turning processes is based on
the experimental setup and the experimental data presented
in Sharma et al. (2008a) and (2007).

The main rationale of using the experimental data obtained
by Sharma et al. (2008a) and (2007) is to propose a model-
based method inspired by emerging neuro-fuzzy approaches
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Fig. 5 TWNFIS architecture
in an example of creation of 3
clusters (the connection between
layer 1 and layer 2 depends
on the clusters created)

Fig. 6 Experimental setup

that can be easily verified on the basis of already presented
results. Indeed, it is quite common in many fields to use
databases to corroborate (or not) the suggested approaches
of researchers. Moreover, the suitability of the suggested
approaches using experimental data already reported are the
best basement for performing further comparative studies.
It means that comparative studies and the results can be really
useful from a practical viewpoint.

The experimental setup is shown in Fig. 6. Acoustic
emission signals (ring down count), vibrations (acceleration),
cutting forces, time and tool wear were recorded for each
operation on the machine. A brief description of this experi-
mental setup is given as follows.

The turning operations were carried out on a high preci-
sion lathe machine. The conventional tool post of the lathe
machine is removed and the tool dynamometer is fixed in
its place. Then the tool is mounted in the tool dynamom-
eter slot. For measuring acceleration, the accelerometerć6s

prod is placed on the top surface of the tool. The AE Sensor
(piezoelectric transducer) is fixed on the tool holder using
a layer of couplant. The pencil lead break test was used to
calibrate AE to estimate the attenuation factor of the AE sig-
nal when the signal was transmitted from the work piece to
the cutting tool. The detected signals were amplified and fil-
tered through band-pass filter. The conditional signals were
recorded in the computer for further analysis. Cutting fluid
was not used during the cutting process. Tool wear (flank
wear) was measured off-line using a microscope.

Experimental data were obtained from turning operations
on two different workpiece materials: cast iron (grey cast
iron-FG 15) and an alloy steel (En 24). In this way, it will
be tested the validity of the model for different materials.
For turning operations in both materials, an uncoated carbide
insert tool material (CCMT 060204 TTS) was used. The tool
holder was a SCLCR 1010E06 (WIDIA make).

For each material were carried out four experiments. The
process parameters were the same for both materials. Turning
operations were conducted at two cutting speeds: 94 m/ min
and 188 m/ min. For each speed were selected two cutting
feeds: 0.06 mm/rev and 0.08 mm/rev. The depth of cut was
kept constant for all operations and in both materials (0.7
mm). In total, eight experiments were conducted (Table 1)
whose results are reflected in the appendix of this work.

Results

The tool wear T ′
w was modeled through time t , the cut-

ting force in the direction of cutting speed Fz , the vibra-
tions (accelerations) of the tool at , and the acoustic emission
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Table 1 Experiments

Experiment Worpiece Cutting Cutting Depth Tool material
number material speed (m/ min) feed ( mm/rev) of cut ( mm)

1 FG 15 94 0.06 0.7 Uncoated carbide CCMT 060204 TTS

2 FG 15 94 0.08 0.7 Uncoated carbide CCMT 060204 TTS

3 FG 15 188 0.06 0.7 Uncoated carbide CCMT 060204 TTS

4 FG 15 188 0.08 0.7 Uncoated carbide CCMT 060204 TTS

5 En 24 94 0.06 0.7 Uncoated carbide CCMT 060204 TTS

6 En 24 94 0.08 0.7 Uncoated carbide CCMT 060204 TTS

7 En 24 188 0.06 0.7 Uncoated carbide CCMT 060204 TTS

8 En 24 188 0.08 0.7 Uncoated carbide CCMT 060204 TTS

signals AE S in order to monitor the process. The use of
these four signals is because all of them provide relevant
information about the tool wear. The elimination of some
of them greatly deteriorates the process monitoring. There-
fore, depending on the model, the tool wear was estimated
as follows:

T ′
w = Ĥ (t, Fz, at , AE S) (8)

where Ĥ represents the corresponding neuro-fuzzy system.
The total average error T AE (9) is used to assess the

accuracy of the models. Another measure of accuracy is the
number of data (in each experiment) that surpasses an aver-
age error of 10%. This figure of merit is chosen because at
the industry level (especially dealing with processes’ moni-
toring) certain margins of error are generally acceptable due
to signal noise and a certain inaccuracy of the sensors. In this
sense, all error less than 10% is usually more or less accept-
able (depending on individual cases), whereas when dealing
with errors greater than 10%, it has to be careful with that
information.

TAE = 1

n

∑
n

∣∣Tw − T ′
w

∣∣
Tw

· 100 (9)

where Tw is the real tool wear, T ′
w is the modeled tool wear,

and n is the number of data of each experiment.
The parameters of the neuro-fuzzy systems that best match

the model with the process after testing several configurations
are summarized in Table 2. The parameters of the neuro-
fuzzy models are the same for both turning operations with
FG 15 workpiece material, as for turning operations with En
24, excepting the number of membership functions in ANFIS
(and therefore, the number of rules). Moreover, in training
data sets, it has only been used data of the material to be
machined.

ANFIS parameters have been chosen in accordance to the
reported in Sharma et al. (2007, 2008a). TWNFIS param-
eters are maintained with respect to Gajate et al. (2009)
unless the clustering threshold of QTCA. In this case,
it has made a thoroughly study about a more appropriate
clustering threshold obtained as a result a clustering threshold

Table 2 Neuro-fuzzy algorithms for modeling tool wear

Algorithm ANFIS DENFIS TWNFIS

System MISO MISO MISO

Clustering Substractive ECM algorithm Quality algorithm

Structure Fixed Variable Variable

Inference Inductive Inductive Transductive

Membership functions (MFs) type Gaussian Triangular Gaussian

Inference system Takagi-Sugeno Takagi-Sugeno Mamdani

Number of MFs (FG 15/En 24) 7/10 4 Variable each run (max. 4)

Number of rules (FG 15/En 24) 7/10 4 Variable each run (max. 4)

Training algorithms Back propagation & least squares method Least squares method Back propagation

Iterations 3 3 3

Learning rate 10−3 10−3 10−3

Error tolerance 0 0 0

Training data set (FG 15/En 24) 24/36 samples 24/36 samples 24/36 samples
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Fig. 7 Membership functions created for modelling the first element of the 4-tuple in the experiment 2

value of 0.32. In summary the TWNFIS parameters are: four
neighbors in the algorithm, a clustering threshold value of
0.32 (maximum diameter), and one as a minimum number
of elements. Figure 7 shows membership functions to create
the local model that corresponds to the first element of the
4-tuple (t, Fz, at , AE S) of the experiment 2. Despite the use
of four neighbors in the clustering algorithm, only 3 clus-
ters are obtained. DENFIS parameters that best model tool
wear are: 4 most strongly activated rules (m), a Dthr of 0.01
(ECM) and the same iterations in the training algorithm than
the other neuro-fuzzy systems (3 iterations).

The results obtained by neuro-fuzzy models in FG 15
turning operations are shown in Fig. 8 and Table 3. TWN-
FIS outperformed ANFIS and DENFIS in the first and third
experiment. In the second experiment, DENFIS yielded bet-
ter accuracy than TWNFIS and ANFIS, and in the fourth
experiment ANFIS yield the best results. However, the over-
all average error (4.39%) of the TNWFIS-based model is less
than the average error of ANFIS-based model (13.24%) and
DENFIS-based model (5.73%). Likewise, it is evaluated the
tool wear estimation T ′

w greater than a threshold value of AE
≥ 10%. The number of data points surpassing the threshold
is higher in ANFIS-based model and TWNFIS-based model
than in DENFIS-based model.

The results obtained by neuro-fuzzy models in En 24
turning operations are shown in Fig. 9 and Table 4. In this
case, ANFIS outperformed TWNFIS and DENFIS in the first

and second experiment. In the third and fourth experiment,
TWNFIS yielded better accuracy than ANFIS and ADEN-
FIS. The overall average error (4.71%) of the TNWFIS-based
model is less againt than the average error of ANFIS-based
model (6.94%) and DENFIS-based model (8.61%). Also, the
number of data points surpassing the threshold value of AE
≥ 10%is less in TNWFIS-based model than ANFIS-based
model than in DENFIS-based model.

Therefore, TWNFIS-based model shows good overall per-
formance in both experiments. It thus shows that the trans-
ductive neuro-fuzzy inference system is more robust against
changes in cutting conditions and it is more appropiate to han-
dle uncertainties. Nevertheless, statistical performance indi-
ces are also applied to validate the results. A modification of
the Schwarz Bayesian Criterion (SBC) (14) is applied to the
experiments in En 24 workpiece material (errors are closer).
The results are shown in Table 5.

SSE =
N∑

i=1

(
Tw − T ′

w

)2
(i) (10)

NSSE =
√

SSE

2N
(11)

FPE = NSSE (N + p)

N − p
(12)

ENV = 2 · N · NSSE

N − p
(13)
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Fig. 8 Real tool wear and
obtained with neuro-fuzzy
models for experiment 1
in FG 15 workpiece material
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Table 3 Average errors of
the created models (FG 15) Experiment ANFIS-based Data points DENFIS-based Data points TWNFIS-based Data points

model (%) AE ≥ 10% model (%) AE ≥ 10% model (%) AE ≥ 10%

1 7.12 3 6.52 1 4.27 1

2 40.40 4 4.18 2 5.04 3

3 3.46 1 5.79 1 2.55 3

4 1.97 0 6.46 1 5.71 0

Fig. 9 Real tool wear and
obtained with neuro-fuzzy
models for experiment 6
in En 24 workpiece material

90 180 270 360 450 540 630 720 810 900 990 1080 1170
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

T
oo

l w
ea

r 
(m

m
)

Actual and predicted tool wear

Real Data
ANFIS
DENFIS
TWNFIS

123



J Intell Manuf (2012) 23:869–882 879

Table 4 Average errors of the
created models (En 24) Experiment ANFIS-based Data points DENFIS-based Data points TWNFIS-based Data points

model (%) AE ≥ 10% model (%) AE ≥ 10% model (%) AE ≥ 10%

5 3.20 1 8.63 2 4.62 2

6 3.99 2 7.54 2 5.70 1

7 10.06 2 11.68 3 2.00 0

8 10.50 3 6.59 2 6.50 3

Table 5 Results of the modified Scharwz Bayesian Criterion (En 24)

Criterion ANFIS DENFIS TWNFIS

SSE −0.0216 −0.0085 −0.0071

NSSE −0.0122 −0.0077 −0.0070

FPE −0.0162 −0.0086 −0.0078

ENV −0.0284 −0.0163 −0.0149

SBC −541.41 −634.22 −647.04

Table 6 Experiment 1 (FG 15)

t Fz at AES Tw

90 18 4 170 0.11tr

180 20 2.5 179.2 0.11

270 21 2.7 222 0.15tr

360 23 2.5 517.8 0.18

450 25 2.8 721.7 0.22tr

540 25 2.8 722.8 0.22

630 26 2.8 738.6 0.22tr

720 27 3 745.2 0.23

810 30 3.7 805.8 0.28tr

900 31 4.2 845.6 0.29

990 31 4.5 863.7 0.29tr

1080 37 5 1128.1 0.3

1170 39 6 1662.25 0.32tr

tr Training data

SBC = N · log

(
SSE

N

)
+ p · log (N ) (14)

where SSE is the sum of squared errors, N SSE is the pre-
diction error, F P E is the final prediction error, E N V is the
estimate of the noise variance, SBC is the modification of the
Scharwz Bayesian Criterion, p is the number of rules and N
is the total number of samples. The results of the application
of this criterion show again that TWNFIS is the most suit-
able neuro-fuzzy system for modeling and monitoring the
tool wear of turning processes (Tables 6, 7, 8, 9, 10, 11, 12,
13).

Table 7 Experiment 2 (FG 15)

t Fz at AE S Tw

90 19 4 114.4 0.12

180 20 3 137 0.13tr

270 22 2 190.7 0.15

360 22 3 238 0.17tr

450 23 2 334.6 0.19

540 25 3 616.6 0.22tr

630 26 3 654.8 0.23

720 27 3.5 667.4 0.23tr

810 30 4 699 0.24

900 32 5 865.5 0.27tr

990 37 7 1302 0.3

1080 39 8 1526.2 0.32tr

1170 48 9 2545.5 0.37

tr Training data

Table 8 Experiment 3 (FG 15)

t Fz at AES Tw

60 19 4 308.6 0.12tr

120 20 2.5 564.4 0.15

180 21 2 742 0.17tr

240 23 2.5 849.6 0.19

300 26 2 976.6 0.22tr

360 29 5.5 1006 0.24

420 30 2.5 1067 0.25tr

480 31 4 1086.4 0.26

540 33 3.9 1138.4 0.28tr

600 42 4.2 1576.6 0.36

660 52 5 1992.4 0.4tr

tr Training data

Conclusions

This paper presents two methods for tool wear monitoring
in turning processes, based on neuro-fuzzy models. A four-
input (time, cutting forces, vibrations and acoustic emissions
signals) single-output (tool wear rate) model has been imple-
mented on the basis of different neuro-fuzzy approaches
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Table 9 Experiment 4 (FG 15)

t Fz at AES Tw

60 20 3.8 1046.3 0.14

120 20 3 1054.2 0.14tr

180 22 2.5 1072.5 0.15

240 22 2.5 1092 0.15tr

300 28 2.8 1301 0.22

360 32 3 1443 0.25tr

420 34 3.2 1644.5 0.29

480 35 3.5 1645.7 0.3tr

540 38 4 1668 0.32

600 52 4 2058.7 0.4tr

tr Training data

Table 10 Experiment 5 (En 24)

t Fz at AES Tw

60 3 0.08 593.8 0.02

120 9 0.1 1387.3 0.08tr

180 14 0.12 4354.5 0.15

240 15 0.13 4652 0.16tr

300 16 0.13 4728.1 0.17

360 17 0.12 5079.8 0.19tr

420 18 0.08 5248 0.2

480 18 0.08 5262.1 0.2tr

540 19 0.07 5318.8 0.21

600 19 0.08 5370.6 0.21tr

660 20 0.08 5417.1 0.22

720 21 0.09 5470.6 0.23tr

780 21 0.09 5524.8 0.23

840 21 0.08 5533.3 0.23tr

900 22 0.1 5594.6 0.24

960 23 0.11 5763.5 0.26tr

1020 24 0.12 5886.8 0.27

1080 29 0.15 6012.5 0.34tr

1140 30 0.16 6462.3 0.35

tr Training data

(inductive, transductive and evolving neuro-fuzzy systems).
The obtained results demonstrate that the proposed neuro-
fuzzy systems (ANFIS, DENFIS and TWNFIS) are capable
of dealing with the non-linearity and the uncertainties of the
tool wear process.

Moreover, this paper reports the first application of
the Dynamic Evolving Neural-Fuzzy Inference System
(DENFIS) and of the Transductive-Weighted Neuro-Fuzzy
Inference System (TWNFIS) to the tool wear modeling prob-
lem. The results of the comparative study shows the superior-
ity of TWNFIS: it provides smaller errors than DENFIS and
ANFIS, and it does with less rules than the others. Although

Table 11 Experiment 6 (En 24)

t Fz at AES Tw

60 4 0.08 427 0.01tr

120 10 0.09 1787.1 0.08

180 11 0.1 1949.1 0.09tr

240 12 0.1 2166 0.1

300 14 0.11 2474 0.12tr

360 16 0.12 2677.1 0.15

420 17 0.13 2965.6 0.17tr

480 19 0.15 3236.3 0.19

540 20 0.17 3786 0.22tr

600 21 0.18 4063.1 0.23

660 24 0.2 4837.1 0.26tr

720 25 0.21 5237.5 0.27

780 26 0.22 5245.1 0.27tr

840 27 0.24 5502.3 0.29

900 28 0.25 5746.6 0.3tr

960 31 0.26 7074.5 0.34

1020 31 0.28 7070 0.34tr

1080 32 0.29 7111.5 0.35

1140 33 0.3 7856.5 0.4tr

tr Training data

Table 12 Experiment 7 (En 24)

t Fz at AES Tw

60 4 0.09 21.5 0.02

120 8 0.09 22.1 0.03tr

180 12 0.13 46 0.1

240 13 0.13 48.8 0.11tr

300 15 0.15 63.5 0.13

360 17 0.08 86 0.15tr

420 17 0.08 89.3 0.15

480 18 0.09 92.8 0.16tr

540 18 0.1 92.6 0.16

600 19 0.11 98.5 0.17tr

660 22 0.15 109 0.2

720 29 0.17 168.1 0.3tr

780 30 0.18 170 0.31

840 31 0.19 179.6 0.32tr

900 32 0.21 187.3 0.33

960 32 0.22 350.5 0.38tr

1020 33 0.25 462.1 0.41

tr Training data

previous work (Gajate et al. 2009) achieved promising ini-
tial results, this study has shown that TWNFIS is completely
valid for turning operations with other workpiece materials.
The fact is that the transductive inference provides greater
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Table 13 Experiment 8 (En 24)

t Fz at AES Tw

60 4 0.13 13.6 0.01tr

120 9 0.2 99.5 0.06

180 10 0.2 129.6 0.08tr

240 12 0.25 229.6 0.12

300 15 0.18 327 0.15tr

360 18 0.12 716.8 0.18

420 19 0.12 791.7 0.19tr

480 21 0.2 902 0.21

540 25 0.24 3389.8 0.3tr

600 26 0.24 3911 0.31

660 30 0.25 4720.1 0.35tr

720 33 0.26 5592.1 0.39

780 35 0.28 6177.1 0.42tr

840 37 0.3 6452.6 0.45

900 38 0.31 6510.4 0.46tr

960 40 0.32 7693.2 0.5

1020 41 0.33 7935 0.52tr

tr Training data

benefits than the rest of inductive inferences in the case of
monitoring tool wear. Therefore, in this case study, is bet-
ter to use local models because they represent the behavior
better than general models.

Future work will address the use fuzzy clustering in
TWNFIS and the application to other modeling problems.
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