
J Intell Manuf (2012) 23:1207–1224
DOI 10.1007/s10845-010-0425-0

Earliness–tardiness minimization on a single machine to schedule
preventive maintenance tasks: metaheuristic and exact methods

Maher Rebai · Imed Kacem · Kondo H. Adjallah

Received: 24 April 2010 / Accepted: 17 June 2010 / Published online: 13 July 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we consider the problem of
scheduling a set of M preventive maintenance tasks to be per-
formed on M machines. The machines are assigned to execute
production tasks. We aim to minimize the total preventive
maintenance cost such that the maintenance tasks have to
continuously be run during the schedule horizon. Such a
constraint holds when the maintenance resources are not
sufficient. We solve the problem by two exact methods and
meta-heuristic algorithms. As exact procedures we used lin-
ear programming and branch and bound methods. As meta-
heuristics, we propose a local search approach as well as
a genetic algorithm. Computational experiments are per-
formed on randomly generated instances to show that the
proposed methods produce appropriate solutions for the
problem. The computational results show that the deviation
of the meta-heuristics solutions to the optimal one is very
small, which confirms the effectiveness of meta-heuristics as
new approaches for solving hard scheduling problems.

Keywords Scheduling · Maintenance · Linear program-
ming · Branch and bound · Genetic algorithm (GA) ·
Local search

M. Rebai
ICD-LOSI CNRS FRE 2848, University of Technology of Troyes,
Troyes, France
e-mail: maher.rebai@utt.fr

I. Kacem (B)
LITA, University Paul Verlaine Metz, Metz Cedex, France
e-mail: kacem@univ-metz.fr

K. H. Adjallah
LGIPM, Ecole Nationale d’Ingénieurs de Metz, Metz, France
e-mail: adjallah@univ-metz.fr

Introduction

In numerous manufacturing and service industries situations,
the used equipments are sometimes blocked for reasons of
preventive maintenance. As example of preventive mainte-
nance activity, we can cite the exchange of a car or machine
motor oil. Certainly, this kind of preventive maintenance
operation is important to keep the equipment in well work-
ing conditions. Moreover, it should be carried out after an
optimistic date and should not exceed a pessimistic date.
A situation may frequently occur that is, several preventive
maintenance deadlines of many equipments arrives, and at
the same time it is not possible to do all the preventive main-
tenance activities due to the expensive cost of having the
preventive maintenance resources available. The equipments
may continue to work without undergoing the preventive
maintenance activities. However, delaying the preventive
maintenance may cause damages to the equipment’s com-
ponents. The minimization of the total damage cost of the
maintained equipments can be solved by applying the Oper-
ations Research techniques. Indeed, this problem can be con-
sidered as a scheduling problem on a single machine: the
machine represents the preventive maintenance resource that
cannot handle more than one task at a time; the tasks corre-
spond to the preventive maintenance operations and finally
the considered criterion should be the minimization of the
total earliness–tardiness cost of the preventive maintenance
tasks. Here, the tardiness cost clearly represents the damage
cost caused by tardy execution of preventive maintenance
operations. Similarly, the earliness cost is the consequence of
starting early the preventive maintenance operations. Hence,
the earliness cost value corresponds to the part of the system
that is not efficiently used. In the cited example, if the oil is
changed before the optimistic deadline then, the system (in
particular, the oil) is considered not efficiently used because

123

1208 J Intell Manuf (2012) 23:1207–1224

it would be better to continue to work with the old resource
until an instant between the optimistic and the pessimistic
deadlines.

This studied problem differs from the classical earliness–
tardiness scheduling problem on a single machine in a major
fact. The fact is that each preventive maintenance job has two
due dates instead of one: an optimistic date and a pessimistic
date. Each instant from the time period between the two due
dates is a good starting time for the preventive maintenance
task. In the literature, numerous studies have been published
on the single machine scheduling problem involving both job
earliness and tardiness and considering only one due date per
job. Given the aim of this paper, we recall some references
related to our work.

The first related work was presented by Held and Karp
(1962). They proposed a dynamic programming approach.
The authors considered the subset of jobs as the state-space
and the recursion consists in adding a job in passing from a
state to another.

Azizoglu et al. (1991) proposed a branch and bound
algorithm for the weighted earliness–tardiness minimization
problem. The lower bound is obtained by relaxing the com-
pletion time variable in the objective function and the upper
bound is determined by a local search technique. Their results
showed that the upper bound slightly exceeds the optimal
solution computed by the branch and bound algorithm.

Abdul-Razaq and Potts (1988) developed a branch and
bound algorithm with lower bounds obtained by relaxing
the state-space of a dynamic programming technique and
performing the recursion on the new obtained state-space.

Li (1997) used a branch and bound algorithm to solve
short sequences (<50 jobs). His exact algorithm is based on
a neighbourhood search heuristic and a lower bound deter-
mined by decomposing the main problem into two sub-
problems, relaxing a constraint in each sub-problem and
solving their Lagrange duals. Indeed, the main problem
was decomposed into two sub problems (1 |di | ∑ wi Ti) and
(1 |di | ∑ hi Ei). Each of these sub-problems was formulated
by a linear model for which a constraint is relaxed. The res-
olution of the two Lagrange duals problems by tow efficient
adjustment multiplier approaches gives two lower bounds.
The lower bound of the main problem is obtained by sum-
ming the two obtained lower bounds. Computational results
indicate that the branch and bound algorithm can easily pro-
duce optimal solutions for small problems. The results also
show that local search heuristic is not only effective, but also
strong.

Liaw (1999) also proposed a branch and bound algorithm.
The upper bound of the algorithm is obtained by computing
in a first step an initial solution using the priority rule of Ow
and Morton (1989). After that, the initial solution will be
improved by an insertion procedure followed by a permuta-
tion procedure. The lower bound is based on a Lagrangian

relaxation that decomposes the relaxed problem into tow sub-
problems. The obtained results show that the branch and
bound algorithm is very effective even for problems of 50
jobs.

M’Halla (2006) solved the single machine earliness–tardi-
ness scheduling problem by hybridizing Genetic Algorithm
with Hill Climbing and Simulated Annealing using two levels
of hybridization: the low level and the high level. In the low
level hybridization, she augmented the ability of the Genetic
Algorithm to perform a Local Search by replacing its classi-
cal mutation operator by Hill Climbing. In the high level relay
hybridization, she acted both on the initial population and on
the best individuals of each generation. She used three greedy
heuristics to generate the initial population, and refined the
best solutions of each generation using Simulated Annealing.

Sourd et al. (2008) proposed recently a branch and bound
based on a Lagrange relaxation of the resources constraints in
a time-indexed formulation. They also added new dominance
properties for solving problems of 50-jobs-size.

The reader is referred to Baker and Scudder (1990) for
other studies on the single machine earliness and tardiness
scheduling problem and its extensions.

Other scheduling problems joining the production and
maintenance activities were also studied in the literature.
Following some works of them treating the stochastic case
(a breakdown) or the deterministic case (preventive mainte-
nance).

Lee (1996) considered the deterministic case of the two-
machine flowshop scheduling problem with an availability
constraint. He developed a pseudo-polynomial dynamic pro-
gramming algorithm to minimize the makespan. He also pro-
posed an O(n log n) time heuristic algorithm to solve the
problem with an availability constraint imposed on machine
1, and another heuristic algorithm with the same time com-
plexity to solve the problem with an availability constraint
imposed on machine 2. The worst case error bound for the
first algorithm is 1/2 and the second one is 1/3.

The same problem was considered by Kubiak et al. (2002).
He proposed a branch and bound algorithm based on impor-
tant properties of the optimal schedule.

Lee and Chen (2000) considered in their work the prob-
lem of scheduling a set of production tasks that must be car-
ried out on a park of machines where every machine must
be maintained once during the production horizon. The aim
is to determine a schedule for the production tasks and the
maintenance activities so that the total weighted completion
times of the jobs is minimized. Two cases are studied. In the
first case, many machines can undertake maintenance oper-
ations at the same time due to the sufficient resources. In the
second case, only one machine can be maintained. Both cases
were shown to be NP-hard and solved by a branch and bound
algorithm based on a column generation approach. Results
showed that the branch and bound algorithms are capable to

123

J Intell Manuf (2012) 23:1207–1224 1209

optimally solve medium sized problems within a reasonable
computation time.

Graves and Lee (1999) studied the problem of scheduling
a set of jobs on a single machine where the machine must be
under maintenance during certain intervals implying a non-
availability of the machine during these periods. When a job
is not completely handled before the machine is turned off for
maintenance, a setup time is necessary when the production
is taken back. Two objectives were considered: the minimi-
zation of the total weighted jobs completion time and the
minimization of the maximum delay. The problem is solved
by the dynamic programming approach.

Aghezzaf et al. (2007) were interested in the batch pro-
duction problem. The production system is subject to random
failures and at each maintenance intervention the production
system is not available which decreases its production capac-
ity. The purpose of their study was to determine a plan in
which the cost of production and maintenance is minimal.
The problem is solved by a linear model.

The remainder of this paper is organized as follows. In
the section “Problem description and notations”, a descrip-
tion of the problem and necessary notations are presented.
Then, three linear formulations are proposed in “Mixed inte-
ger linear models”. Some valid additional constraints to
improve the linear relaxation of the developed models are
also described. In the section “Lower bounds procedure”,
we develop an assignment based lower bound and a Lagrang-
ian based lower bound. In this same section, we also adapt
the lower bound of Li (1997) to our problem. Section “The
branch and bound algorithm” briefly describes the implemen-
tation of the branch and bound algorithm. The local search
technique and the genetic algorithm are respectively pre-
sented in the sections “Local search procedure” and “Genetic
algorithm (GA)”. Computational results are discussed in the
section “Computational results”. Finally, we conclude by
summarizing the main proposals presented in this article and
the obtained results.

Problem description and notations

The considered problem in this paper is to schedule M preven-
tive maintenance tasks that have to take place on M machines
charged to process production tasks (exactly one preven-
tive maintenance task per machine). We aim to determine
a sequence composed of the M preventive maintenance tasks
such as each preventive maintenance task i has a processing
time pi , an optimistic deadline di1, a pessimistic deadline
di2 greater or equal to di1, a tardy weight wi , an early weight
hi and a minimal preventive maintenance cost Ci0. The exe-
cution of the preventive maintenance tasks on the machines
should be continuous (i.e., non-premptive) during the sched-

di,1 di,2

Cost of maintenance i

ti

costi = hi(di1-ti)+Ci0

costi = wi(ti- di2)+Ci0

Ci0

Fig. 1 Cost of preventive maintenance i

ule horizon (i.e., the interval
[
0,

∑M
i=1 pi

]
). This constraint

holds when the cost of having the maintenance resource
is very expensive. If a preventive maintenance task i starts
before its optimistic deadline di1 the preventive maintenance
cost of the considered task exceeds Ci0 and will be equal to
hi (di1 − ti) + Ci0 where ti is the starting time of the task i.
Similarly, when a preventive maintenance task i starts after
its pessimistic deadline di2, the preventive maintenance cost
is greater than Ci0. This cost is equal to wi (ti − di2) + Ci0

Finally, if the preventive maintenance task i starts at an instant
from the [di1 di2] interval, the preventive maintenance cost
is equal to Ci0 (see Fig. 1 for illustration). Our objective in
this paper is to provide a schedule composed of the M pre-
ventive maintenance tasks with a minimal preventive main-
tenance cost. We remind that the preemption of the tasks is
not allowed and no idle time is permitted, providing so a
continuously execution of the tasks during the maintenance
schedule horizon. We remind also that this problem can be
treated as a problem of scheduling a given M jobs (or preven-
tive maintenance tasks) on a single machine (the preventive
maintenance resource) with the objective of minimizing the
sum of total weighted earliness and tardiness of jobs. The
described problem can be noted as 1 |d1i d2i | ∑wi Ti + hi Ei

according to the standard scheduling notation, where Ti and
Ei are respectively the tardiness and the earliness of task i.

Mixed integer linear models

In this section we first present three linear formulations for
the problem described above. Then, we propose some valid
constraints that can be added to the developed linear models.
The impact of adding these constraints is discussed in the
computational experiments section.

First formulation (MILP1)

In this first formulation, we use the binary incidence variables
on precedence between jobs (maintenance tasks) as decision
variables. We note that the precedence between the jobs is
not necessary immediate. Hence, our decision variables are
defined as follows:

123

1210 J Intell Manuf (2012) 23:1207–1224

xi j =
{

1 if the job i precedes the job j.
0 otherwise

Let us also define d+
i the positive deviation of the job i from

its pessimistic deadline di,2 or the tardiness that can be hap-
pen. Similarly, we define d−

i as the negative deviation of the
job i from its optimistic dead line di1 or the earliness that may
occur. Our first proposed linear formulation for the problem
is the following.

Min
M∑

i=1

wi d
+
i + hi d

−
i + Ci0

d−
i ≥ di1 − ti ∀i = 1 . . . M (1)

d+
i ≥ ti − di2 ∀i = 1 . . . M (2)

xi j + x ji = 1 ∀i �= j; i = 1 . . . M; j = 1 . . . M (3)

xii = 0 ∀i = 1 . . . M (4)

t j ≥ ti + pi − P(1 − xi j)

∀i �= j; i = 1 . . . M; j = 1 . . . M (5)

ti ≥ 0 ∀i = 1 . . . M (6)

ti ≤ P − pi ∀i = 1 . . . M (7)

d+
i ≥ 0, d−

i ≥ 0 ∀i = 1 . . . M, (8)

ti ≥ 0 ∀i = 1 . . . M (9)

xi j ∈ {0, 1} (10)

where P = ∑M
i = 1 pi .

Inequalities 1 and 2 decide for each job to start early,
tardy or on time. The Eqs. 3 and 4 decide for each job i to
be before or after another job j (i �= j).

The inequalities 5 compute for every job i �= j the opti-
mal starting time when job i precedes job j in the optimal
sequence. Otherwise, the constraint is redundant.

Equations 6 and 7 indicate the limits of the starting time
of a given job. The remaining constraints are integer and non
negative constraints.

We note that the MIP solver of ILOG CPLEX 10.1 is able
to solve instances with M=17 in less than 1 h. Also due to
the use of the big parameter P, the linear relaxation obtained
by dropping the integrity constraints provides a weak lower
bound.

Second formulation (MILP2)

The second proposed formulation is a time-indexed formu-
lation. The main idea on which this formulation is based
consists in decomposing the schedule horizon into time slots
where each time slot starts at time t and ends at time t +1 (t ∈
[0, P − 1]). According to Valente and Shaller (2010), the
major advantage of using this time-index formulation is that
the linear relaxation obtained by dropping the constraint of
variables integrities provides in general a strong lower bound

which dominates the linear relaxations of other mixed integer
programming formulations based on other decision variables.
A main disadvantage of this formulation is that its linear
relaxation is time consuming especially when the planning
horizon is big. For our problem, let xit be a binary variable
equal to 1 if job i starts at time t and to 0, otherwise. By
conserving the same variables d+

i as the positive deviation
of the job i from its pessimistic date di,2, d−

i as the negative
deviation of the job i from its optimistic date di,1 and ti the
optimal starting time of the task i in the optimal sequence, the
time-indexed linear formulation can be described as follows.

Min
M∑

i=1

wi d
+
i + hi d

−
i + Ci0

P−pi∑

t=0

xit = 1 ∀i = 1 . . . N (1)

M∑

i=1

t∑

s=max{t−pi ,0}
xis ≤ 1 ∀t = 0 . . . P − 1 (2)

P−pi∑

t=0

t xit + d−
i ≥ di,1 ∀i = 1 . . . M (3)

P−pi∑

t=0

t xit − d+
i ≤ di,2 ∀i = 1 . . . M (4)

xit ∈ {0, 1} (5)

In this model, the first equations ensure that each job is
processed once. The second inequalities are resources con-
straints indicating that at most one job can be handled at a
time slot. The third and the fourth inequalities decide for
each task to start early, tardy or on time. Finally, the fifth
constraints are integrity constraints.

For this formulation, the MIP solver of ILOG Cplex 10.1
is able to solve all our small instances with a size less or equal
to 15 jobs in a time period less than 1 h.

Third formulation (MILP3)

This third formulation is based on the binary assignment vari-
ables of the jobs to the positions in the optimal sequence.
Indeed, the optimal sequence is composed of M jobs. Each
job i(i = 1 . . . M) is assigned to a position j (j = 1 . . . M)

in the sequence. Hence, our decision variables in this formu-
lation can be defined as follows:

xi j =
{

1 if the job i is assigned to position j.
0 otherwise.

Let us also consider ti the starting time of job i in the opti-
mal sequence. We use the same variables d+

i as the positive
deviation of job i from its pessimistic date di,2 and d−

i as

123

J Intell Manuf (2012) 23:1207–1224 1211

the negative deviation of job i from its optimistic date di,1

and by considering ti as the optimal starting time of job i
in the optimal sequence. The third linear formulation of the
problem is described as follows.

Min
M∑

i=1

wi d
+
i + hi d

−
i + Ci0

S/C

ti − d+
i + d−

i ≥ di1 ∀i = 1 . . . M (1)

ti − d+
i + d−

i ≤ di2 ∀i = 1 . . . M (2)
M∑

i=1

xi j = 1 ∀i = 1 . . . M (3)

M∑

j=1

xi j = 1 ∀i = 1 . . . M (4)

ti − P(1 − xi j) ≤
j∑

k=1

M∑

t=1

pt xtk − pi ∀i, j = 1 . . . M (5)

ti + P(1 − xi j) ≥
j∑

k=1

M∑

t=1

pt xtk − pi ∀i, j = 1 . . . M (6)

xit ∈ {0, 1} (7)

Equations 1 and 2 decide for each job to start early, tardy
or on time. Equalities 3 and 4 are assignment constraints.
They indicate that each job has to take just one position and
each position must contain just one job. Inequalities 5 and
6 compute the optimal starting time of each job i if it is
assigned to position j in the optimal sequence. Otherwise,
the constraints are redundant. The remaining constraints are
integrity constraints.

For this formulation, the MIP solver of ILOG Cplex 10.1
is able to solve all our small instances with a size M ≤ 13 in a
time period less than 1 h. Because of using the big parameter
P, the linear relaxation of this formulation provides a weak
lower bound.

Improvement of the linear relaxations

In this subsection, we propose some valid constraints that can
be added to the developed models. We remind that the main
objective of adding the following constraints is to improve
the linear relaxation of the models.

First type constraints (C1)

This first type of valid inequalities is based on the WSPT rule
developed by Smith (1956) and the WLPT rule.

Definition 1 Let α = (α1, . . . , αM) and β = (β1, . . . , βM)

be tow vectors of positive numbers and p = (p1, . . . , pM)

be the vector of processing times. Let WF1(p, α) denotes
the minimal weighted flow-time obtained by applying the
W S PT rule (proposed by Smith (1956)) to the correspond-
ing problem 1 || ∑ αi Ci and WF2(p, β) denotes the maximal
weighted flow-time obtained by applying the W L PT rule.

Property 1 Kacem (2007). Let α = (α1, . . . , αM) be a vec-
tor of positive numbers and t j (1 ≤ j ≤ M) be the set of
starting times of jobs in a feasible schedule. Therefore, the
following inequality holds:

M∑

i=1

αi ti ≥ WF1(p, α) −
M∑

i=1

αi pi

M∑

i=1

αi ti ≤
M∑

i=1

αi (P − pi)−WF1(p, α) −
M∑

i=1

αi pW S PT
i

Property 2 Let β = (β1, . . . , βM) be a vector of positive
numbers and (ti) (1 ≤ i ≤ M) be the set of starting times of
jobs in a feasible schedule. Therefore, the following inequal-
ity holds:

M∑

i=1

βi ti ≤ WF2(p, β) −
M∑

i=1

βi pi

M∑

i=1

βi ti ≥
M∑

i=1

βi (P − pi)−WF2(p, β) −
M∑

i=1

βi pW L PT
i

Second type constraint (C2)

Property 3 Let p = (p1, . . . , pM) be the vector of the job’s
processing times. Based on the tow properties presented
above, the following equality holds:

M∑

i=1

pi ti =
M∑

i=1

pi C
H
i −

M∑

i=1

p2
i

where C H
i is the completion time of job i in an arbitrary solu-

tion (heuristic solution).

Remark This equality has a great impact on the improvement
of the linear relaxation of the first and last formulations.

Third type constraints (C3)

These added constraints are reserved to the last formulation.
The main idea of this third type of constraints is to limit the
possible value of the decision variable ti in each position. In
other words, we try to determine for each variable ti in each
position a lower bound and an upper bound in order to not
let this variable take impossible values which leads to the
weakness of the linear relaxation.

123

1212 J Intell Manuf (2012) 23:1207–1224

Definition 2 Let t i j be a lower bound on the starting time of
job i assigned to position j in the optimal sequence calculated
according the following formula:

t i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1
i j =

j∑

k=1
p[k] − pi if i ∈ {[1] , [2] , . . . , [j]}

t2
i j =

j−1∑

k=1
p[k] if i /∈ {[1] , [2] , . . . , [j]}

[k] is the kth job according to the SPT order (Shortest Pro-
cessing Time).

Therefore, the following inequality holds:

ti ≥
M∑

j=1

t i j xi j ∀i = 1 . . . M

Definition 3 Let us consider t i j an upper bound on the start-
ing time of job i assigned to position j in the optimal sequence
calculated according the following formula:

t i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t1
i j =

j∑

k=1
p[M−k+1] − pi if i ∈ {[M] , [M − 1]

, . . . , [M − j + 1]}
t2
i j =

j−1∑

k=1
p[M−k+1] if i /∈ {[M] , [M − 1]

, . . . , [M − j + 1]}
Therefore, the following inequality holds:

ti ≤
M∑

j=1

t i j xi j ∀i = 1 . . . M

Fourth constraints (C4)

The following equality is particular to the first proposed
model:

M∑

i=1

pi xi j = t j ∀ j = 1 . . . M

Indeed, if we sum all the processing times of the jobs that
precede job j then, we can easily obtain the starting time of
job j.

Lower bounds procedure

In this section we propose three lower bounds procedures.
The first one is based on the Lagrangian relaxation of the
constraints (1) and (2) of the first developed model to which
we add only the last added constraints (C4) presented above.
The second one is an assignment based lower bound obtained
by the sum of M computed costs corresponding to the M jobs.
The third one is an adaptation of the lower bound proposed
by Li (1997) for the problem of earliness–tardiness minimi-
zation with one due date for every job.

Lagrangian based lower bound

We consider in this subsection a lower bound based on
the Lagrangian relaxation of the first and the second con-
straints of the first developed model (MILP1) to which the
forth type of valid constraints (cuts) is added. Let λ =
(λ1, λ2, . . . , λi , . . . , λM) be the vector of nonnegative mul-
tipliers corresponding to the M first relaxed constraints and
let γ = (γ1, γ2, . . . , γi , . . . , γM) be the vector of non-
negative multipliers corresponding to the M second relaxed
constraints. Therefore, the objective function of the relaxed
model can be written as follows:

(LR) Min Z(λ, γ) =
N∑

i=1

(wi−λi)d
+
i + (hi − γi)d

−
i + Ci0

+λi d1i − γi d2i + (γi − λi)ti

For any sequence, the minimization of the first and the second
terms in Z(λ, γ)are achieved by setting d+

i to 0 if wi ≥ λi

and d−
i to 0 if hi ≥ γi for all i = 1, . . . , M , or by setting

d+
i = −∞ if wi < λi and d−

i = −∞ for all i if hi < γi .
Since the latter case tends to lead to Z(λ, γ) = −∞, a situ-
ation where the lower bound is not useful, we consider only
the first case in the following discussion. The third, the forth
and the fifth terms are constant. For the last remaining term,
we impose the following constraint λi < γi to obtain always
a non negative lower bound.

To determine the value of the Lagrangian multipliers and
obtain a lower bound value, we use the sub-gradient method.
The sub-gradient method is a simple iterative algorithm used
to minimize a non differentiable convex function. In this
algorithm we start by initializing each λi multiplier by wi

and each γi multiplier by hi . Then, we solve the LR prob-
lem and we obtain the ti values. The sub-gradient related
to the λi multiplier is then computed by subtracting from
d1i the ti value and the sub-gradient related to the γi multi-
plier is determined by subtracting from ti the value of d2i .
The update of the Lagrangian multipliers from the kth iter-
ation to the (k + 1)th iteration is made by adding to the
Lagrangian multipliers values computed in the kth iteration
the value of the sub-gradient multiplied by the coefficient
θ = α(bs − max(bi, 0))/Norm whereα is a parameter that
takes 2 at the beginning and it is divided by 2 at each iter-
ation; bs is the upper bound of the B&B algorithm (it will
be described later); bi is the lower bound obtained at the kth

iteration and Norm is equal to the sum of the squared sub-
gradients. When the value of α is inferior to 0.0001, then it
takes 2 as new value. After computing the new values of the
Lagrangian multipliers we verify the imposed conditions. If
the value of λi exceeds wi it takes wi as new multiplier. The
same rule is applied to γi parameter: if it exceeds hi value
then it takes as new value hi . When λi or γi takes a negative
value after updating, they are replaced by 0. We note that

123

J Intell Manuf (2012) 23:1207–1224 1213

Initialize iλ by iw and iγ by ih 2=α 0=θ 0=Norm

Resolve LR and
determine the two

sub-grandient
vectors

γλ SandS

Normbiimumbs /))0,(max(−= αθ
If the run time <10 seconds

Stop

If
 th

e
ru

n
tim

e
>

10
 s

ec
on

ds

2

)0001,0(

2/
1

1

=
<

=
+=
+=

−

−

α
α

αα
γθγγ
λθλλ

if

S

S

i

ii

Fig. 2 Computation process of the Lagrangian lower bound

the time period allowed for computing the lower bound is
equal to 10 s. The following diagram in Fig. 2 illustrates the
computation process:

Assignment based lower bound

We consider in this subsection a new lower bound obtained
by the sum of M costs assigned to the M jobs. We first start by
determining a minimal cost for every job in every position.
The whole costs are gathered in a cost’s matrix noted Mc

in which every element ai j represents the minimal cost of
assigning job i to position j (i = 1, . . . , M; j = 1, . . . , M).
After computing the cost’s matrix, we determine the lower
bound’s value by summing M costs, assigned to the M jobs.
The objective of the assignment problem is to minimize the
total cost assignment.

Let Ĉi j (S) be the tardiness cost of job i assigned to
position j:

Ĉi j (S) =
{

wi (t i j − di2) if t i j − di2 > 0
0 otherwise

We note Ĉi j (L)the earliness cost of job i assigned to
position j:

Ĉi j (L) =
{

hi (di1 − t i j) if di1 − t i j > 0
0 otherwise

If we compute for every job in each position the cost Ĉi j =
Ĉi j (L) + Ĉi j (S) then, the value obtained by solving the
assignment problem defined by the assignment of just one
job in each position with minimizing the total cost assign-
ment, determines a lower bound for the total earliness and
tardiness problem.

In our implementation, the lower bound is computed by
the Hungarian algorithm with a time complexity of O(M3)

(Table 1).

Table 1 Single machine earliness/tardiness scheduling problem with 5
jobs

Job i pi di1 di2 wi hi

1 62 75 109 3 9

2 89 51 69 3 7

3 25 62 80 3 5

4 69 49 61 2 3

5 23 63 111 10 7

Example The optimal sequence is: 4 3 5 1 2 with a total cost
of 501. For the given example, the cost’s matrix is the fol-
lowing:

 0 0 24 291

 0 0 123 330

675

357

310 0 15 222 489

147 0 0 98 276

441 0 0 450 1340

Mc=

The minimal cost obtained for the assignment problem
is equal to 501 with job 4 assigned to position 1, job 3 to
position 2, job 5 to position 3, job 1 to position 4 and finally
job 2 to position 5. In this example, we observe that the lower
bound is equal to the optimal solution.

Adaptation of Li’s [12] lower bound

The main idea of this lower bound procedure consists in for-
mulating the problem as a simple linear model and decom-
posing it into two sub-problems with simpler structure. By
solving the Lagrange duals of the obtained sub-problems
using the multiplier adjustment method developed by Potts
and Van Wassenhove (1984), the lower bound of the main
problem is derived by summing the two obtained lower
bounds of the sub-problems. Here, the sub-problems are
obtained by a simple decomposition of the objective func-
tion into two parts: the earliness part and the tardiness
part. For each part, the technique proposed by Potts and
van Wassenhove can be applied to derive an efficient lower
bound. The two Lagrange duals sub-problems were solved
by using the efficient adjustment multiplier approach in
O(Mlog(M)) time.

The branch and bound algorithm

In this section, we briefly define the three main procedures
on which the branch and bound algorithm is based: the ini-
tialization, the branching and the bounding.

123

1214 J Intell Manuf (2012) 23:1207–1224

Initialization

At this step, an initial complete solution is used until a better
new solution is obtained from the search tree. Our proposed
initial solution is based on efficient meta-heuristic solutions
that will be described later in the next sections.

Branching

Branching is a procedure used to develop the search tree.
In this paper, we adopt the depth first strategy with a back-
ward and forward sequencing branching rule. In the back-
ward sequencing branching rule, a node at a level k of the
search tree corresponds to a sequence with k jobs fixed in the
k last positions. However, in the forward sequencing branch-
ing rule the k fixed jobs are sequenced in the first k positions.

Bounding

Bounding means determining a lower bound for a partial
sequence Sp in a node of the tree search. Two bounding pro-
cedures are tested. In the first one, we used only two lower
bounds: The adapted Li lower bound (LB_Li) and the assign-
ment lower bound (LB_Aff). In the second one, in addi-
tion of these lower bounds, the linear-relaxation lower bound
(denoted later as LB14) of the first model to which we add the
fourth type of valid constraints (cuts) is used (this choice has
been motivated by the results of the numerical experiments
we will show later in the section “Computational results”). To
more improve the performance of the tree search, we used
a dominance property that consists in comparing tow par-
tial schedules: The first partial schedule is composed of the
fixed jobs in the node and the second is obtained by exchang-
ing the tow last jobs in the first sequence. In each node of
the tree search we first verify the dominance property: If
the evaluation of the first partial schedule is grater than the
evaluation of the second partial schedule we stop the branch-
ing procedure on the node. Otherwise, we move to compute
the lower bounds.

In the first bounding procedure, we start by computing
LB_Li on the problem composed of the remaining non fixed
jobs. If the evaluation of the partial fixed sequence to which
we add the value of LB_Li is greater than the upper bound
value we remove the current node. Otherwise, we move to
compute the next lower bound LB_Aff. If the evaluation of
the partial fixed sequence to which we add the value of the
second computed lower bound is greater than the current
upper bound value we stop the separation. Otherwise, we
continue to explore new branches from the current node.

In the second bounding procedure, instead of exploring
new branches after testing LB_Aff, we compute LB14 If the
evaluation of the partial fixed sequence to which we add the
LB14 value is greater than the current upper bound value

then, we stop the separation. Otherwise, we explore the new
branches starting from the current node.

The difference between the two bounding procedures will
be shown in the computational results section.

Local search procedure

A local search procedure is a non exact method that allows
us to obtain a solution that may be optimal or near to the
optimal. The main elements that constitute a local search
algorithm are respectively: an initial solution, a movement
and a stop condition. The local search algorithms may dif-
fer in the choice of the starting solution, the movements by
which the neighbourhood is formed or by the stop condition.

In our local search algorithm, we have chosen as ini-
tial solution the one proposed by Ow and Morton (1989)
(described in the “Appendix”). This solution is a good heu-
ristic for the problem of minimizing the weighted earliness–
tardiness jobs on a single machine with just one due date for
every job. Because we have two due dates for our problem
in stead of one, then we ignore the first due date and only the
second due date di2 has been considered in the construction
of the initial solution. Many movements to form the neigh-
bourhood are used. The first one consists in the permutation
of two adjacent jobs. The second movement consists in the
permutation of two jobs having just one job between them.
The kth movement consists in exchanging two jobs having
k−1 jobs between them. We have used M movements to cre-
ate the neighbourhood. Once ending the generation of the
neighbourhood, the solution with the best evaluation is then
taken and compared to the upper bound value. If the value
of the upper bound is greater than the evaluation of the best
neighbourhood solution we update the upper bound value
and we repeat the procedure to the new solution. Otherwise,
in case we have 5 successive non improvements of the upper
bound value we move to generate another random solution.
The procedure is repeated until having generating 10 random
solutions. The stop condition of our local search algorithm
is having 15 successive times non improvements of the final
solution.

The proposed local search algorithm works as follows:

1- Generate the initial solution by applying Ow and Morton
(1989) rule to the tasks and assign its evaluation to the
local search solution value.

2- Repeat the following until having 15 successive times of
non improvement of the final solution value:

(a) Create the neighbourhood by the M movements.
(b) Evaluate each neighbourhood solution and select

the one with the best evaluation.

123

J Intell Manuf (2012) 23:1207–1224 1215

1 3 … N N-5
 1 2 N-1 N

Job number

Job position

A gene

Fig. 3 Chromosome representation

(c) Update the final solution value when the evaluation
of the best found solution is better than the current
final solution.

Genetic algorithm (GA)

GA is an efficient search algorithm used to find excellent
solution for hard problems in reasonable time. Its main idea
is inspired from the natural reproduction of human beings:
the crossing of two individuals give new children. The main
elements that formed a genetic algorithm are respectively
the initial population of size Np, the cross-over operator, the
mutation operator and the replacement strategy.

The initial population

The initial population is a set of Np initial solutions called
chromosomes or individuals. The choice of the number Np

differs from a genetic algorithm to another. In general, a
big number Np has as consequence the increase the time
resolution and a small Np may influence the quality of
solution (due to a partial exploration of the search space).
The chromosomes can be randomly generated. In our pro-
posed genetic algorithm, we create an initial population with
size Np of 100 individuals. Its first five chromosomes are
obtained respectively by applying SPT, LPT, WSPT, WLPT
and Ow and Morton (1989) heuristics. The remaining chro-
mosomes are randomly generated. We note that a chromo-
some is encoded according to the representation of Fig. 3.

The crossover operator

In the cross-over step, two parents are selected to produce at
least one child. For the proposed genetic algorithm, only 80%
of the best individuals of the population are taken to undergo
the crossover operation and produce two children. The selec-
tion of the parents is organized by the following rule: The
first and the second parents are first selected. Then, the third
and the fourth follow. Then, the other are selected until the
parents number seventy nine and eighty. In our implementa-
tion, we have used two crossover operators: “one opts” and
“tow opts”. In the “one opts” operator, we randomly gener-
ate an integer k from the uniform [1, M]. Then the first child
C1 receives the subsequence [1, . . . , k] of its genes from the
first parent and the second child C2 receives the subsequence

[1, . . . , k] of its genes from the second parent. Then, we fill
the remaining empty genes of the child C1 according to their
order of appearance in the second parent: if a gene is already
in C2, reject it; else position it in the first empty gene in C1.
Finally we fill the remaining empty genes of the child C2

according to their order of appearance in the first parent: if
a gene is already in C1 reject it; else position it in the first
empty gene in C2

In the two “opts operator”, we randomly generate two inte-
gers k1 and k2, greater than k1 from the uniform [1, M]. Then,
the first child C1 receives the two sub-sequences [1, . . . , k1]
and [k2, . . . , M] of its genes from the first parent and the sec-
ond child C2 receives the two sub-sequences [1, . . . , k1] and
[k2, . . . , M] of its genes from the second parent. Then, we
fill the remaining empty genes of the child C1 according to
their order of appearance in the second parent and the remain-
ing empty genes of thechild C2 according to their order of
appearance in the first parent. We note that the choice of the
crossover operator is randomly chosen.

The mutation operator

In the mutation operation, an individual is randomly cho-
sen from the population to undergo a small modification for
improving its quality. In our problem, we apply the mutation
on ten individuals randomly chosen from the population. The
modification consists in the permutation of two genes that are
randomly selected.

The replacement strategy

Keeping the population size constant from a generation to
another is very important for different reasons such as con-
suming less time to obtain a solution and also less memory.
Hence, the idea consists in replacing the individuals (solu-
tions) in the population with worst evaluations by the new
children with better evaluations. In our implementation, we
have imposed a condition to the new children with best evalu-
ation to enter the population. The condition consists in having
at least 3 genes that are different compared to those of the
best ten solutions of the population of the last iteration. In
other words, if a child with good evaluation does not differ
from all the best first ten solutions in at least three genes
then, it cannot enter the population and undergo crossover
or mutation operations. This condition has a good impact
on the diversification of the population because it eliminates
the appearance of the same solutions more than once in the
population.

To more improve the GA solution, we create for the
first and the second best found solutions the neighbourhood
described before. The final solution is the one with the best
evaluation among the first and the second solutions and their
neighbourhood solutions.

123

1216 J Intell Manuf (2012) 23:1207–1224

Table 2 The impact of the
added constraints (C1) (C2) and
(C4) to the first model according
to the T factor

LB1 LB11 LB14 LB12 LB124 LB1124

N =10

T =0.2 0 1666.062 1771.1755 447.637 1771.1755 1771.1755

T =0.3 0 1069.125 1098.572 131.52 1098.572 1098.572

T =0.4 0 239.94 242.748 4.196 242.748 242.748

T =0.5 0.75 672.812 683.1785 37.6705 683.1785 683.1785

T =0.6 66.95 2190.7075 2289.5675 482.858 2289.5675 2289.5675

T =0.7 337.3 4372.2895 4666.3795 2093.7025 4666.3795 4666.3795

T =0.8 1083.4 6357.949 7152.732 4335.2615 7152.732 7152.732

N =20

T =0.2 0 9357.962 10409.936 2227.337 10409.936 10409.9355

T =0.3 0 6103.5975 6510.8925 372.3205 6510.8925 6510.8925

T =0.4 0 1531.302 1568.3635 0.8545 1568.3635 1568.3635

T =0.5 0 1069.2655 1082.503 0 1082.503 1082.503

T =0.6 45.45 5831.059 6292.9575 338.0455 6292.9575 6292.9575

T =0.7 605.35 12184.801 13668.734 3093.0805 13668.734 13668.734

T =0.8 2189 22247.607 25403.0815 10917.4995 25403.0815 25403.0815

N =30

T =0.2 0 22319.236 25496.883 4418.0355 25496.883 25496.883

T =0.3 0 13888.825 15138.868 348.39 15138.868 15138.8675

T =0.4 0 4374.4955 4555.272 0 4555.272 4555.272

T =0.5 0 1968.022 2018.338 0 2018.338 2018.338

T =0.6 43.4 11289.938 12207.749 181.776 12207.749 12207.749

T =0.7 971.2 25935.945 29490.268 4666.7945 29490.268 29490.2675

T =0.8 4339.5 45464.2115 53250.2775 19142.344 53250.2775 53250.2775

The main steps of the proposed genetic algorithm can be
summarized as follows:

1. Generate the initial population composed of Np individ-
uals.

2. Evaluate each individual of the population.
3. Determine the sub-population undergoing the cross-over

(80% of the best chromosomes).
4. Repeat ng times.

(a) Select two by two parents from the current sub-
population.

(b) Apply crossover to the two parents to produce two
children.

(c) By the replacement strategy, decide if introduce the
new children.

(d) Randomly select ten individuals from the whole
population.

(e) Apply mutation to the selected individuals.
(f) By using the replacement strategy, decide if intro-

duce the new mutated individuals.

5. Create for the first and the second best found solutions a
neighbourhood.

6. Find the best solution

Computational results

To generate an instance, three parameters are needed: the
number of jobs M, the range factor R and the tardi-
ness factor T. For each job i the processing time is ran-
domly determined from the discrete uniform distribution
[1 . . . 99]. The optimistic deadlines di1 are then generated
from the discrete uniform distribution [dmin · · · dmin + R.P]
where dmin = max {0; P (T − R/2)}. The pessimistic dead-
lines are generated from the discrete uniform distribution
[di1; · · · ; di1 + P/M]. Finally, the earliness and the tardi-
ness penalties are drawn from [1 . . . 10].

To show the impact of the adding constraints presented
in the section “Mixed integer linear models”, we have
tested the relaxed developed models on problems with
size of 10, 20 and 30 jobs. 20 instances have been gen-
erated for each combination of the following parameters:
T ∈ {0.2, 0.4, 0.6, 0.8}, R ∈ {0.2, 0.4, 0.6, 0.8}; and M ∈
{10, 20, 30}. We note that the processing times are deter-
mined from the discrete uniform distribution [1 . . . 30] for
these tests.

The branch-and-bound algorithm is tested on problems
with 15, 20, 25, 30 and 40 jobs. 5 instances have been
generated for each combination of T and R. To prevent

123

J Intell Manuf (2012) 23:1207–1224 1217

Table 3 The impact of the
added constraints (C1) (C2) and
(C4) to the first model according
to the R factor

LB1 LB11 LB12 LB14 LB124 LB1124

N =10

R =0.2 4.4 2780.6205 3000.889 1272.7075 3000.889 3000.889

R =0.3 43.7 2333.068 2520.8325 915.2965 2520.8325 2520.8325

R =0.4 85.65 2597.925 2771.614 1064.8805 2771.614 2771.614

R =0.5 149.05 2127.0155 2304.037 892.2265 2304.037 2304.037

R =0.6 303.65 2336.5135 2538.4145 1121.065 2538.4145 2538.4145

R =0.7 356.05 2062.473 2204.2295 906.764 2204.2295 2204.2295

R =0.8 520.65 2189.312 2382.318 1219.393 2382.318 2382.318

N =20

R =0.2 0 8858.0345 9810.1465 2421.909 9810.1465 9810.1465

R =0.3 13.65 8639.726 9645.627 2510.4165 9645.627 9645.627

R =0.4 91 8845.509 9862.67 2254.7025 9862.67 9862.67

R =0.5 239.05 8511.1415 9528.535 2146.0695 9528.535 9528.535

R =0.6 528.55 8565.548 9585.317 2511.085 9585.317 9585.317

R =0.7 834.15 8182.78 9020.643 2546.111 9020.643 9020.643

R =0.8 1082.4 6872.607 7677.265 2497.2305 7677.265 7677.265

N =30

R =0.2 0 18761.619 21396.741 3786.0245 21396.741 21396.741

R =0.3 0.6 19264.175 21896.635 4050.201 21896.635 21896.635

R =0.4 99.8 19409.383 22190.691 4264.609 22190.691 22190.691

R =0.5 331.5 17912.041 20358.591 3348.1185 20358.591 20358.591

R =0.6 715.65 17483.431 19638.163 3790.2845 19638.163 19638.163

R =0.7 1656.6 16768.038 18829.491 4545.31 18829.491 18829.491

R =0.8 2494.25 15501.32 17681.401 4867.675 17681.401 17681.401

excessive computation time, whenever a problem is not
solved within the time limit of 3,600s (1h), the computa-
tion is stopped for that problem. For the local search and the
genetic algorithm, 25 instances have been generated for each
combination of the T and R parameters. The problems solved
by these non exact algorithms are of size of 75, 100, 150,
200 and 250.

We note that the algorithms are coded in the C lan-
guage using concert technology technique with Cplex 10.1
and implemented on a Pentium IV-500 personal
computer.

The remaining of this section is organized as follows.
First, we illustrate the impact of adding the constraints to
the developed models. Then, we analyze the performance
of the branch and bound algorithm. Finally, we present the
results of the GA and the local search heuristic.

The impact of the added constraints to the developed
models

In Tables 2–7, the first number after LB is the number of
the model used to compute the lower bounds. The remaining
numbers after the model number represents the correspond-

ing added valid constraints (cuts). For example LB1, LB2
and LB3 represent the lower bounds mean values obtained
respectively from the first, the second and the third model
without any added constraint. LB11, LB21, LB31 are the
lower bounds mean values obtained respectively from the
first, the second and the third model with the first type of
constraints.

The impact of the added constraints (C1) (C2) and (C4)
to the first model

Table 2 shows the impact of adding the constraints (C1) (C2)
and (C4) to the first model according to the mean tardy factor
parameter T. Table 3 shows the impact of adding these con-
straints according to the R parameter. From these tables, we
can conclude that each added constraint cited above improves
the lower bounds mean value. The improvement’s contribu-
tion of the mean lower bound value depends on the type of
added constraints. It appears to be more important for the
forth type of valid constraints and less important for the first
and second types.

We also observe that the same mean lower bounds value
is repeated in LB14 and LB1124 columns. Hence, we can

123

1218 J Intell Manuf (2012) 23:1207–1224

Table 4 The impact of the
added constraints (C1) and (C2)
to the second model according
to the T factor

LB2 LB21 LB22 LB212

N = 10

T = 0.2 1771.1755 1771.1755 1771.1755 1771.1755

T = 0.3 1098.572 1098.572 1098.572 1098.572

T = 0.4 242.748 242.748 242.748 242.748

T = 0.5 683.1785 683.1785 683.1785 683.1785

T = 0.6 2289.5675 2289.5675 2289.5675 2289.5675

T = 0.7 4666.3795 4666.3795 4666.3795 4666.3795

T = 0.8 7152.732 7152.732 7152.732 7152.732

N = 20

T = 0.2 10409.936 10409.936 10409.936 10409.936

T = 0.3 6510.8925 6510.8925 6510.8925 6510.8925

T = 0.4 1568.3635 1568.3635 1568.3635 1568.3635

T = 0.5 1082.503 1082.503 1082.503 1082.503

T = 0.6 6292.9575 6292.9575 6292.9575 6292.9575

T = 0.7 13668.734 13668.734 13668.734 13668.734

T = 0.8 25403.0815 25403.0815 25403.0815 25403.0815

N = 30

T = 0.2 25496.883 25496.883 25496.883 25496.883

T = 0.3 15138.868 15138.868 15138.868 15138.868

T = 0.4 4555.272 4555.272 4555.272 4555.272

T = 0.5 2018.338 2018.338 2018.338 2018.338

T = 0.6 12207.749 12207.749 12207.749 12207.749

T = 0.7 29490.268 29490.268 29490.268 29490.268

T = 0.8 53250.2775 53250.2775 53250.2775 53250.2775

confirm that the forth type of valid constraints dominates the
other types.

The impact of the added constraints (C1) and (C2)
to the second model

Table 4 shows the impact of adding the constraints (C1) and
(C2) to the second model according to the mean tardy factor
parameter T. Table 5 shows the impact of adding the con-
straints according to the R parameter. Table 6 represents the
computation time spent with each linear relaxation. From
these tables, we can make the main two following remarks:

1. Neither the first type of valid constraints nor the second
one improves the average value of the lower bounds.

2. The second type of constraints has as impact in the reduc-
tion of the computation time needed to obtain the lower
bound value.

The impact of the added constraints (C1) (C2) and (C3) to
the third model

Table 7 shows the impact of adding the constraints (C1),
(C2) and (C3) to the third model according the mean tardy

factor parameter T. Table 8 shows the impact of adding the
constraints according to the R parameter. From these tables,
we can observe that each added constraint improves the
average values of the lower bounds. Such an improvement
depends on the type of the added constraints. It appears to
be more important when we add all the proposed types of
constraints.

In the two tables, we can observe that the greatest average
values of the lower bounds are found in the LB3123 col-
umn. Hence, we can confirm that there is no specific type of
constraints that dominates the others and that the best linear
relaxation is obtained by adding the all constraints.

The best linear lower bound

From LB14 column in Tables 2 and 3, LB21 column in
Tables 4 and 5 and LB3123 column in Tables 7 and 8, we
can examine that the best average values of the lower bounds
appear for LB14 and LB21. To decide which lower bound is
the best, we have to compare their computation time. From
Fig. 4, we observe that the average computation time of LB14
is smaller than the one of LB21. Hence, as a conclusion, we
can say that from the developed models with the added con-
straints, the linear relaxation provided by the first model to

123

J Intell Manuf (2012) 23:1207–1224 1219

Table 5 The impact of the
added constraints (C1) and (C2)
to the second model according
the R factor

LB2 LB21 LB22 LB212

N =10

R =0.2 3000.889 3000.889 3000.889 3000.889

R =0.3 2520.8325 2520.8325 2520.8325 2520.8325

R =0.4 2771.614 2771.614 2771.614 2771.614

R =0.5 2304.037 2304.037 2304.037 2304.037

R =0.6 2538.4145 2538.4145 2538.4145 2538.4145

R =0.7 2204.2295 2204.2295 2204.2295 2204.2295

R =0.8 2382.318 2382.318 2382.318 2382.318

N =20

R =0.2 9810.1465 9810.1465 9810.1465 9810.1465

R =0.3 9645.627 9645.627 9645.627 9645.627

R =0.4 9862.67 9862.67 9862.67 9862.67

R =0.5 9528.535 9528.535 9528.535 9528.535

R =0.6 9585.317 9585.317 9585.317 9585.317

R =0.7 9020.643 9020.643 9020.643 9020.643

R =0.8 7677.265 7677.265 7677.265 7677.265

N =30

R =0.2 21396.741 21396.741 21396.741 21396.741

R =0.3 21896.635 21896.635 21896.635 21896.635

R =0.4 22190.691 22190.691 22190.691 22190.691

R =0.5 20358.591 20358.591 20358.591 20358.591

R =0.6 19638.163 19638.163 19638.163 19638.163

R =0.7 18829.491 18829.491 18829.491 18829.491

R =0.8 17681.401 17681.401 17681.401 17681.401

Table 6 The computation time
for the second model’s linear
relaxation

LB2 LB21 LB22 LB212
Time(s) Time(s) Time(s) Time(s)

N =10 0.153983 0.0827869 0.2710325 0.1421068

N =20 1.9909029 0.9509903 6.3818835 2.74579612

N =30 12.370827 7.4303709 70.715084 34.3139898

which we add the forth type of valid constraints dominates
all the other linear relaxations in terms of the average value
and the computation time.

The best lower bounds among all the proposed lower
bounds

According to Fig. 5, the assignment-based lower bound
(denoted as LB_Aff) has the best average value when the
average tardiness factor T is equal to 0,4 or 0,5. Hence, it
dominates the linear lower bound L B14 and the adapted lower
bound of Li (denoted as LB_Li). For the remaining value of
T, the linear lower bound L B14 is more efficient than the
other proposed lower bounds. From the same figure, we also
conclude that the Lagrangian lower bound value (LB_LAG)
converges to the linear lower bound value L B14 and it does

not exceed it. These observations have motivated our choice
of such lower bounds as it is mentioned in the section “The
branch and bound algorithm”.

The branch and bound algorithm results

Computational results concerning the average percentage
deviation of the upper bound from the optimum (UBD), the
average percentage deviation of the linear lower bound from
the optimum (LIND), the average percentage deviation of the
assignement-based lower bound from the optimum (AFFD)
are reported in Table 9. In the same table, we find also the
average percentage deviation of LB_Li from the optimum
(LID).

In Table 10, the average time required to find the opti-
mal solution in seconds (AT1) and the average number of the

123

1220 J Intell Manuf (2012) 23:1207–1224

Table 7 The impact of the
added constraints (C1), (C2)
and (C3) to the third model
according to the T factor

LB3 LB31 LB33 LB32 LB313 LB3123

N =10

T =0.2 0 430.072 528.7665 1463.14 588.6165 1680.841

T =0.3 0 129.0085 149.333 955.537 201.724 1073.5405

T =0.4 0 4.196 1.8615 225.4945 4.386 240.0455

T =0.5 0 37.185 20.177 672.374 41.6595 673.87

T =0.6 0.4925 436.256 438.7275 2166.108 591.863 2203.41

T =0.7 41.231 1989.4595 2183.0435 4297.439 2437.6645 4430.169

T =0.8 272.0325 4053.044 4710.1475 6054.224 4971.8675 6597.8915

N =20

T =0.2 0 2188.3155 2952.2595 8704.4385 3127.283 9465.999

T =0.3 0 365.4795 738.896 5714.693 795.2835 6141.213

T =0.4 0 0.8545 6.3815 1462.066 7.236 1533.14

T =0.5 0 0 0 1068.701 0 1070.2395

T =0.6 0 304.281 429.6975 5807.7335 512.258 5868.694

T =0.7 105.1225 2785.396 3928.467 11975.02 4140.972 12334.751

T =0.8 703.2345 10239.5105 12981.863 21656.049 13366.7605 22755.755

N =30

T =0.2 0 4354.5195 7266.47 21124.645 7320.048 22588.2345

T =0.3 0 344.545 1408.6365 13241.268 1426.923 13974.6

T =0.4 0 0 3.458 4164.0345 3.458 4384.561

T =0.5 0 0 0 1963.0965 0 1969.3795

T =0.6 0 143.271 354.573 11271.556 396.4785 11357.969

T =0.7 255.94 4172.279 7347.665 25602.08 7530.0185 26267.1005

T =0.8 1909.0205 17894.723 25449.2295 44398.1835 25711.6345 46565.586

visited nodes (AN1) using the first bounding procedure in
the search tree are reported.

In Table 11, we report the average time required to find
the optimal solution in seconds (AT2) and the average num-
ber of the visited nodes (AN2) using the second bounding
procedure in the search tree.

As it can be seen in Table 9, results show that the upper
bound represents an efficient initial solution for the problem
with a maximum average percentage deviation of 3.76% from
the optimum solution. Thus, the solutions from the heuristic
are typically optimal or near optimal.

Results show also that the proposed linear lower bound is
greater than the adapted lower bound produced by Li (1997)
for all T values. However, when the T parameter takes a
value in {0.2,0.3, 0.4, 0.5} the linear lower bound is domi-
nated by the assignment-based lower bound. We note that the
improvement of this lower bound may be possible by finding
and adding other valid inequalities.

From Tables 10 and 11, we can see that the first bounding
procedure based on the LB_Li and LB_Aff lower bounds
is faster than the second bounding procedure (that utilizes
with these two lower bounds the linear lower bound LB14).
However, the number of visited nodes in the second bound-

ing procedure is less than the number of visited nodes in the
first bounding procedure. This result confirms what we have
already observed: the dominance of the linear lower bound
but, its higher computation time compared to the computa-
tion time of the two other lower bounds.

We note that for the branch and bound implementation
using the first bounding procedure, 77% of problems with
size of 30 jobs are solved in a time period less than 20 s and
20% of problems with size of 40 are not solved in 1 hour.

Results of the GA and the local search heuristic

In Table 12, the first column is the mean computation time for
obtaining a solution by the local search technique for every
M ∈ {75, 100, 150, 200, 250}. The second column repre-
sents the average computation time necessary to obtain a
solution by the genetic algorithm. The third column is the
percentage of the genetic algorithm solution’s evaluations
less than local search solution’s evaluations. The last column
represents the percentage of genetic algorithm solutions that
are equal to the best found solution after resolving the prob-
lem 20 successive times by the same algorithm.

123

J Intell Manuf (2012) 23:1207–1224 1221

Table 8 The impact of the
added constraints (C1), (C2)
and (C3) to the third model
according to the R factor

LB3 LB31 LB33 LB32 LB313 LB3123

N =10

R =0.2 0 1269.1765 1480.281 2722.5025 1590.011 2845.2145

R =0.3 2.036 903.105 986.2645 2262.1535 1089.564 2373.672

R =0.4 11.2365 1042.6 1108.4925 2513.057 1231.3795 2632.4085

R =0.5 10.353 849.122 976.8255 2036.818 1074.932 2168.9905

R =0.6 84.4325 1024.825 1177.6705 2224.376 1301.814 2390.8385

R =0.7 79.098 784.8155 917.0395 1906.59 1023.8265 2096.5545

R =0.8 124.8485 1070.086 1241.284 2032.8725 1363.901 2237.1665

N =20

R =0.2 0 2414.941 3083.632 8618.046 3254.2735 8958.2715

R =0.3 0 2493.3525 3239.623 8434.2975 3373.512 8759.845

R =0.4 0.3325 2201.642 3003.279 8616.972 3089.6545 8967.5115

R =0.5 25.0825 2040.9105 2828.35 8246.9715 2920.724 8641.4685

R =0.6 125.1655 2326.0535 3210.292 8276.0775 3299.1185 8715.1605

R =0.7 246.529 2247.9415 2917.112 7840.5315 3074.8225 8293.7535

R =0.8 411.124 2125.0615 2803.4005 6527.362 2928.4345 6988.068

N =30

R =0.2 0 3772.46 5991.2945 18368.1 6056.9815 19020.161

R =0.3 0 4031.247 6345.472 18892.085 6393.7805 19486.526

R =0.4 0 4205.4895 6836.374 18975.977 6879.429 19725.349

R =0.5 38.078 3174.627 5214.811 17452.213 5285.6575 18120.09

R =0.6 199.82 3545.3655 5505.1455 17041.855 5584.601 17735.601

R =0.7 686.897 4029.648 5766.2745 16126.104 5844.832 17027.406

R =0.8 1240.1655 4080.962 6046.7615 14789.711 6210.9775 15855.414

0

2

4

6

8

10

T
im

e(
s)

LB21 LB14 LB_Aff LB_Li LB_Lag

N=10 N=20 N=30

Fig. 4 Computation time for all the proposed lower bounds

From the first and the second columns, we can conclude
that the time consumed by the local search algorithm is less
than the time consumed by the genetic algorithm for all the
size of tested problems. From the third column, we observe
that a great percentage of genetic algorithm solutions dom-
inate the local search solutions. Moreover, this percentage
increases when the size of the problem increases.

We finally note that all the genetic algorithm solutions
were improved by applying the neighbourhood search to the
first and the second best solutions of the genetic algorithm.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

M
ea

n
 V

al
u

e

0,2 0,3 0,4 0,5 0,6 0,7 0,8

T

LB14

LB_AFF

LB_Li

LB_Lag

Fig. 5 Lower bounds mean value according the average tardiness T

Conclusion

In this paper we have studied the problem of scheduling a
set of M preventive maintenance tasks that have to be per-
formed on M machines with the aim of minimizing the total
preventive maintenance cost. The execution of the mainte-
nance tasks should be continuous during the maintenance
horizon due to the expensive cost of having the maintenance

123

1222 J Intell Manuf (2012) 23:1207–1224

Table 9 Computational results
for the lower bounds, the branch
and bound algorithm and the
heuristic

T UBD(%) LID(%) AFFD(%) LIND(%)

N =15

T =0.2 0.69334437 55.9078661 41.78957282 55.9078661

T =0.3 2.04868392 79.95328043 25.97353323 79.95328043

T =0.4 0.32660577 86.82745902 45.43229333 86.82745902

T =0.5 0.30659282 66.05080917 31.3062986 66.05080917

T =0.6 0.36385558 42.74148655 49.59459664 38.72670675

T =0.7 0.89991454 9.353132851 40.44237897 8.206773146

T =0.8 0.00422726 4.732189943 27.53484995 3.457753062

N =20

T =0.2 2.65154318 41.39008119 42.22655129 41.37799719

T =0.3 0.22844428 62.16990829 37.91614887 62.16990829

T =0.4 1.22374666 78.06528441 39.03413759 78.06528441

T =0.5 1.84766282 82.49830643 49.73108524 82.49830643

T =0.6 0.6000173 30.72410923 47.13489527 29.84256978

T =0.7 0.86264869 15.33139645 48.5149824 14.28020528

T =0.8 0.42488469 4.60686716 34.09921222 4.23741595

N =25

T =0.2 2.99649821 34.25231787 44.66018654 34.21086403

T =0.3 3.33144157 54.15381441 42.51072995 54.14261839

T =0.4 2.26135131 76.95075784 44.32517211 76.65997782

T =0.5 1.7039384 74.34213305 46.85498085 74.26417236

T =0.6 1.1547265 34.78071424 43.17718875 34.45561451

T =0.7 1.05066288 16.46295619 40.99716246 13.80305491

T =0.8 0.03244333 1.79712566 28.69710264 1.516577753

N =30

T =0.2 3.06594235 32.44566132 43.95661935 32.44205348

T =0.3 2.51450407 47.56713754 46.39228906 47.56299762

T =0.4 3.75965152 76.58969326 46.65531128 76.58969138

T =0.5 3.01158618 72.80074453 47.9674387 72.66139295

T =0.6 2.00986075 38.88462246 49.10509764 37.90673624

T =0.7 0.4914925 14.07047262 44.21369813 12.12378265

T =0.8 0.27651437 4.792682431 38.65960027 2.871811619

N =40

T =0.2 1.02485155 22.39681992 43.92310484 22.3463491

T =0.3 1.17857444 24.47327152 36.79289482 24.36048405

T =0.4 1.96960248 35.52037303 26.77511025 35.52037626

T =0.5 1.33706698 35.3400558 25.29347647 34.91414251

T =0.6 1.74472489 32.12656382 39.22079343 31.41004556

T =0.7 0.4810698 12.49696954 42.2769649 10.89915266

T =0.8 0.18419151 4.100042706 37.29018575 2.289487149

resources available. The problem was solved by three lin-
ear programs, a branch and bound algorithm, a local search
approach and a genetic algorithm. For the linear programs,
the best developed model is able to solve problems of size
of 17 tasks in less than 1 h without dropping the constraints
of the variables integrities. The same model gives the best
linear relaxation among the developed models after adding a
valid constraint to it. The obtained linear relaxation is equal

to that provided by the time-indexed formulation that is con-
sidered, as a tight formulation. Our linear lower bound has
the advantage of the computation time shortness. For the
B&B algorithm, we have developed two lower bounds and
an upper bound. The first lower bound is an adaptation of the
lower bound proposed by Li (1997) for the problem of earli-
ness–tardiness minimization. The second lower bound is an
assignment-based lower bound. The upper bound is based on

123

J Intell Manuf (2012) 23:1207–1224 1223

Table 10 Computation time and average number of the visited nodes
using the first bounding procedure

N AT(s) AN

15 0.01 159

20 0.101 719

25 1.886 6.955

30 26.93 53.051

40 483.299 359.198

Table 11 Computation time and average number of the visited nodes
using the second bounding procedure

N AT(s) AN

15 1.32 146

20 8.41 646

25 95.53 5732

30 Stopped Stopped

40 Stopped Stopped

Table 12 Computational results for the local search and the genetic
algorithm

N LS_Time(s) GA_Time(s) (%)GA_Sol < (%)GA_Sol=
LS_Sol Best_GA

75 0.888 1.478 72.8 88

100 2.811 4.535 74.4 84

150 14.702 23.698 80.7 82

200 47.546 77.791 83.5 80

250 121.832 198.75 86.7 77.5

an iterated local search heuristic. The B&B algorithm allows
us to solve problems with 40 tasks in a period less than 1 h. For
the Local search and the genetic algorithm, a great percentage
of the solutions obtained by the genetic algorithm dominate
those obtained by the local search approach. The computa-
tional results show that the deviation of the meta-heuristics
solutions to the optimal one is very small, which confirms
the effectiveness of meta-heuristics as new approaches for
solving hard scheduling problems.

Appendix

The earliness/tardiness dispatch priority rule of Ow and
Morton (1989)

β (j) =

⎧
⎪⎪⎨

⎪⎪⎩

w j/p j if s j < 0
−h j/p j (h j/p j + w j/p j)

exp(−s j/k p) if 0 ≤ s j ≤ 0
−h j/p j if s j > k p

where s j = d j − t j − p j is the slack of job j, p j is the pro-
cessing time of j, p̄ is the average processing time of the jobs,
k is an empirical integer, and β (j) is the local priority value
assigned to job j. In this dispatch priority rule, whenever the
machine is available, and there are jobs waiting to be pro-
cessed, the dispatch rule is used to select the next job. How-
ever, the schedule produced by this earliness/tardiness rule,
as it is shown in their computational study Ow and Morton
(1989), is far from the optimal. Therefore, we proposed a
new dispatch priority rule based on the earliness/tardiness
dispatch priority rule to select the next unscheduled job.

Acknowledgments This work has been funded by “Conseil Régional
Champagne Ardenne” (OCIDI Project) when the second author was
with Charles Delaunay Institute (LOSI team) at UTT.

References

Abdul-Razaq, T., & Potts, C. N. (1988). Dynamic state space relaxation
for single machine scheduling. Journal of Operations Research
Society, 39(2), 141–152.

Aghezzaf, E. H., Jamali, M. A., & Ait-Kadi, D. (2007). An inte-
grated production and preventive maintenance planning model.
European Journal of Operational Research, 181, 679–685.

Aghezzaf, E. H., & Najid, N. M. (2008). Integrated production
planning and preventive maintenance in deteriorating production
systems. Information Sciences, 178, 3382–3392.

Azizoglu, M., Kondakci, S., & Kirca, O. (1991). Bicriteria schedul-
ing problem involving total tardiness and total earliness penal-
ties. International Journal of Production Economics, 23, 17–24.

Baker, K. R., & Scudder, G. D. (1990). Sequencing with earliness and
tardiness penalties: a review. Operations Research, 38, 22–36.

Graves, H. G., & Lee, C.-Y. (1999). Scheduling maintenance and
semiresumable jobs on a single machine. Naval Research Logis-
tics, 46, 845–863.

Held, M., & Karp, R. M. (1962). A dynamic programming approach
to sequencing problems. Journal of the Society for Industrial and
Applied Mathematics, 10, 196–210.

Kacem, I. (2007). Lower bounds for tardiness minimization on a
single machine with family setup times. International Journal of
Operations Research, 4, 18–31.

Kubiak, W., Blazewicz, J., Formanowicz, P., Breit, J., & Schmidt,
G. (2002). Two-machine flow shops with limited machine avail-
ability. European Journal of Operational Research, 136, 528–540.

Lee, C.-Y. (1996). Minimising the makespan in the two machine sched-
uling scheduling problem with an availability constraint. Oper-
ational Research Letters, 20, 129–139.

Lee, C.-Y., & Chen, Z.-L. (2000). Scheduling jobs and maintenance
activities on parallel machines. Naval Research Logistics, 47, 145–
165.

Li, G. (1997). Single machine earliness and tardiness scheduling. Euro-
pean Journal of Operational Research, 26, 546–558.

Liaw, C.-F. (1999). A branch and bound algorithm for the single
machine earliness and tardiness scheduling problem. Computers
& Operations Research, 26, 679–693.

M’Halla, R. (2006). Minimising total earliness and tardiness on a
single machine using a hybrid heuristic. Computers & Operation
Research, 34, 3126–3142.

Ow, P. S., & Morton, E. T. (1989). The single machine early/tardy
problem. Management Science, 35, 331–342.

123

1224 J Intell Manuf (2012) 23:1207–1224

Potts, C. N., & Van Wassenhove, L. N. (1984). A branch and bound
algorithm for the total weighted tardiness problem. Operations
Research, 33, 363–377.

Sakib, A. M., & Anup, K. S. (2001). Single machine weighted earli-
ness/tardiness penalty problem with a common due date. Com-
puters & Operation Research, 28, 649–669.

Sourd, F., Keded-Sidhoum, S., & Rio Solis, Y. (2008). Lower
bounds for the earliness–tardiness scheduling problem on parallel
machines with distinct due dates. European Journal of Opera-
tional Research, 189, 1305–1319.

Smith, W. E. (1956). Various optimizers for single-stage produc-
tion. Naval Research Logistics Quarterly, 3, 59–66.

Van den Akker, M., Hoogeveen, J. A., & van deVelde, S. (2002). Com-
bining column generation and lagrangean relaxation to solve a
single-machine common due date problem. INFORMS Journal
on Computing, 14, 37–51.

Valente, J. M. S., & Shaller, J. E. (2010). Improved heuristics for
the single machine scheduling problem with linear early and
quadratic tardy penalties. European Journal of Industrial Engi-
neering, 4, 99–129.

Valente, J. M. S. (2010). Heuristics for the single machine schedul-
ing problem with early and quadratic tardy penalties. European
Journal Industrial Engineering, 4, 431–448.

123

	Earliness--tardiness minimization on a single machine to schedule preventive maintenance tasks: metaheuristic and exact methods
	Abstract
	Acknowledgments
	References

