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Abstract This paper presents a fuzzy extension of the sim-
ple assembly line balancing problem of type 2 (SALBP-2)
with fuzzy job processing times since uncertainty, variabil-
ity, and imprecision are often occurred in real-world produc-
tion systems. The jobs processing times are formulated by
triangular fuzzy membership functions. The total fuzzy cost
function is formulated as the weighted-sum of two bi-criteria
fuzzy objectives: (a) Minimizing the fuzzy cycle time and the
fuzzy smoothness index of the workload of the line. (b) Min-
imizing the fuzzy cycle time of the line and the fuzzy balance
delay time of the workstations. A new multi-objective genetic
algorithm is applied to solve the problem whose performance
is studied and discussed over known test problems taken from
the open literature.

Keywords Assembly line balancing · Genetic algorithms ·
Multi-objective optimization · Fuzzy logic · Fuzzy numbers

Introduction

Today’s highly competitive business environment establishes
the requirement on manufacturers to effectively optimize the
design of manufacturing systems in the minimum possible
time. In this context, the design of real-world manufactur-
ing systems becomes more and more important. Particularly,
the design of an efficient assembly line has a considerable

P. Th. Zacharia
Department of Mechanical Engineering & Aeronautics,
University of Patras, 26 500 Rio, Greece
e-mail: zacharia@mech.upatras.gr

A. C. Nearchou (B)
Department of Business Administration, University of Patras,
26 500 Rio, Greece
e-mail: nearchou@upatras.gr

industrial importance (Baudin 2002). The assembly line bal-
ancing problem (ALBP) is a decision problem arising when
an assembly line has to be (re)-configured and consists of
determining the optimal partitioning of the assembly work
among the workstations in accordance with some objectives
(Baybars 1986; Scholl 1999). The decisions taken to solve
ALBPs in modern flow-line production systems not only
affect the final cost of the products, but also affect the vari-
ety of the products manufactured, their final quality, as well
as, the time-to-market response. The latter index is strongly
depended on the production cycle of the assembly line and
constitutes one of the most interesting performance indices
in ALBPs.

ALBP is classified into simple ALBP (SALBP), and
generalized ALBP (Baybars 1986; Scholl 1999; Scholl
and Becker 2006). The latter contains characteristics not
contained in SALBP such as operating costs objectives, par-
alleling of stations, mixed-model production, etc. Two for-
mulation types are commonly used with SALBP: SALBP-1
which attempts to minimize the number of stations for a given
fixed cycle time, and SALBP-2 which attempts to minimize
the cycle time of the line for a given number of stations.
The former type is used when a new assembly line has to be
implemented and installed, while the latter type is used in an
existing assembly line when changes in the production pro-
cess and manufacturing requirements occur. Any variant of
SALBP is of combinatorial nature and belongs to the NP-hard
class of combinatorial optimization problems (Scholl 1999).
Therefore, exact algorithms can hardly be designed to solve
large sizes of any variant of SALBP and consequently the
right way to proceed is through the use of heuristics tech-
niques.

Recently, many researchers turned their attention to the
use of meta-heuristics for the solution of SALBP. The
most notable of this group of algorithms are genetic algo-
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rithms (GAs) (Holland 1975), simulated annealing (SA)
(Kirkpatrick et al. 1983), and tabu-search (TS) (Glover 1989,
1990). Anderson and Ferris (1994) developed a GA with an
objective function that sums up the maximal station time
and put a penalty term for precedence violations. Watan-
abe et al. (1995) showed experimentally that a GA can
obtain in reasonably computing time quasi-optimum solu-
tions for large size ALBPs that cannot be solved by ordinary
methods. Kim et al. (1996) addressed the multi-objective
SALBP with additional objectives such as the maximiza-
tion of workload smoothness and the maximization of work
relatedness. Heinrici (1994) developed a TS procedure for
the solution of SALBP-2, and compared its performance
to that of a SA algorithm. Scholl and Voß (1996) and
Chiang (1998) have also developed efficient TS procedures
for SALBP-2. Sabuncuoglu et al. (2000) addressed SALBP-
1 via a modified GA with a special chromosome structure
which is partitioned dynamically through the evolution pro-
cess and elitism implemented using concepts borrowed from
SA. Baykasoglu (2006) proposed a multiple objective SA
algorithm for simple line and U-type ALBPs with the aim of
maximizing both the smoothness index and line performance.
Nearchou (2008) tackled the bi-criteria SALBP-2 using a
new population heuristic based on the differential evolution
model. Multiple experiments on known benchmarks ALBPs
showed that this approach is superior to existing multi-objec-
tive GAs in terms of quality of solutions. Recently, Zhang and
Gen (2009) proposed a multi-objective GA for the mixed-
model ALBP considering demand ratio-based cycle time.
Ozcan and Toklu (2009) presented a hybrid improvement
heuristic approach to simple straight and U-type ALBPs
based on the ideas of adaptive learning and SA. Important
reviews about ALBPs can be found in (Erel and Sarin 1998;
Rekiek et al. 2001; Scholl and Becker 2006; Tasan and Tunali
2008).

However, since data in real-world problems are often
afflicted with uncertainty, imprecision and vagueness due to
both machine and human factors, they can only be estimated
as within uncertainty. In an attempt to treat imprecise data,
fuzzy numbers are introduced to represent the processing
time of each job, where the membership function of a fuzzy
data represents the grade of satisfaction of a decision maker.

Compared to the deterministic ALBPs, few research
works have been done so far for the fuzzy line balancing
problems (Becker and Scholl 2006; Tasan and Tunali 2008).
Moreover, there is a lack in the literature for population heu-
ristics for solving the multi-objective fuzzy SALBP-2. The
works of Tsujimura et al. (1995) and Gen et al. (1996) were
the first that dealt with fuzzy SALBP-1 via GAs. Brudaru and
Valmar (2004) also proposed a rather time lengthy hybrid GA
which combines a branch and bound method with a GA for
solving fuzzy SALBP-1.

To the best of our knowledge, there has been no previous
research concerning fuzzy SALBP-2. Bearing in mind that
the data obtained from more realistic situations are imprecise
and uncertain, the consideration of fuzziness for the solution
of SALBP-2 is of immense interest. Aiming to fill this gap,
this paper introduces a new multi-objective GA (MOGA)
for solving the fuzzy SALBP-2. In the following we will
refer to the proposed approach as f-MOGA (stands for fuzzy
MOGA). The fuzzy processing time for each job is repre-
sented by triangular fuzzy membership functions. The fuzzy
fitness function of each individual solution is formulated
as the weighted-sum of multiple fuzzy objectives functions.
Three optimization criteria are considered to be minimized:
the fuzzy cycle time of the line (as the main optimization cri-
terion), the fuzzy balance delay time, and the fuzzy smooth-
ness index of the workload in the line.

The rest of the paper is organized as follows: Sec-
tion “Fuzzy assembly line balancing model-2” formulates the
fuzzy SALBP-2 and presents the arithmetics and fuzzy rank-
ing numbers. Section “The proposed solution model for the
mo fuzzy salbp-2” analyses and describes the basic compo-
nents of
f-MOGA for the solution of the fuzzy SALBP-2. Computa-
tional results concerning the performance of f-MOGA under
the influence of various formulations of the fitness function
are provided in Section “Numerical results and discussion”;
while conclusions and directions for future work are pointed
out and discussed in Section “Conclusions”.

Fuzzy assembly line balancing model-2

Problem formulation

The fuzzy SALBP can be stated as follows: m worksta-
tions are arranged along an assembly line. Manufacturing
a single product on the line requires the partitioning of
the total work into a set V = {1, . . . , n} of n elemen-
tary operations called tasks. Each task j is performed on
exactly one station and requires a fuzzy processing time t̃ j .
Let Sz (z = 1, . . . ,m) be the station load of station z (i.e.
the set of tasks assigned to z), with a cumulated fuzzy task
time ˜t Sz = ∑

j∈Sz
t̃ j (z = 1, . . . ,m). The tasks are partially

ordered by precedence relations defining a directed acyclic
graph (DAG) G = (V, E); with V being the set of the nodes
denoting the tasks in G and E the set of the edges repre-
senting the precedence constraints among these tasks. The
assembly line is associated with a fuzzy cycle time c̃ denot-
ing the maximum processing time available for each station.
The fuzzy balance efficiency ˜B E is therefore defined as:

˜B E = ˜t Sz

m × c̃
(1)
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In this work, the bi-criteria fuzzy SALBP-2 is considered
with main objective to minimize the fuzzy cycle time c̃ for a
given fixed number of stations m and secondary objective to
minimize:

1. The fuzzy smoothness index
(

˜SX
)

measuring the equal-
ity of the distributed work among the stations. The
lower the value of ˜SX the smoother the line, resulting
in reduced in-process inventory. An ˜SX equal to zero
indicates a perfect balance of the workload among the
stations.

˜SX =
√

√

√

√

m
∑

z=1

(

c̃ − ˜t Sz
)2

(2)

2. The fuzzy balance delay time
(

˜BD
)

of the line. ˜BD
reflects the unused capacity of the line, i.e. the summation
of the idle times of all the stations.

˜BD =
m

∑

z=1

(

c̃ − ˜t Sz
)

(3)

The multi-objective fuzzy SALBP-2

In multi-objective (MO) fuzzy SALBP-2 we ideally seek for
a feasible solution that simultaneously optimizes c̃, as well
as, ˜SX and ˜BD. Since this is almost impossible for any MO
problem (Bäck 1996), what we really attempt to do is to opti-
mize each individual objective to the greatest possible extend.
The problems considered in this study can be formulated as
in the following:

1. MO SALBP-2 version 1:

Minimize F2 = w1 · c̃ + w2 · ˜SX (4)

subject to a partition of the set V = {1, . . . , n} into m disjoint
subsets Sz (z = 1, . . . ,m) : ∀ edge (i, j) ∈ E, i, j ∈ V and
j ∈ F Li the following holds i ∈ SA and j ∈ SB with A ≤ B

(4.a)
˜t Sz ≤ t̃sum for all z = 1, . . . ,m (4.b)

where t̃sum = ∑n
j=1 t̃ j is the sum of all the tasks’ fuzzy

processing times and F Li is the set of immediate followers
(successors) of task i.

2. MO SALBP-2 version 2:

Minimize F1 = w1 · c̃ + w2 · ˜BD (5)

subject to the constraints (4.a) and (4.b)
Constraints (4.a) and (4.b) ensure the feasibility of an

ALB solution. In particular, constraint (4.a) guarantees the

feasible assignment of the tasks to the m stations. That is,
each task is assigned to exactly one station, and the succes-
sors of any task i are not assigned to an earlier station than
that of i. Note that, (i, j) denotes an edge between i and j,
with j being the immediate successor of i. Constraint (4.b)
ensure that the station times of all the stations do not exceed
the line’s total processing time (tsum). The weights w1 and
w2 in Eqs. (4) and (5), specify the relative importance of
the corresponding objectives. The determination of the suit-
able values for these weights is in general a difficult task
and constitutes a critical research question in MO optimiza-
tion. This issue will be discussed deeper in sect.“The pro-
posed solution model for the MO fuzzy SALBP-2” of this
study.

Arithmetics and ranking fuzzy numbers

The purpose of fuzzy data approach is to represent more
realistic situations, where data are imprecise, uncertain or
almost unavailable (Kaufmann and Gupta 1985). The mem-
bership function μ Ã (x) of a fuzzy data Ã represents the
grade of satisfaction of a decision maker for the com-
pletion time of that scheduling. In this work, the fuzzi-
ness of data is represented by Triangular Fuzzy Numbers
(TFNs), as shown in Fig. 1. A TFN Ã is denoted as a triplet
(α1, α2, α3).

Arithmetics of TFNs are performed as following:

Ã + B̃ = (α1 + β1, α2 + β2, α3 + β3)

Ã − B̃ = (α1 − β3, α2 − β2, α3 − β1)

Ã × B̃ = (α1 · β1, α2 · β2, α3 · β3)

Ã/B̃ = (α1/β3, α2/β2, α3/β1)

(6)

To compare the fuzzy numbers, some criteria of ranking
fuzzy sets are presented:

• The greatest associate ordinary number:

F1

(

Ã
)

= α1 + 2α2 + α3

4
(7)

α 1 α 2 α 3 x

1.0

μ A (x) 

Fig. 1 A typical Triangular Fuzzy Number
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• The best maximum presumption (the mode):

F2

(

Ã
)

= α2 (8)

• The divergence (the distance between two end-points):

F3

(

Ã
)

= α3 − α1 (9)

Consider a set Q composed of TFNs Ãi , i = 1, 2, . . . , n.
We define Ã∗ as a major TFN that dominates all the others
in some criterion, in Q, that is, Ã∗ = max Q (the operator
max is the discrete maximum). The decision maker chooses
some criteria and determines its order of dominance. If the
first criterion can not determine the major TFN, go to second
criterion, and so on. On the contrary, we call a minor TFN
if TFN is dominated by all others in Q and this operation is
represented as min.

The proposed solution model for the MO fuzzy SALBP-2

GAs (Holland 1975; Goldberg 1989) are probabilistic search
methods that employ search techniques inspired by Darwin’s
evolutionary theory based on the principles and mechanisms
of natural selection and the survival of the fittest. GAs employ
a random yet directed, search for finding the globally optimal
solution. They have the advantage over the gradient descent
techniques that they do not require the derivative of the objec-
tive function and the search is not biased towards the locally
optimal solution. In contrast to random sampling algorithms,
GAs have the ability to direct the search towards relatively
promising regions in the problem’s search space. In addition,
they have been empirically proven very effective in solving
a large number of complex combinatorial optimization prob-
lems.

The architecture of any GA consists of the following five
basic components:

a) A representation mechanism, i.e., a way of encoding the
phenotypes to genotypes.

b) A decoding mechanism, i.e., a way of mapping the phe-
notypes to actual solutions of the optimization problem
under consideration.

c) An evaluation mechanism, i.e., a way of computing the
cost-function for each genotype.

d) A way to generate the initial population of the genotypes.
e) Generate new genotypes by applying variation operators

on the entire population.

The representation mechanism

In this work a real-valued GA was adopted for use, i.e., geno-
types are represented by floating-point vectors. Therefore,

since actual ALBP solutions are represented by strings of
integers (Scholl 1999), an appropriate mapping is needed
from the genotypic state-level (the real-valued vectors) to the
phenotypic level (the actual ALB solutions). To achieve this
mapping a simple yet effective topological ordering scheme
has been developed based on the relative priorities impose by
the components of a genotype. Assuming a n-task ALBP with
precedence relations given by a DAG G=(V,E), the devel-
oped encoding scheme consists of generating a topological
sort of G from a specific n-dimensional floating-point vector
ψ (genotype). Each vector’s component ψi (i = 1,n) repre-
sents the relative priority of task i(i ∈ V ). The topological
sort is therefore a ranking of all the tasks according to their
priorities in an appropriate order to meet the precedence con-
straints. This mechanism is implemented using the following
procedure:

Procedure Topological_ordering_encoding

begin

Set V ′ = ∅ // with V ′ ⊆ V//

repeat

for all j ∈ V do

if j has no predecessors then V ′ = V ∪ { j},
i.e., insert j into the set V ′.

Determine the gene ψi of ψ with the maximum value

for all i ∈ V ′

Insert task i into the next available position in the

partial schedule (P S).

V ′ = V ′ {i}, i.e., remove task i from V ′.
until P S has been completed

return PS

end

In each step, the tasks with no predecessors are identified
and put in set V ′. Then, the task in V ′ having the highest
gene’s value in ψ is selected, removed from V ′, and placed
in the next available position of PS. The process is repeated
until the completion of PS.

Let us see how this topological ordering works on geno-
type ψ = (0.32, 0.83, 0.05, 0.24, 0.17, 0.45, 0.09, 0.61)
concerning the 8-task ALBP shown in Fig. 2. The first posi-
tion of array PS is taken by task 1 (i.e., PS[1] = 1) since this
is the only task with no predecessors. Task 1 is then cut from
DAG and the next task with no predecessors is task 2, thus
PS[2] = 2. Then, the two tasks 3 and 4 are candidate for the
3rd location of PS. The priorities for these tasks are 0.05
and 0.24, respectively, and therefore, PS[3] = 4 since task 4
has the highest priority, consequently PS[4] = 3. Finally, the
ALB solution corresponding to ψ will be (1, 2, 4, 3, 6, 5,
7, 8). Figure 3 displays the detailed step-by-step process for
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Fig. 2 A precedence graph for an 8-task ALBP

constructing the specific feasible ALB solution. One can see
from this figure the partial topological sort, the cut (dark long
dashed lines) and the eligible nodes, as well as, the contents
of the partial schedule solution PS.

The decoding mechanism

Once a specific genotype is encoded into a phenotype, a way
is needed to assign the tasks in the generated task-sequence
into the stations. In this work, a scheme proposed by Kim et
al. (1996) was adopted; this scheme was found to be superior
to other traditional schemes (see Scholl 1999) in terms of
quality of solutions. This scheme works as follows:

• Step 1: Set c̃ initially equal to the theoretical minimum
fuzzy cycle time, i.e. c̃th = t̃sum/m.

• Step 2: Assign as many tasks as possible into the first
m-1 workstations. Assign all the remaining tasks to the
last workstation, m.

• Step 3: Calculate the fuzzy work load ˜Wz for each work-
station z (z = 1, 2,…, m), and the potential fuzzy workload
˜PW z (z = 1, 2,…, m − 1) as follows: ˜Wz = the fuzzy sta-
tion time ˜t Sz (z = 1, 2,…, m). ˜PW z = ˜t Sz+ the processing
time of the first task assigned to (z+1)st station (z = 1, 2,…,
m − 1).

• Step 4: Set c̃w = max
{

˜W1, ˜W2, . . . , ˜Wm
}

and
c̃ = min

{

˜PW 1,˜PW 2, . . . ,˜PW m−1
}

• Step 5: if c̃w 	 c̃ then goto Step 2 else Return c̃w

The evaluation mechanism

The evaluation mechanism concerns the computation of the
objective function for each candidate solution. The objective
functions to be minimized are described by Eqs. (4) and (5).
The weights w1 and w2 specify the relative importance of
the corresponding objectives. The determination of the suit-
able values for these weights is in general a difficult task and
constitutes a critical research question in MO optimization
problems.

In the literature, there are at least three general methods to
compute the weights wi (i = 1, . . . , k) for a weighted-sum
objective function with k objectives: the fixed-, the random-
and the adaptive-weight method. The first one uses constant
weights satisfying the relation:

k
∑

i=1

wi = 1 (10)

where wi > 0 for all i = 1, . . . , k.
However, it has been shown (Murata et al. 1996) that the

search direction is fixed when using constant weights within
an evolutionary algorithm; thus, it is difficult for the search
process to obtain a variety of non-dominated solutions. To
alleviate this drawback, the use of random weights was pro-
posed according to the following formula:

wi = randomi

random1 + random2+, . . . ,+randomk
(11)

where randomi (i = 1, . . . , k) are non-negative random
numbers.

Alternatively, an adaptive weight approach has been pro-
posed by Gen and Cheng (2000) that readjusts the weights
by utilizing some useful information from the current popu-
lation. The weights are given by the formula:

wi = 1

zmax
i − zmin

i

(12)

where zmax
i and zmin

i , for i = 1, . . . , k are the maximum and
the minimum values for the ith objective in the population.

The initial population

Usually, the initial population is randomly created in order
to uniformly distribute the selected chromosomes (solutions
over the search space). In some cases, solutions obtained
from another optimization algorithm are used to seed the ini-
tial population (Goldberg 1989). Although this bears the risk
of misguiding the optimization process toward local optima,
it has been empirically proven that for some problems, the use
of a seeding mechanism results to a much powerful optimizer.
Our approach is motivated by the idea of case retrieval (Oman
and Cunningham 2001); that is, by the expectation that seed-
ing the initial population with near-optimum solutions will
speed up the GA by starting the search in promising regions
of the search space. The most common way to achieve this
mechanism is to apply a problem-specific heuristic and gen-
erate a fairly good solution to the problem under consider-
ation. This solution is copied into the initial population which
then undergoes the conventional stages of a canonical GA.

Re-initializing the entire population during the genetic
search is another common challenge in designing compe-
tent GAs (Goldberg 1989; Michalewitz 1996). This mech-
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Fig. 3 The application of
topological ordering encoding
method on genotype ψ =
(0.32, 0.83, 0.05, 0.24, 0.17,
0.45, 0.09, 0.61)

anism is performed with the hope to improve the diversity
of the population and avoid premature convergence to local
optima solutions. Following the same line of thought, the
developed approach uses a hybrid GA that combines seeding
and re-initialization during the genetic search. The hybrid
GA is performed in two successive runs. In the first run,
the search starts from a randomly generated population of
solutions. This population is then evolved over successive
iterations undergoing selection and random variation opera-
tors (see sub-sections “The variation and selection operators”
below). In every iteration, the algorithm keeps truck for the
best-so-far (bsf ) solution. In the second run, the entire pop-
ulation is re-initialized by new, randomly created individual
solutions, and seeded by the bsf solution determined in the
previous run. Figure 4 presents schematically the mechanics

of the proposed approach. Therefore, instead of using a sim-
ple problem-specific heuristic, e.g., a common ALB priority
rule (Scholl and Voß 1996) to seed the GA’s initial popula-
tion (as it was explained above this is the traditional way of
hybridizing a GA); the proposed approach applies a GA to
seed the initial population of a second GA (the two GAs are
identical). Multiple preliminary experiments showed that this
new hybridization scheme results to a much more powerful
optimizer for the examined ALBP.

The variation and selection operators

In each generation, a subset of the entire population is
replaced using a suitable parent selection strategy. Selec-
tion allocates more copies of highly fit individuals (solu-
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evolution by
GA

new
population

initial
population
generation

Yes

Terminate
?

No

1st run
?

Seed
population
with bsf
solution

Re-initialize
the entire
population

Yes

No

end

Save best-so-
far solution

(bsf)

Fig. 4 The mechanics of the proposed evolutionary approach

tions with higher fitness values), in an analogy to the
survival-of-the-fittest mechanism. Offspring are then cre-
ated by applying variation operators namely, crossover and
mutation on the selected population subset. The role of
crossover is to join together parts of two or more parental
solutions in order to produce new, possibly better solutions
(offspring). The offspring will differ from their parents but
they will instead combine parental features (genetic mate-
rial) in a novel manner. Mutation is applied in order to inject
new genetic material into the population and thereby avoid
premature convergence to local minima. In the proposed
approach selection was accomplished using the well known
roulette wheel procedure (Goldberg 1989). Crossover and
mutation were accomplished by one-point crossover, and ran-
dom mutation, respectively (Michalewitz 1996).

Numerical results and discussion

The performance of f-MOGA was evaluated over known
ALBP benchmarks taken from the open literature (Scholl
1999). In the experiments, we include the available test
instances concerning the following three ALBPs: Saw-
yer (n = 30, in# = 8), Kilbridge (n = 45, in# = 9) and Tonge
(n = 70, in# = 23). n denotes the number of the tasks included
in the corresponding precedence graphs, and in# the number
of the test instances included in the specific ALBP. The sim-
ulations were implemented in Matlab and run on a Pentium
IV 2.13 GHz core2 PC. Considering fuzziness for the pro-
cessing times, fuzzy data are represented by triangular fuzzy
membership functions. 10 runs (starting each time from a dif-
ferent random number seed) on each problem instance were
performed. The best solutions obtained after these runs was
retained and presented in Tables 1–6 below. Furthermore, 3
different versions of f-MOGA were evaluated differ in the
way weights (w1 and w2) in the weighted-sum fitness func-
tion are estimated [see Eqs. (10)–(12)]. For the case of the
fixed-weight method we set w1 = w2 = 0.5.

After extended experimentation, the following settings
for f-MOGA’s control parameters were adopted: population
size = 50, maximum number of generations = 1500, a random
crossover rate taken values in the range [0.6, 0.9], and a ran-
dom mutation rate taken values in the range [0.06, 0.1]. That
is, crossover and mutation rates are not fixed during the algo-
rithm’s evolution; instead, they change stochastically within
the above permitted bounds. As it was empirically verified,
this novelty gives a significant impetus to f-MOGA by speed-
ing its rate of convergence.

Table 1 shows the experimental results for MO SALBP-2
version 1 over the Sawyer ALBP test instances. Note that
column m denotes the number of workstations associated
with each one of the 8 instances included in Sawyer prob-
lem. Hence, for the first instance the work load (n = 30) must
be assigned to 7 workstations, for the second instance the
work load must be assigned to 8 workstations, and so on.
Column BE denotes the balance efficiency (Eq. (1)) of the
line associated to the generated best solutions. Tables 2 and 3,
display the experimental results for MO SALBP-2 version 1,
over Kilbridge and Tonge ALBPs, respectively.

The experimental results concerning MO SALBP-2 ver-
sion 2 are reported in Tables 4–6. In particular, Table 4 dis-
plays the results concerning Sawyer ALBPs, while Tables 5
and 6 the results concerning Kilbridge and Tonge problems,
respectively. Note that, the secondary objective to be mini-
mized is now ˜SX (given Eq. (3)).

Comparing the results yielded by the three different ver-
sions of f-MOGA, one can observe that f-MOGA with the
fixed-weight method outperforms the two other methods
(with the regard to the solutions quality obtained) for both
versions of the examined MO SALBP-2. This is established
from the fact that, in most of the experiments f-MOGA+
fixed-weight method attained to obtain solutions with fuzzy
balance efficiency near to 1.0 (meaning almost a perfect
balance of the line). As one can observe from the above
tables, the associated results obtained by the other two ver-
sions of f-MOGA were of inferior quality (with regard to ˜BE
measure).
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Fig. 5 The mean divergence (Eq. (9)) of the cycle times over the 10
runs of f-MOGA for the instances of a Sawyer, b Kilbridge, and c Tonge
ALBP

Furthermore, the fuzzy cycle times obtained by f-MOGA
are in average better using the fixed-weight method than
those obtained using either the random-weight, or the adap-
tive-weight method. Figure 5 shows the divergence of the
optimum cycle times (according to Eq. (9)) obtained by the
three versions of f-MOGA over the examined ALBPs. It is
clear from this diagram that, in most of the cases the fixed-
weight method performs better than the other two methods
(although the difference in the generated cycle times are not
very large).

Figure 6 shows the CPU times (averaged over the 10
runs) spent by the three versions of f-MOGA over the exam-
ined ALBPs.The diagrams confirm that the three weighted-
methods have similar performance in terms of running times.
As one can see from Fig. 6a, f-MOGA+fixed-weight method
is clearly faster than the other two approaches especially for
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Fig. 6 The CPU time spent by the f-MOGA versus the number of
stations for a Sawyer, b Kilbridge, and c Tonge ALBPs

small size problems (lower curve in Fig. 6a). This observation
is not clear for the larger size problems (see Fig. 6b, c). How-
ever, the average running duration spent by f-MOGA+fixed-
weighted method is still quite well with regard to the running
durations of the other two approaches.

Conclusions

In this paper, a novel fuzzy extension of the simple assembly
line balancing problem of type 2 (SALBP-2) has been pro-
posed. The fuzzy job processing times reflect the uncertainty,
variability and imprecision with which real-world produc-
tion systems are afflicted. The jobs processing times are for-
mulated by triangular fuzzy membership functions. A new
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multi-objective GA (MOGA) is introduced for solving the
fuzzy SALBP-2 with objectives: to minimize the fuzzy cycle
time, the fuzzy balance delay time, and the fuzzy smoothness
index of the line.

The total fuzzy cost function is formulated as the
weighted-sum of multiple fuzzy objectives. Three different
methods for computing the weights in the fuzzy cost function
were studied namely, fixed-, random- and adaptive-weight
method, respectively. The influences of these methods on the
performance of the proposed MOGA were examined over
known test beds. The results obtained showed that the use of a
fixed-weight method within the proposed approach exhibited
superiorityover theother twomethods (with regard toboth the
quality of the solutions obtained and speed of convergence).
The experimental results verify that the proposed MOGA is a
powerful tool for solving fuzzy scheduling problems.

This work is limited in the single-model ALBP, however,
it represents a good start point for further studies focused on
more difficult ALBPs such as the mixed-model ALBP with
fuzzy job processing times. This problem is much more com-
plex than SALBP since, the attempt is to manufacture differ-
ent models (versions) of the same basic product in the same
line (e.g. PCs with or without DVD drive, with the graphics
card on the mother board or not, etc.) in arbitrarily intermixed
sequence. A first idea is to address the feasibility fuzzy mixed-
model ALBP. That is, given the cycle time c and the number
m of the workstations in the line determine whether, or not a
feasible mixed-model assignment with m stations exists.

References

Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for
combinatorial optimization: the assembly line balancing prob-
lem. INFORMS Journal on Computing, 6, 161–173.

Bäck, T. (1996). Evolutionary algorithms in theory and practice. New
York, NY: Oxford University Press.

Baudin, M. (2002). Lean assembly: The nuts and bolts of making
assembly operations flow, productivity. New York: Productivity
Press.

Baybars, I. (1986). A survey of exact algorithms for the simple assem-
bly line balancing problem. Management Science, 32, 909–932.

Baykasoglu, A. (2006). Multi-rule multi-objective simulated anneal-
ing algorithm for straight and U type assembly line balancing
problems. Journal of Intelligent Manufacturing, 17, 217–232.

Becker, C., & Scholl, A. (2006). A survey on problems and meth-
ods in generalized assembly line balancing. European Journal of
Operational Research, 168(3), 694–715.

Brudaru, O., & Valmar, B. (2004). Genetic Algorithm with embryonic
chromosomes for assembly line balancing with fuzzy processing
times. In 8th international research/expert conference trends in
the development of machinery and associated technology, TMT
2004. Neum, Bosnia and Herzegovina.

Chiang, W. C. (1998). The application of a tabu search metaheuristic
to the assembly line balancing problem. Annals of Operations
Research, 77, 209–227.

Erel, E., & Sarin, S. (1998). A survey of the assembly line balancing
procedures. Production Planning and Control, 9(5), 414–434.

Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering
optimisation. New York, NY: Wiley-Interscience.

Gen, M., Tsujimura, Y., & Li, Y. (1996). Fuzzy assembly line
balancing using genetic algorithms. Computers and Industrial
Engineering, 31(3/4), 631–634.

Glover, F. (1989). Tabu-search-Part I. ORSA Journal Computing, 1(3),
190–206.

Glover, F. (1990). Tabu-search-Part II. ORSA Journal Computing, 2(1),
4–32.

Goldberg, D. E. (1989). Genetic algorithm in search, optimization and
machine learning. Reading, Massachusetts: Addison Wesley.

Heinrici, A., et al. (1994). A comparison between simulated annealing
and tabu search with an example from the production plan-
ning. In H. Dyckhoff (Ed.), Operations research proceedings
1993 (pp. 498–503). Berlin: Springer.

Holland, J. H. (1975). Adaption in natural and artificial systems. Ann
Arbor, MI: University of Michigan Press.

Kaufmann, A., & Gupta, M. M. (1985). Introduction to fuzzy arith-
metic. New York: Van Nostrand Reinhold.

Kim, Y. K., Kim, Y. J., & Kim, Y. (1996). Genetic algorithms for
assembly line balancing with various objectives. Computers and
Industrial Engineering, 30(3), 397–409.

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization
by simulated annealing. Science, 220, 671–680.

Michalewitz, Z. (1996). Genetic algorithms+data structures=evolu-
tion programs (3rd ed.). Berlin: Springer.

Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic
algorithms and its application to flowshop scheduling. Computers
and Industrial Engineering, 30(4), 957–968.

Nearchou, A. C. (2008). Multi-objective balancing of assembly
lines by population heuristics. International Journal of Production
Research, 46(8), 2275–2297.

Oman, S., & Cunningham, P. (2001). Using case retrieval to seed
genetic algorithms. International Journal of Computational Intel-
ligence and Applications, 1(1), 71–82.

Ozcan, U., & Toklu, B. (2009). A new hybrid improvement heuristic
approach to simple straight and U-type assembly line balancing
problems. Journal of Intelligent Manufacturing, 20, 123–136.

Rekiek, B., De Lit, P., Pellichero, F., L’Englise, T., Fouda, P., &
Falkenauer, E., et al. (2001). A multiple objective grouping
genetic algorithm for assembly line design. Journal of Intelligent
Manufacturing, 12, 467–485.

Sabuncuoglu, I., Erel, E., & Tanyer, M. (2000). Assembly line
balancing using genetic algorithms. Journal of Intelligent Manu-
facturing, 11, 295–310.

Scholl, A. (1999). Balancing and sequencing of assembly lines.
Heidelberg, Germany: Physica-Verlag.

Scholl, A., & Becker, C. (2006). State of the art exact and heuristic
solution procedures for simple assembly line balancing. European
Journal of Operational Research, 168(3), 666–693.

Scholl, A., & Voß, S. (1996). Simple assembly line balancing—
Heuristic approaches. J Heuristics, 2, 217–244.

Tasan, S. O., & Tunali, S. (2008). A review of the current applica-
tions of genetic algorithms in assembly line balancing. Journal
of Intelligent Manufacturing, 19(1), 49–69.

Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assem-
bly-line balancing problem with genetic algorithms. Computers
and Industrial Engineering, 29(1–4), 543–547.

Watanabe, T., Hashimoto, Y., Nishikawa, I., & Tokumaru,
H. (1995). Line balancing using a genetic evolution model. Con-
trol Engineering Practice, 3, 60–76.

Zhang, W., Gen, M. (2009). An efficient multiobjective genetic
algorithm for mixed-model assembly line balancing prob-
lem considering demand ratio-based cycle time. Journal
of Intelligent Manufacturing., (available on-line) doi:10.1007/
s10845-009-0295-5.

123

http://dx.doi.org/10.1007/s10845-009-0295-5
http://dx.doi.org/10.1007/s10845-009-0295-5

	Multi-objective fuzzy assembly line balancing using genetic algorithms
	Abstract
	References


