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Abstract Thin Film Transistor—Liquid Crystal Displays
(TFT-LCDs) are widely used in TVs, monitors, and PDAs.
The key process of producing a TFT-LCD is using alignment
to combine a Thin Film Transistor (TFT) panel with a Color
Filter (CF) panel, which is called “celling”. The defined cell
vernier, which indicates the alignment error, is an impor-
tant quality index in the manufacturing process. In the CF
manufacturing process, the cell vernier is difficult to control
because it depends on six TPEs (Total Pitch Errors), with
each TPE highly dependent on the others. This paper aims to
improve the cell vernier forecasting model with the six TPE
attributes to enhance the production yield in the CF manufac-
turing process. Using the six dependent variables, this study
found that the SVR (Support Vector Machine for Regression)
model is the fittest for generating quality results that meet the
designed specifications.

Keywords Dependent factor · SVR · Multi-regression ·
TFT-LCD · Color filter · Quality control

Introduction

Thin Film Transistor—Liquid Crystal Display (TFT-LCD)
are widely used in TVs, notebooks, mobile phones, and dig-
ital cameras. A TFT-LCD mainly consists of a Thin Film
Transistor (TFT) panel and a Color Filter (CF) panel. The
process of producing a TFT-LCD is usually separated into
three main steps, as shown in Fig. 1 (Chen et al. 2005): (i)
the TFT and CF are produced using a process similar to that
used for making semiconductors; (ii) the cells are made by
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combining a TFT panel with a CF panel, and then inject-
ing Liquid Crystal (LC) into the chamber; (iii) the Modules
are formed, which involves assembling polarizers and back-
lights.

In the process of making a cell, a TFT panel is precisely
aligned with a CF panel to combine them. The cell vernier
is defined as the distance (or error) between the TFT align-
ment marks and the CF alignment marks. If the value of
the cell vernier is high, the panel will have insufficient light
contrast. Insufficient light contrast decreases the price of the
TFT-LCD. Hence, the cell vernier is a very important factor
for high panel quality.

For a panel, manufacturers define the error between the
designed and the actual pitch values as the total pitch error
(TPE). There are six TPEs in a CF and six in a TFT. Consid-
ering the complex process of making a TFT, to reduce vernier
values, engineers usually prefer to adjust the TPEs in a CF
to match a TFT in the alignment process.

To analyze the cause-effect model of cell verniers, we
obtained data from the SPC (statistic process control) data-
base. Since testing cost is high, and only the most recent
three months of production data were considered valid for
the current manufacturing calibrations. Nineteen valid data
points for making middle-size panels were collected; Table 1
shows the partial TPE raw data.

Generally, researchers use multi-regression as the tool for
quality analysis when a robust multi-regression model can
be constructed using linearly independent variables (Eicker
& Ewald 2004; Chang & Cheng 2009; Chang et al. 2006).
However, in cell vernier analysis, all of the input variables
highly depend on each other. The present paper tested all
the possible linear regression methods that on-line engineers
can use for the cell vernier problem, such as building up a
simple linear regression, using principal component analysis
(PCA) to deal with the dependent variable problem, finding
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Fig. 1 TFT-LCD manufacturing process

Table 1 TPE raw data

TP_X1 TP_X4 TP_Y1 TP_Y6 TP_D1 TP_D2 y

0.73 1.00 1.12 1.47 2.39 0.68 10.20

−0.14 0.09 −0.68 −0.66 −0.13 −0.89 9.64

. .

. .

. .

0.08 0.49 −0.11 −0.60 0.44 −0.58 9.93

the best subsets regression, and building up multi-regression.
The support vector machine for regression (SVR) model was
found to be the most appropriate for forecasting manufactur-
ing performance.

Cross validation and Monte Carlo simulations were used
to verify the forecasting models in the analyses. The exper-
iment results show that the SVR is superior to the multi-
regression models and that it provides confidence intervals
for the manufacturing factors. This contribution will benefit
engineers that need to determine TPE values to control the
cell vernier values within the specifications.

The rest of this paper is organized as follows: Sec-
tion “Problem description” describes the details problem.
Traditional statistical analysis is given in Section “Tradi-
tional statistical analysis”. Section “Support vector machine
for regression (SVR) model” contains the support vector
machine for regression model. The model verification is
given in Section “Model verification”. Finally, the discussion
and conclusion are presented in Section “Model verification”.

Problem description

For TFT-LCDs, the sale price depends on display quality, for
which the cell vernier is the key factor. If the value of the cell
vernier is out of specification, the product will be scraped.

The Cell vernier depends on the TPEs in TFT and CF
processes. It is difficult to adjust the TPEs in TFT because

Fig. 3 Main procedure of fabricating BM/G/R/B/PS layers

the process of TFT is complex and the cost is high. It’s thus
assumed that the TPE values in TFT are fixed; the TPE values
in CF are adjusted. In short, the cell vernier and TPE are the
errors between the actual and standard coordinates. The main
purpose of this study is to build a forecasting model which
can predict cell verniers to control the relevant variables to
retain high product quality.

Factors selection and data collection

We first introduce the manufacturing process for CF.

(1) Manufacturing process for CF

The CF process in this study is a flow-shop type procedure.
The main processes are those for Black Matrix (BM), Green
(G), Red (R), Black (B), Indium Tin Oxide (ITO), and Photo-
Spacer (PS) layers as shown in Fig. 2. The function of the
BM layer is to retain light, that of the G, R, and B layers is
to display color, and that of the PS layer is to provide a gap
between TFT and CF in the celling process. Except the ITO
process, layers have similar procedures as shown in Fig. 3.
In the coater stage, the resist is coated on the panel; in the
aligner stage, the pattern is exposed; in the develop stage,
wasted resist is removed; and in the oven stage, the solvent
is vaporized.

In this case study, the CF alignment marks were produced
in the BM aligner stage. In the G layer, R layer, B layer,
PS layer, and celling processes glasses are aligned based on
the alignment marks. The alignment stage in BM layer is
the most important, and its alignment equipment is the most
precise and accurate one.

(2) Factor selection

After consulting with the research and design (RD) engi-
neers, it was found that the TFT process is more complex and
stable than the CF process. The RD engineers thus assume
that the TPE in TFT is fixed and adjust the TPE in CF to meet
cell requirement.

In CF manufacturing, the cell verniers and TPEs are the
errors between the actual and standard coordinates, so the
values may be positive or negative. A panel in CF has twelve

Fig. 2 Color Filter main
processes

BM G R B ITO PS
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Fig. 4 a A panel with twelve panels. b A panel with four marks
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Fig. 5 Six TPE related coordinates in a panel

panels of nineteen inch, as shown in Fig. 4a. A panel has
four marks as shown in Fig. 4b. A mark has two attributes,
x and y axis coordinate values. A panel has ninety-six cell
vernier values. The average of the absolute ninety-six cell
vernier data is the output quality value. The input data is the
six TPEs, X1, X4, Y 1, Y 6, D1, and D2, in a panel which are
shown in Fig. 5. In the CF process, TPEs are collected and
measured under a sampling of 1 out of 100.

Traditional statistical analysis

Regression and correlation

Minitab was used to find the correlation among the six vari-
ables. The results are shown in Table 2. The results reveal
a high positive correlation between the factors. When a
simple linear regression was tried on each TPE, the linear
regression analysis failed (see Table 3), because the adjusted
R-square of each equation is low and the P value of the
Analysis of Variables (ANOVA) is not significant. Further-
more, the regression obtained using all factors in the model
also failed because of the low adjusted R-square values and
in-significant P value (see Table 4).

We next considered using stepwise regression to analyze
the data, as described in the following section.

Table 2 Correlation of TPEs and cell verniers

X1 X4 Y1 Y6 D1 D2 y

X1 1.00

X4 0.50 1.00

Y1 0.39 0.64 1.00

Y6 0.81 0.53 0.71 1.00

D1 0.70 0.71 0.83 0.88 1.00

D2 0.73 0.74 0.79 0.84 0.75 1.00

Y −0.13 −0.03 0.19 −0.01 0.08 −0.02 1.00

Table 3 Linear regression of a single TPE and cell verniers

Simple regression analysis

No. Equation R-Sq (adj) (%) P value

1 Y = 1.403–0.1010X1 0.1 0.326

2 Y = 1.497–0.1626X4 13.2 0.070

3 Y = 1.343–0.0787Y1 2.5 0.243

4 Y = 1.376–0.1078Y6 4.1 0.200

5 Y = 1.439–0.1060D1 14.4 0.061

6 Y = 1.374–0.0692D2 0 0.363

Table 4 Regression with all TPEs

The regression equation P value
Y = 1.85 + 135X1 + 135X4 + 147Y 1 + 147Y 6

−200D1 − 199D2
0.205

Predictor Coef P value VIF

Constant 1.8468 0.000

X1 135.10 0.113 773997.686

X4 134.93 0.114 946754.363

Y1 146.80 0.113 2091821.897

Y6 146.86 0.113 1334980.669

D1 −199.70 0.113 5174967.852

D2 −199.30 0.114 3088483.011

Stepwise regression and principal component analysis
(PCA)

Since simple linear regression is not appropriate for analyz-
ing the model, we used stepwise regression to find the factors
which are statistically significant to the output.

To overcoming the high variance inflation factor (VIF)
problem, Principal Component Analysis (PCA) was used to
analyze the data (Hair et al. 1998), The principal component
matrix are shown in Table 5, where the first three variables
(PC1, PC2, and PC3) are chosen as the input variables with
95.7% explanation ability. The multiple-regression results
with the three transformed variables PC1, PC2, and PC3
are shown in Table 6.
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Table 5 Principal component matrix for TPEs

Variable PC1 PC2 PC3 PC4 PC5 PC6

X1 0.361 −0.710 −0.134 −0.013 −0.539 −0.240

X4 0.393 0.342 −0.641 −0.487 0.102 −0.266

Y1 0.399 0.542 0.379 0.332 −0.381 −0.395

Y6 0.430 −0.285 0.347 0.013 0.717 −0.316

D1 0.439 0.060 0.393 −0.491 −0.148 0.621

D2 0.432 0.016 −0.391 0.641 0.136 0.480

Table 6 Multi-regression of PCA

The regression equation P value
Y = 1.41 − 0.050PC1 − 0.025PC2 − 0.005PC3 0.512

Predictor Coef P value VIF

Constant 1.4105 0

PC1 −0.0506 0.217 1.252

PC2 −0.0246 0.812 1.096

PC3 −0.0055 0.966 1.206

Table 6 reveals that the multiple-regression fails with an
adjusted R-square value of almost zero. This is not good
enough to model the data.

Our next option was to join the input factors step by step
for the Multiple Regression model, as described in the fol-
lowing section.

Best subsets regression

We tried to estimate the multiple regressions using the nine-
teen data points, where each datum has six original factors.
If we considered all the interactions of the factors, we would
have more than one thousand factor combinations, which
would prevent convergence. To avoid this problem, we first
considered only the interaction of two-rank factors after con-
sulting with the senior engineers in the factory. Thus, we use
d the six original parameters and fifteen interaction parame-
ters. With only nineteen data points, it is difficult to analyze
data with twenty-one variables. Therefore, we selected some
critical variables from the twenty-one variables using Best
Subsets Regression in Minitab (Hocking 1976). We replaced
the main original variables with PC1, PC2, and PC3 vari-
ables according to the results obtained in Secttion “Step-
wise regression and principal component analysis (PCA)”.
We also replaced X1×Y 6, X4×Y 1, and X4×Y 6 interaction
variables with D1×D2 for the analysis (see Table 7). Finally,
only fifteen variables (PC1, PC2, PC3, X1 × D1, X1 ×
D2, X4× D1, X4× D2, Y 1× D1, Y 1× D2, Y 6× D1, Y 6×
D2, X1×X4,Y 1×Y 6, D1×D2, X1×Y 1) were used to ana-
lyze the data in the Best Subsets Regression. The results are
shown in Table 8. When choosing the row cut of vars. = 13 and

Table 7 Multi-regression: D1*D2 versus X1*X6, X4*Y1, and X4*Y6

The regression equation P value
<0.01D1 ∗ D2 = 0.248 + 0.499X1 ∗ Y 6 + 0.420X4

∗Y 1 + 0.674X4 ∗ Y 6

Predictor Coef P value VIF

Constant 0.2480 0.048

X1*Y6 0.4994 0.003 3.234

X4*Y1 0.4198 0.004 3.345

X4*Y6 0.6738 0.005 6.837

CP = 12.1 as the representative model, the 13 critical variables
are PC1, PC2, PC3, , X1× D2, X4× D2, Y 1× D1, Y 1×
D2, , X1 × X4, Y 1 × Y 6, D1 × D2, and X1 × Y 1.

Multiple regressions

After the critical variables in the model were estimated in the
Best Subset Regression, we tried to reduce the model using
the Multiple Regression method.

First, we input all 13 critical variables into the multi-
ple regressions. Only two significant variables, PC2 (p =
0.045) and X1 × Y 1 (p = 0.028), were found (see Table 9).
We thus reset the model significance level from α = 0.05
to α = 0.1 and chosePC2, X1 × D1, X1 × D2, Y 1 ×
D1, and X1 × Y 1 to execute the multi-regression (see
Table 10). Because the p-value of variables was less than
0.1, we further reduced the model variables to PC2, X1 ×
D1, and X1 × Y 1 (see Table 11). In Table 11, non of
the variables are significant, so we further reduced the
model variables toPC2 and X1 × D1. Unfortunately, we
again found no significant variable in the model (see
Table 12).

In Section “Stepwise regression and principal component
analysis (PCA)”, we tried to overcome the VIF problem by
using PCA but the results show no significant variable in the
multi-regression. To keep the characteristics of the original
data, we next tried to use the original main variables to replace
the PCA variables, PC1, PC2, and PC3, to develop the
multi-regression. Finally we established the model with the
original main variables and the interaction variables found in
Section “Best subsets regression”. The Multiple Regression
is shown in Table 13.

However, some of the variables in the multiple regressions
still have high p values, which indicate low significance.
Therefore, we reduced the model in Multiple Regression
by removing the variables with high p values to obtain the
final model using variables X1, X4, Y 1, Y 6, D1, D2, Y 1 ×
Y 6, D1×D2, X1×D1, and X4×D2 (see Table 14). That is:
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Table 8 Best subset regression of the selected variables

Best Subsets Regression: Y versus Pc1, PC2,…

Response is Y
X X X X Y Y Y Y X Y D X
1 1 4 4 1 1 6 6 1 1 1 1

P P P * * * * * * * * * * * *
Mallows C C C D D D D D D D D X Y D Y

Vars R-Sq R-Sq (adj) Cp S 1 2 3 1 2 1 2 1 2 1 2 4 6 2 1

1 15.1 10.1 −2.4 0.27566 X

1 14.5 9.5 −2.3 0.27668 X

2 24.1 14.6 −1.7 0.26866 X X

2 22.7 13.0 −1.5 0.27120 X X

3 35.4 22.4 −1.4 0.25611 X X

3 34.9 21.9 −1.3 0.25704 X X X

4 43.6 27.5 −0.6 0.24757 X X X X X

4 43.2 27.0 −0.6 0.24849 X X X X

5 50.9 32.1 0.3 0.23965 X X X X X

5 48.3 28.4 0.7 0.24607 X X X X

6 52.9 29.3 2.0 0.24451 X X X X X X X X

6 52.5 28.8 2.0 0.24536 X X X X X X

7 63.9 40.9 2.4 0.22361 X X X X X X X

7 61.7 37.3 2.7 0.23029 X X X X X X X

8 70.7 47.3 3.3 0.21104 X X X X X X X X X

8 65.4 37.8 4.1 0.22940 X X X X X X X

9 72.9 45.8 5.0 0.21410 X X X X X X X X X

9 72.0 44.0 5.2 0.21762 X X X X X X X X

10 75.5 44.9 6.6 0.21593 X X X X X X X X X X

10 74.0 41.5 6.9 0.22246 X X X X X X X X X X

11 77.9 43.1 8.3 0.21936 X X X X X X X X X X X

11 77.7 42.6 8.3 0.22033 X X X X X X X X X X X

12 78.7 36.0 10.2 0.23257 X X X X X X X X X X X X

12 78.7 36.0 10.2 0.23266 X X X X X X X X X X X X

13 79.6 26.4 12.0 0.24948 X X X X X X X X X X X X X

13 79.2 25.0 12.1 0.25181 X X X X X X X X X X X X X

14 79.6 8.3 14.0 0.27847 X X X X X X X X X X X X X X

14 79.6 8.1 14.0 0.27868 X X X X X X X X X X X X X X

15 79.8 0.0 16.0 0.32030 X X X X X X X X X X X X X X X

Y = 2.09 + 255X1 + 257X4 + 278Y 1 + 279Y 6 − 379D1

−378D2 + 0.639Y 1 × Y 6 − 1.30D1 × D2 + 1.17X1

×D1 + 0.500X4 × D2 (1)

Regression model (1) was accepted since it fits the regression
hypothesis. However, the VIF was still high, so we tried to
use other methods to analyze the data, such as support vector
regression.

Support vector machine for regression (SVR) model

SVR algorithm

Support vector machine (SVM) is a promising pattern recog-
nition technique proposed 1995 by Vapnik et al. Unlike tradi-
tional methods which minimize the training error, SVM aims
at minimizing an upper bound of the generalization error by
maximizing the margin between the separating hyperplane
and the data (Shawkat et al. 2006; Amari & Wu 1999). In
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Table 9 Multi-regression with PCA and interaction variables

The regression equation P value
Y = 1.92 + 0.652PC1 − 1.880PC2 − 0.130PC3

−1.260X1 ∗ D1 − 2.180X1 ∗ D2 − 0.552X4 ∗ D2
−0.918Y1 ∗ D1 − 0.125Y1 ∗ D2 + 0.383Y6 ∗ D2
+0.748X1 ∗ X4 − 0.643Y1 ∗ Y6 + 1.360D1 ∗ D2
+2.310X1 ∗ Y1

0.356

Predictor Coef P value VIF

Constant 1.9240 0.001

PC1 0.6523 0.116 132.055

PC2 −1.8829 0.045 73.859

PC3 −0.1300 0.745 14.558

X1*D1 −1.2577 0.068 216.585

X1*D2 −2.1811 0.073 373.588

X4*D2 −0.5521 0.272 121.596

Y1*D1 −0.9184 0.071 85.313

Y1*D2 −0.1248 0.741 26.620

Y6*D2 0.3828 0.601 139.616

X1*X4 0.7484 0.116 50.510

Y1*Y6 −0.6432 0.344 52.684

D1*D2 1.3621 0.198 640.828

X1*Y1 2.3082 0.028 136.640

Table 10 First reduction model of multi-regression

The regression equation P value
Y = 1.56 − 0.260PC2 − 0.100X1 ∗ D1 − 0.142X1 ∗ D2

−0.157Y1 ∗ D1 + 0.479X1 ∗ Y1
0.193

Predictor Coef P value VIF

Constant 1.5644 0.000

PC2 −0.2596 0.085 2.574

X1*D1 −0.1004 0.302 5.809

X1*D2 −0.1419 0.260 5.293

Y1*D1 −0.1573 0.082 3.334

X1*Y1 0.4791 0.030 8.347

Table 11 Second reduction model of multi-regression

The regression equation P value
Y = 1.41 − 0.251PC2 − 0.167X1 ∗ D1 + 0.247X1 ∗ Y1 0.250

Predictor Coef P value VIF

Constant 1.4126 0.000

PC2 −0.2512 0.096 2.396

X1*D1 −0.1667 0.066 4.223

X1*Y1 0.2465 0.140 4.854

its original form, SVM learning leads to a quadratic program
which is a convex constrained optimization problem and thus
has a unique solution. For a classification problem, given a
training set of N samples: (x1, t1), (x2, t2), . . . , (xN , tN ),

Table 12 Third reduction model of multi-regression

The regression equation P value
Y = 1.39 − 0.085PC2 − 0.053X1 ∗ D1 0.397

Predictor Coef P value VIF

Constant 1.3869 0.000

PC2 −0.0845 0.396 1.029

X1*D1 −0.0529 0.238 1.029

Table 13 Multi-regression with main and interaction variables

The regression equation P value
0.032Y = 2.06 + 266X1 + 268X4 + 290Y1 + 290Y6

−395D1 − 394D2 + 1.07X1 ∗ D1
−0.06X1 ∗ D2 + 0.425X4 ∗ D2
+0.128Y1 ∗ D1 − 0.087Y1 ∗ D2
+0.199Y6 ∗ D2 + 0.043X1 ∗ X4
+0.423Y1 ∗ Y6 − 1.30D1 ∗ D2
+0.072X1 ∗ Y1

Predictor Coef P value VIF

Constant 2.0643 0.001

X1 266.16 0.013 2574267.318

X4 267.55 0.013 3194616.607

Y1 290.15 0.013 7070252.352

Y6 290.38 0.013 4461061.358

D1 −395.32 0.013 1.7447E+07

D2 −393.85 0.013 1.0391E+07

X1*D1 1.0676 0.058 1102.847

X1*D2 −0.0603 0.864 808.131

X4*D2 0.4249 0.122 336.784

Y1*D1 0.1283 0.486 250.603

Y1*D2 −0.0869 0.512 52.088

Y6*D2 0.1986 0.348 164.254

X1*X4 0.0430 0.782 124.714

Y1*Y6 0.4234 0.150 98.862

D1*D2 −1.2995 0.065 1897.319

X1*Y1 0.0719 0.826 405.551

where xi ∈ R
M is the input vector corresponding to the ith

sample labeled by ti ∈ {−1, +1} depending on its class, the
SVM problem can be formulated as a quadratic programming
optimization model to find the weight parameter w and the
bias parameter b that maximize the margin while ensuring
that the training samples are well classified.

min
1

2
||w||2 + C

N∑

i=1

ξi

s.t ti
(

wT · ϕ(xi ) + b
)

≥ 1 − ξi

ξi ≥ 0 i = 1, . . . , N
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Table 14 Final multi-regression of main and interaction variables

The regression equation P value
<0.01Y = 2.09 + 255X1 + 257X4 + 278Y1 + 279Y6

−379D1 − 378D2 + 0.639Y1 ∗ Y6
−1.30D1 ∗ D2 + 1.17X1 ∗ D1 + 0.5X4 ∗ D2

Predictor Coef P value VIF

Constant 2.0943 0.000

X1 255.11 0.000 936485.722

X4 256.63 0.000 1150649.442

Y1 278.31 0.000 2538258.443

Y6 278.65 0.000 1619964.71

D1 −379.26 0.000 6286854.815

D2 −377.79 0.000 3745258.011

Y1*Y6 0.6388 0.000 22.076

D1*D2 −1.3015 0.000 177.704

X1*D1 1.1663 0.000 82.772

X4*D2 0.4996 0.001 78.598

Here, parameter C is used to tune the acceptable amount of
errors. ξi = |ti − y(xi )| , i = 1, . . . , n are slack variables
and y(xi ) = wT · ϕ(xi ) + b,

Cortes & Vapnik (1995) extended the SVM to regres-
sion models for treating a regression problem as a sin-
gle classification case. Given a training set of N samples:
(x1, t1), (x2, t2), . . . , (xN , tN ), where xi ∈ R

M is the input
vector and the corresponding valueti ∈ R is the target value
of xi , and an ε-insensitive error function (the dotted line in
Fig. 7) is proposed to adjust the amount of error.

Eε(y(x) − t) =
{ |y(x) − t | − ε, otherwise

0, if |y(x) − t | < ε

The objective function (also called the error function) can be
minimized using;

C
N∑

i=1

Eε(y(xi ) − ti ) + 1

2
||w||2

We can re-express the optimization problem by introducing
slack variables to the model. For each data point xi , we use
two slack variables, ξi ≥ 0 and ξ̂i ≥ 0, to outline the points
that are out of the interval [y − ε, y + ε], where ξi > 0 cor-
responds to a point for which ti > y(xi ) + ε, and ξ̂i > 0cor-
responds to a point for which ti < y(xi ) + ε, as illustrated
in Fig. 6.

The condition for a target point to lie inside the ε-tube is
that y(xi ) − ε ≤ ti ≤ y(xi ) + ε. The purpose of introduc-
ing the slack variables is to allow points to lie outside the
tube provided that the slack variables are non-zero, and the
corresponding conditions are:

ti ≤ y(xi ) + ε + ξi

ti ≥ y(xi ) − ε − ξ̂i , i = 1, . . . , N

ξ

ξ >

>

Fig. 6 Illustration of SVM regressions

Fig. 7 Comparison of ε-insensitive error function (dotted line) and
quadratic error function (solid line)

Hence, the error function for support vector regression can
be written as :

C
N∑

i=1

(ξi + ξ̂i ) + 1

2
||w||2

Using the Lagrange multipliers αi ≥ 0, i = 1, . . . , N to
solve the quadratic programming problem, we can find the
dual problem as:

max −1

2

N∑

i=1

N∑

j=1

(αi − α̂i )(α j − α̂ j )k(xi , x j )

−ε

N∑

i=1

(αi + α̂i ) +
N∑

j=1

(α j − α̂ j )t j

s.t 0 ≤ αi ≤ C,

0 ≤ α̂i ≤ C, i = 1, . . . , N

where k( · , ·) is called a positive semidefinite kernel (or
Mercer kernel) which satisfies the symmetric property (i.e.
k(xi , x j ) = k(x j , xi )) and the following equation:

p∑

i=1

p∑

j=1

bi b j k(xi , x j ) ≥ 0 ∀ p ≥ 2,

where bq ∈ R ∀q = 1, . . . , p.

Each Mercer kernel can be expressed as k(x, x′) =〈
φ(x), φ(x′)

〉
, where φ : X → F is a mapping of feature

selection, and 〈· , ·〉 is the inner product. Commonly used
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kernel functions include polynomial kernels, radial-basis
function kernels, and two-layer perceptron kernels (Haykin
1999), respectively expressed as:

k(x, y) = (xt y + 1)d

k(x, y) = exp
(
−||x−y||2

2σ 2

)

k(x, y) = tanh(β0xt y + β1)

where d, σ, β0, and β1 are specified as a priori by the user.
Many studies have discussed the performance of SVR

for various kernels (Sánchez 2003; Shawkat et al. 2006).
Shawkat et al. indicated that the radial-basis function ker-
nels have superior performance thus use this type of kernel
as the analysis tool in this paper.

SVR model building for cell vernier

SVR is a kernel method for regression based on the principle
of structural risk minimization (Smola & Scholkoph 2004).
We used SVR to make a nonlinear prediction. In this research,
we used this regression in WEKA software to analyze the
nineteen data points with the Radial Basis Function (RBF as
the kernel function (Witten & Frank 2005). We obtained the
model function:

Support Vector Expansion:

Y = (−1) × K [X (0), X ] + (1) × K [X (1), X ] + (−1)

×K [X (2), X ] + (1) × K [X (3), X ]
+(1) × K [X (4), X ] + (1) × K [X (5), X ] + (−1)

×K [X (7), X ] + (−1) × K [X (8), X ]
+(1) × K [X (9), X ] + (−1) × K [X (10), X ] + (1)

×K [X (11), X ] + (−1) × K [X (12), X ]
+(1) × K [X (13), X ] + (1) × K [X (14), X ] + (−1)

×K [X (15), X ] + (−1) × K [X (16), X ]
+(1) × K [X (17), X ]+(−1) × K [X (18), X ]+1.3176

(2)

Kernel:
RBF kernel:

K (x, y) = e−(0.01×<x−y,x−y>2) (3)

The mean absolute error is 0.1828 which is considered
good enough to apply SVR to predict cell verniers.

Model verification

Since the TFT - LCD market is growing rapidly, it is difficult
to spare manufacturing capacity to conduct an experiment.
We can thus only verify and compare the two models, Multi-
Regression and SVR, with simulated data.

Table 15 Cross-validation of multi-regression

Y act Y pied Diff Diff (%) R-sq (%) P-value (%)

All 98.90 0.00

19–1 1.1087 1.2398 −0.131 −11.83 99.00 0.01

19–2 1.5990 1.6840 −0.085 −5.31 98.93 0.01

19–3 1.1971 1.2691 −0.072 −6.02 98.99 0.01

19–4 1.3663 1.4849 −0.119 −8.68 99.08 0.00

19–5 1.2692 1.3071 −0.038 −2.99 98.92 0.01

19–6 1.8788 1.8249 0.054 2.87 98.67 0.01

19–7 1.1183 1.0469 0.071 6.38 98.98 0.01

19–8 1.0731 1.1986 −0.125 −11.69 99.19 0.00

19–9 1.0913 1.1968 −0.105 −9.66 99.03 0.00

19–10 1.5067 1.4063 0.100 6.67 98.92 0.01

19–11 0.9798 1.1367 −0.157 −16.01 98.93 0.01

19–12 1.2962 1.2800 0.016 1.25 98.91 0.01

19–13 0.9471 0.8768 0.070 7.43 98.87 0.01

19–14 1.9577 1.9118 0.046 2.34 98.51 0.02

19–15 1.4135 1.3269 0.087 6.13 99.01 0.01

19–16 1.2865 1.6111 −0.325 −25.22 99.26 0.00

19–17 1.1923 1.0280 0.164 13.78 99.42 0.00

19–18 1.6904 1.6682 0.022 1.31 98.79 0.01

19–19 1.0894 0.9897 0.100 9.15 99.02 0.00

(1) Interactive proof of the Multi-Regression model

Since the VIF of the regression was high (as described in Sec-
tion “Stepwise regression and principal component analysis
(PCA)”), we used cross validation to verify the model (Tan
et al. 2006). We used 18 data points to fit the regression, and
used the last data point to test the regression. EXCEL VBA
software was used in the simulation. The results are shown
in Table 15. In the table, “Diff” is the difference between the
actual y and the predicted y; “Diff%” is diff divided by the
actual y; “R-sq” is the R-square value of the multi-regression;
and “P-value” means the p-value of ANOVA in the model.

The cell vernier specification is normally between 0 and
2. If the cell vernier is more than 2, the quality of the cell
decreases, which lowers its sale price. From the data in
Table 15, the regression model is considered reliable.

(2) SVR and Multi-Regression with Monte Carlo simula-
tions

We simulated the CF TPE data sets under a normal distri-
bution with six distinct sample means and variances (see
Table 16). We simulated 10,000 sets of data to predict the cell
verniers. The results show that only twenty seven data sets are
within the specification for the multi-regression model. The
rate of meeting the specification of SVR is 99.68%. There-
fore, SVR is considered superior to multi-regression.
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Table 16 Simulation data set with normal (mean, standard)

X1 X4 Y1 Y6 D1 D2

Mean 0.83 1.10 0.30 0.53 1.13 0.79

Standard 0.69 0.76 1.04 0.83 1.20 0.93

(3) Using the research results in factories

To improve TFT-LCD quality, we used the simulated SVR
data to set the parameters in CF. We selected all the cell ver-
nier data 0 and 0.15. The corresponding parameters for a
confidence interval of 95% are:

X1 in CF TPE is set (0.12349, 0.32249).
X4 in CF TPE is set (1.8398, 2.0471).
Y 1 in CF TPE is set (0.6368, 1.03259).
Y 6 in CF TPE is set (0.0966, 0.33695).
D1 in CF TPE is set (2.1670, 2.4275).
D2 in CF TPE is set (−0.1367, 0.1786).

We believe that if the CF TPE data conform to the above
parameter confidence intervals in CF, the cell vernier will be
within the specifications. In practice, it is difficult to modu-
late all six CF TPEs in the CF to meet the specified value.
Engineers usually gradually adjust the CF TPE data in the
CF one by one during CF production. Engineers in CF will
adjust three or four TPEs of the six TPEs at a time to meet
the confidence intervals in mass production, and leave other
factors for the next adjustment.

Discussion and conclusion

This research analyzes the data step by step using correlation
analysis, PCA, multi-regression, and SVR. We find that SVR
and multi-regression are both appropriate models, with SVR
more suitable than multi-regression and finally use the Monte
Carlo simulation technique to fine the confidence interval for
all the attributes to the on-line engineers. The proposed model
helps online engineers, in a short period of time, to set the
best parameters in cell vernier and improve the production
yield. In practice (really applied in the factory), the proposed
model finds the optimal TPEs in CF to improve the cell ver-
nier significantly. However, for business consideration, the
details can not be fully shown to the public at this moment.
For this, an acknowledgement to the manufacturer is added
to the paper at the end.

This research mainly aims to solve a problem with small
data sets and dependent variables. Different from the past
literatures to deal with small data set problem, we do not
generate virtual samples or synthetic attributes to increase
data information to achieve the objective of yield improve-

ment. We develop a relatively engineer-applicable method
instead of those research-oriented complex algorithms. The
contributions of this study are three: first one is to test all
the possible linear regression methods that on-line engineers
can use for the cell vernier problem and finally show the SVR
model is the most appropriate one for forecasting manufac-
turing performance; second is using Monte Carlo simulation
technique to fine the confidence interval for all the attributes
for engineers in a short period of time; third is the proposed
model can be implement to all the TFT-LCD companies in
their manufacturing systems.

In the future study, solving the interaction effect of vari-
ables in regression for dependent data will be one of the
research directions. The virtual sample generation methods
such as Niyogi et al. (1998), Li et al. (2003, 2006), Huang &
Moraga (2004), and Li & Lin (2006) used prior knowledge,
probability density functions, or information diffusion theo-
ries combined with neural networks to generate virtual data
can be also considered in the future research direction.
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