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Abstract Engineering design problems are generally large
scale or nonlinear or constrained optimization problems. The
Artificial Bee Colony (ABC) algorithm is a successful tool
for optimizing unconstrained problems. In this work, the
ABC algorithm is used to solve large scale optimization prob-
lems, and it is applied to engineering design problems by
extending the basic ABC algorithm simply by adding a con-
straint handling technique into the selection step of the ABC
algorithm in order to prefer the feasible regions of entire
search space. Nine well-known large scale unconstrained
test problems and five well-known constrained engineering
problems are solved by using the ABC algorithm and the
performance of ABC algorithm is compared against those of
state-of-the-art algorithms.

Keywords Unconstrained optimization · Constrained
optimization · Mechanical design problems · Artificial bee
colony

Introduction

Evolutionary algorithms (EAs) are known as general-pur-
pose optimization algorithms which are capable of finding
near-optimal solutions to the numerical, real-valued test prob-
lems for which exact and analytical methods do not produce
optimal solutions within a reasonable computation time. One
of the evolutionary algorithms which has been introduced
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recently is the Differential Evolution (DE) algorithm (Storn
andPrice1995).TheDEalgorithmwasproposedbyStornand
Price in 1995 especially for to solve numerical problems. In
recent years, swarm intelligence has become a research inter-
est to many research scientists in the related fields. The term
“swarm” is used in a general manner to refer to any restrained
collection of interacting agents or individuals. The classical
example of a swarm is bees’ swarming around their hive, but
themetaphorcaneasilybeextendedtoothersystemswithsim-
ilar architecture. An ant colony can be thought of as a swarm
whose individual agents are ants; a flock of birds is a swarm
of birds. The particle swarm optimization (PSO) algorithm,
simulating the behaviour of a bird swarm, was introduced by
(Kennedy and Eberhart 1995). PSO is a population based sto-
chastic optimization technique and well adapted to the opti-
mization of nonlinear functions in multidimensional space.

Although modern heuristic algorithms were first proposed
for unconstrained optimization problems, they have been
extended to solve engineering design problems (Mezura-
Montes and Coello Coello 2005b; Ray and Liew 2003; He et
al. 2004; Parsopoulos and Vrahatis 2005). Mezura-Montes
and Coello Coello (2005b) proposed an evolutionary-based
approach to solve engineering design problems without using
penalty functions. The approach generates more solutions
inside the feasible region and near the boundaries by using
genetic operators to sample the feasible region well enough to
reach better feasible solutions. Ray and Liew (2003) intro-
duced a meta-heuristic called the Society and civilization
algorithm (SCA) that utilizes the intra- and inter-society
interactions within a formal society; the civilization model
is used to solve single objective constrained optimization
problems. The basic idea of the SCA technique is that social
interactions enable individuals to adapt and improve faster
than biological evolution based on genetic inheritance alone.
In order to handle constraints, the SCA employs a non-dom-
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inance scheme that eliminates the problem of scaling and
aggregation that is common among penalty-function-based
methods. He et al. (2004) presented an improved PSO to solve
engineering mechanical design optimization problems by
using a constraint handling method called the ‘fly-back mech-
anism’ which maintains a feasible population. Parsopoulos
and Vrahatis (2005) applied the Unified Particle Swarm Opti-
mization method to constrained engineering optimization
problems. For this purpose, they employed a penalty func-
tion approach, and the algorithm is modified to preserve the
feasibility of the encountered solutions.

For optimizing numerical multivariable functions,
Karaboga (2005) has described an Artificial Bee Colony
(ABC) algorithm which mimics the foraging behaviour of a
honey bee swarm. In the field of evolutionary computation, it
is common to compare different algorithms using a large test
set, especially when the test involves function optimization
(Boyer et al. 2005). Real-world problems usually have many
design parameters that should be considered in the design
process. Algorithms that are not robust to large-scale prob-
lems cannot preserve their effectiveness against high dimen-
sionality. In this study, the Artificial Bee Colony algorithm,
which has been introduced recently for unconstrained opti-
mization problems, is used for optimizing large-scale uncon-
strained optimization problems and engineering design prob-
lems. Itsperformance iscompared to thatofother state-of-the-
art algorithms mentioned above. The rest of the paper is orga-
nizedasfollows:InSect. “Constrainthandlingmethods”,con-
straint handling techniques are articulated. In Sect. “Artificial
Bee Colony algorithm”, Artificial Bee Colony algorithm and
its adaptation to constrained optimization are presented. Set-
tings and experimental results on unconstrained large-scale
benchmarkproblemsaregiven inSect. “Experiments1: large-
scale unconstrained optimization” and those on constrained
mechanical design problems are presented in Sect. “Experi-
ments 2: constrained mechanical design optimization”.

Constraint handling methods

An engineering design problem which is usually a con-
strained optimization (CO) problem involves problem-spe-
cific constraints. A general constrained optimization problem
is to find x so as to

minimize f (x), x = (x1, x2, . . . , xi , . . . xn)

subject to :
g j (x) ≤ 0, for j = 1, . . . , q (inequality constraint)

h j (x) = 0, for j = q + 1, . . . , m (equality constraint)

where x represents a solution to the design problem, xi is
called the design parameter, f (x) is the objective function to
be minimized and m is the number of constraints.

The presence of constraints in engineering design prob-
lems requires some additional constraint handling approaches
which need to be incorporated into optimization algorithms.
These approaches direct the search towards the region con-
taining acceptable solutions called the feasible region (Zhang
et al. 2006).

Complete search algorithms search all possible assign-
ments of values to variables in the search space, but they
have the disadvantage of being time consuming. Incomplete
search methods search the space either non-systematically
or in a systematical manner (Bartak et al. 2008). Incomplete
search methods dealing with the constraints were grouped
into four categories by Koziel and Michalewicz (1999):

– Methods based on preserving feasibility of solutions
(Michalewicz and Janikow 1991);

– Methods based on penalty functions (Bean and Hadj-
Alouane 1992; Homaifar et al. 1994; Joines and Houck
1994; Michalewicz and Attia 1994);

– Methods that make a clear distinction between feasible
and infeasible solutions (Richardson et al. 1989; Schoe-
nauer and Xanthakis 1993; Powell and Skolnick 1993;
Michalewicz and Nazhiyath 1995; Deb 2000);

– Other hybrid methods (Paredis 1994; Parmee and Pur-
chase 1994; Myung et al. 1995; Reynolds et al. 1995)

Methods based on preserving feasibility of solutions use
operators which transform infeasible individuals into feasible
individuals. This method assumes linear constraints only
and a feasible starting point (or a feasible initial popula-
tion) (Michalewicz and Janikow 1991). In the methods based
on penalty functions, a constrained problem is solved as an
unconstrained one, where the objective function is designed
such that infeasible solutions are characterized by high func-
tion values (in minimization cases). Although the use of
penalty functions is very common since its simplicity and
directapplicability(SmithandCoit1997;CoelloCoello1999;
Yeniay 2005; Parsopoulos and Vrahatis 2002), they have
several drawbacks, too. For example they require a careful
fine tuning of the penalty factors that estimate the degree of
penalization to be applied (Smith and Coit 1997; Mezura-
Montes and Coello Coello 2005a; Coello Coello 2002). In the
category including methods based on a search for feasible
solutions, there are a few methods which emphasize the dis-
tinctionbetweenfeasibleandinfeasiblesolutions in thesearch
space. One method considers the problem constraints in a
sequence switching from one constraint to another until the
number of feasible individuals in the population meets a suf-
ficient number. The second method is based on an assump-
tion that any feasible solution is better than any infeasible
one (Richardson et al. 1989; Deb 2000). The third method
repairs infeasible individuals (Koziel andMichalewicz1999).
The last category includes hybrid methods that combine
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evolutionary computation techniques with deterministic pro-
cedures for numerical optimization procedures (Koziel and
Michalewicz 1999).

Artificial Bee Colony algorithm

The Artificial Bee Colony algorithm proposed by Karaboga
(2005) simulates the foraging behaviour of a bee colony and
it was successfully applied to optimize numerical problems
(Karaboga 2005; Basturk and Karaboga 2006; Karaboga and
Basturk 2007b, 2008; Karaboga and Akay 2007; Karaboga et
al. 2007; Karaboga and Basturk 2007a; Karaboga and Akay
2009). A colony of bees tries to find rich food sources in
order to maximize the amount of nectar unloaded at the hive.
Although there are several task classifications of bees in a real
hive, Artificial Bee Colony uses minimal model that mimics
the foraging behaviour of bees comprising of employed bees,
onlooker bees and scouts. An employed bee finds a food
source position by modifying the position in her memory and
evaluates the nectar amount of each new source and memo-
rizes the better one (greedy selection). Employed bees share
information related with the quality of the food source they
are exploiting, on the dance area. Onlooker bees find food
sources based upon the information coming from employed
bees. More profitable sources are more likely to be chosen by
onlookers. An onlooker bee chooses a food source depending
on this information (probabilistic selection) and produces a
modification on this source. In order to determine the better
source, a greedy selection is applied. In the nature of real
bees, if a food source is not worth exploiting anymore, it is
abandoned by the bees, and the employed bee of that source
becomes a scout searching the environment randomly or by
an internal motivation. The main steps of ABC algorithm are
given on a flowchart seen in Fig. 1.

In order to solve constrained optimization problems, since
the drawbacks of the penalty-based methods and the meth-
ods starting with feasible solutions, we incorporated Deb’s
rules (Deb 2000) into the Artificial Bee Colony algorithm,
introduced in (Karaboga 2005), in order to prefer feasible
solutions to infeasible ones or a low-cost infeasible solution
to an expensive infeasible solution. Therefore, the algorithm
promises to search in the feasible regions.

Since initialization with feasible solutions is a very time
consuming process and in some cases it is impossible to pro-
duce a feasible solution randomly, the ABC algorithm does
not consider the initial population to be feasible. Besides,
the ABC algorithm does not employ a penalty function that
requires a careful fine tuning of the penalty factors and
penalty function itself. The structure of the algorithm already
directs the solutions to the feasible region by means of Deb’s
three heuristic rules (Deb 2000) which are used instead of
greedy selection. Deb’s method uses a tournament selection

operator, where two solutions are compared based on the
following criteria:

1. Any feasible solution is preferred to any infeasible solu-
tion,

2. Among two feasible solutions, the one having a better
objective function value is preferred,

3. Among two infeasible solutions, the one having the
smaller constraint violation is preferred.

The Pseudo-code of the ABC algorithm proposed to solve
constrained problems is given below:

1: Initialize the population of solutions xi, j , i = 1 . . . SN ,

j = 1 . . . D
2: Evaluate the population
3: cycle = 1
4: repeat
5: Produce a new solution υi for each employed bee by

using (1) and evaluate it

υi j =
{

xi j + φi j (xi j − xk j ), if R j < M R
xi j, otherwise

(1)

where φi j is a random number in the range [−1,1], k ∈
{1, 2, . . . SN } (SN : number of solutions in the colony)
is randomly chosen index. Although k is determined
randomly, it has to be different from i . R j is a ran-
domly chosen real number in the range [0,1] and j ∈
{1, 2, . . . D} (D: dimension of the problem). M R, mod-
ification rate, is a control parameter.

6: Apply a selection process between υi and xi based on
Deb’s method

7: Calculate the probability values pi for the solutions
using fitness of the solutions and the constraint vio-
lations (CV ) by (2)

pi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 +
⎛
⎜⎝ f i tnessi

SN∑
i=1

f i tnessi

⎞
⎟⎠ ∗ 0.5 if solution is feasible

⎛
⎜⎝1 − CV

SN∑
i=1

CV

⎞
⎟⎠ ∗ 0.5 if solution is infeasible

(2)

CV is defined by (3)

CV =
q∑

j=1,if g j (x)>0

g j (x) +
m∑

j=q+1

h j (x) (3)

8: For each onlooker bee, produce a new solution υi by (1)
in the neighbourhood of the solution selected depending
on pi and evaluate it

9: Apply selection process between υi and xi based on
Deb’s method

10: If Scout Production Period (S P P) is completed, deter-
mine the abandoned solutions by using “limit” param-
eter for the scout, if it exists, replace it with a new ran-
domly produced solution by (4)
xj

i = x j
min + rand(0, 1)(x j

max − x j
min) (4)
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Fig. 1 Flowchart of the
Artificial Bee Colony algorithm

11: Memorize the best solution achieved so far
12: cycle = cycle+1
13: until cycle = MCN

The scout production process of the algorithm provides a
diversity mechanism that allows new and probably infeasible
individuals to be inserted into the population. In the version
of the ABC algorithm proposed for constrained optimization
problems, artificial scouts are produced at a predetermined
period of cycles (SPP) for discovering new food sources ran-
domly. At each SPP cycle, it is controlled if there is an aban-
doned food source or not. If there is, the scout production
process is carried out.

The probability calculation is different from the one
employed in the version for unconstrained optimization prob-
lems. Since the ABC algorithm does not need to generate fea-
sible solutions in initialization, and infeasible solutions are
allowed to be added to the colony via the scout unit, a prob-
ability value is assigned for each infeasible solution in the
colony as for in a feasible solution. But the ABC algorithm
does feasible solutions credit by raising their calculated the
probability values depending on the proportion of their fit-
ness values out of feasible solutions fitness values sum. The
probability value used by onlookers to choose a food source
site is calculated for an infeasible solution depending on the
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proportion of its constraint violation out of the sum of all
constraints violations.

Experiments 1: large-scale unconstrained optimization

Benchmark problems that we used in order to test the perfor-
mance of the algorithms are given in Table 1. Sphere func-
tion is a convex, unimodal function which has no local min-
imum except the global one. Step has one minimum, and
it is a discontinuous function which represents the problem
of flat surfaces. Flat surfaces are obstacles for optimization
algorithms which do not have variable step sizes, because
they do not give any information as to which direction is
favourable (Digalakis and Margaritis 2002). The surface of
Schwefel function is composed of a great number of peaks
and valleys. The function has a second best minimum far
from the global minimum where many search algorithms are
trapped. Main difficulty of Rosenbrock function is that it
has a nonlinear deep valley with the shape of a parabola that
leads to the global minimum and nonlinear interaction among
the variables. We used the extended version to n variable of
this function in our experiments. Rastrigin function was con-
structed from Sphere adding a modulator term. Its contour
is made up of a large number of local minima whose value

increases with the distance to the global minimum. Ackley
has an exponential term that covers its surface with numer-
ous local minima. In order to obtain good results for this
function, the search strategy must combine the exploratory
and exploitative components efficiently. Griewank function
has a product term that introduces interdependence among
the variables on which an algorithm optimizing each variable
independently fails. As in Ackley function, the optima of Gri-
ewank function are regularly distributed. Penalized functions
are difficult due to the combinations of different periods of
the sine function (Digalakis and Margaritis 2002; Boyer et
al. 2005).

Results of the ABC algorithm were taken for D = 10, 100
and 500 and were compared to those of the DE and PSO
algorithms. In all experiments, common parameters such as
population number, maximum evaluation number were cho-
sen the same for all algorithms. Population size was 100,
and the maximum evaluation number was 1.000.000 for all
functions. Each of the experiments was repeated 30 times
with different random seeds. The other specific parameters
of algorithms are given below:

PSO settings: Cognitive and social components are con-
stants that can be used to change the weighting between
personal and population experience, respectively. In our
experiments, cognitive and social components were both set

Table 1 Benchmark problems used in experiments 1

Function Range Formulation

1 Sphere [−100, 100]n f (x) =
n∑

i=1
x2

i

2 Step [−100, 100]n f (x) =
n∑

i=1
(�xi + 0.5�)2

3 Schwefel [−500, 500]n f (x) =
n∑

i=1
−xi sin(

√|xi |)

4 Rosenbrock [−100, 100]n f (x) =
n−1∑
i=1

[100(xi+1 − x2
i )2 + (xi − 1)2]

5 Dixon-Price [−10, 10]n f (x) = (x1 − 1)2 +
n∑

i=2
i(2x2

i − xi−1)
2

6 Rastrigin [−5.12, 5.12]n f (x) =
n∑

i=1
[x2

i − 10 cos(2πxi ) + 10]

7 Griewank [−600, 600]n f (x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1

8 Ackley [−32, 32]n f (x) = −20 exp

(
−0.2

√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos(2πxi )

)
+ 20 + e

9 Penalized [−50, 50]n

f (x) = π
n

⎧⎪⎪⎨
⎪⎪⎩

10 sin2(πy1)

+
n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]
+(yn − 1)2

⎫⎪⎪⎬
⎪⎪⎭

+
n∑

i=1
u(xi, 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

u(xi , a, k, m) =
⎧⎨
⎩

k(xi − a)m , xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m , xi < −a
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Table 2 Results of PSO, DE and ABC algorithms on unconstrained large-scale benchmark problems

Functions D=10 D = 100 D = 500

PSO DE ABC PSO DE ABC PSO DE ABC

Sphere 0 0 0 0 0 0 181.160 20.330 8.71E-7

Step 0 0 0 1.700 0 0 1621.000 1998.030 0

Schwefel −2654.030 −4177.990 −4189.830 −20100.400 −31182.500 −41898.300 −98168.070 −138152.030 −190906.660

Rosenbrock 0.4265 0 0.013 113.144 132.349 0.055 10.90E+05 87.17E+09 1007.870

Dixon-price 0.666 0.666 0 2.076 0.666 1.26E-06 15315.110 2636.320 309.600

Rastrigin 7.363 0 0 148.249 133.114 0 1033.040 594.690 87.960

Griewank 0.059 0.004 0 0.049 0.001 0 2.200 0.645 0

Ackley 0 0 0 0.732 0 0 3.690 13.000 0.058

Penalized 0 0 0 0.185 0.013 0 5.290 14.81E + 09 3.46E-8

to 1.8. Inertia weight, which determines how the previous
velocity of the particle influences the velocity in the next
iteration, was 0.6.

DE settings: In DE, a trial solution for a parent is pro-
duced after taking the recombination of a mutant vector and
the parent vector (solution). F is a real constant which affects
the differential variation between two solutions and was set
to 0.5 in our experiments. Value of the crossover rate, which
controls the change of the diversity of the population, was
0.9 (Corne et al. 1999).

ABC settings: Except common (population number and
maximum evaluation number), only one control parameter
considered in ABC is “limit”. A food source will not be
exploited and is assumed to be abandoned in case the “limit”
is exceeded. This means that the solution that exceeds the
limit value will not be improved any further. We defined a
relation between the limit value and the dimension of the
problem and the colony functions size, and used SN ∗ D∗0.5
to determine the value of limit.

Mean best values produced by the algorithms are pre-
sented in Table 2. In order to make the comparison clearer,
values below E-12 were assumed to be 0. As seen from
Table 2, in case of dimension is 10, the ABC algorithm finds
the global optimum values on Sphere, Step, Schwefel, Dixon-
Price, Rastrigin, Griewank, Ackley and Penalized functions
(eight functions) while DE finds on Sphere, Step, Rosen-
brock, Rastrigin, Ackley and Penalized functions (six func-
tions) and PSO finds on Sphere, Step, Ackley and Penal-
ized functions (four functions). From these results, ABC
outperforms DE on Schwefel, Dixon-Price and Griewank
functions and DE outperforms ABC just on Rosenbrock
function. While ABC outperforms PSO on Schwefel, Ro-
senbrock, Dixon-Price, Rastrigin and Griewank functions,
PSO cannot outperform ABC on any function. When the
dimension is 100, ABC shows better performance than both
DE and PSO on all of the functions except Ackley func-
tion. On Ackley function, results of the DE and ABC algo-

rithms are similar. Although DE performs better than ABC
on Rosenbrock when D = 10, by the increase in dimension,
the performance of DE deteriorates, but ABC preserves its
robustness. When the dimension is incremented to 500, the
ABC algorithm again produces the best results. From the
results, it can be said that, as the number of function variables
increases, the performance of the ABC algorithm stands out
much more.

Since the benchmark set contains uni-modal (Sphere,
Rosenbrock, Step), multi-modal (Schwefel, Dixon-Price,
Rastrigin, Griewank, Ackley, Penalized), separable (Sphere,
Step, Rastrigin), non-separable (Schwefel, Rosenbrock,
Dixon-Price, Griewank, Ackley, Penalized), non-symmetric
(Dixon-Price) problems, the superiority of the ABC algo-
rithm can be explained by its structure which combines
explorative and exploitative processes in a balanced manner.
In the PSO algorithm, the particles fly in the search space by
the guidance of the particle’s own best and the swarm’s best
while the ABC algorithm does not use the guidance of the best
solution. Although guidance of the best solution may improve
the local convergence speed of the algorithm, it may attenuate
the exploration capability of the algorithm if the algorithm
does not have a suitable global search operator. ABC algo-
rithm has efficient global search mechanisms conducted by a
probabilistic selection scheme in its onlooker bees phase and
a random selection scheme in its scout phase. Moreover, the
PSO algorithm does not have an operator providing diversity
in the population as ABC does in the scout phase. Although,
the DE and ABC algorithms both have mutation operators
weighting the difference of solutions, the DE algorithm uses
a constant scaling factor while the ABC algorithm uses a
random number in the range [−1, 1]. The DE algorithm has
a crossover operator which makes it converge faster in ini-
tial generations than ABC but which may result in premature
convergence in case of multi-modal problems since the DE
algorithm does not have an operator maintaining sufficient
diversity.
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Experiments 2: constrained mechanical design
optimization

In the second part of the experiments, we employed five
well-known constrained engineering problems (Rao 1996):
Welded Beam, Pressure Vessel, Tension/ Compression
Spring, Speed Reducer, Gear Train (See Appendix A).

Welded beam design minimizes the cost of the beam sub-
ject to constraints on shear stress, τ , bending stress in the
beam, σ , buckling load on the bar, Pc , end deflection of
the beam, δ, and side constraints. This problem consists of
a nonlinear objective function, five nonlinear and two linear
inequality constraints. The solution is located on the bound-
aries of the feasible region. The ratio of feasible region to
entire search space is quite small for welded beam problem.
Techniques using adaptive ε for handling constraints can be
effective for solving this problem.

The pressure vessel problem is to minimize the total cost
of material, forming and welding of a cylindrical vessel. Pres-
sure vessel problem has a nonlinear objective function, a non-
linear and three linear inequality constraints. Since the prob-
lem has two discrete variables and two continuous variables,
it is a mixed discrete-continuous constrained optimization
problem.

The tension/compression problem deals with minimizing
of the weight of the tension/compression spring subject to
constraints on the minimum deflection, shear stress, surge
frequency, diameter and design variables. This problem has
a nonlinear objective function, a linear and three nonlinear
inequality constraints.

The aim of the speed reducer design is to minimize the
weights of the speed reducer subject to constraints on bending
stress of the gear teeth, surface stress, transverse deflections
of the shafts and stresses in the shafts. Speed reducer problem
has seven nonlinear and four linear constraints. Four con-
straints are active at the best known feasible solution [3.5000
0.7000 17.0000 7.3000 7.7153 3.3502 5.2867] producing a
2994.34 kg gearbox.

Gear train design aims to minimize the cost of the gear
ratio of the gear train. It has only boundary constraints in the
parameters. Variables to be optimized are in discrete form
since each gear has to have an integral number of teeth. Han-
dling with discrete variables may increase the complexity of
the problem.

The number of linear and nonlinear inequality constraints
of the problems is given in Table 3. On constrained optimi-
zation problems, no single parameter (number of linear, non-
linear, active constraints, the ratio ρ = |F| / |S|, type of the
function, number of variables) is proved to be significant as
a major measure of difficulty of the problem (Michalewicz
et al. 1999).

Details of the engineering design problems we used in the
experiments are given in Appendix A.

Table 3 Number of linear and nonlinear inequality constraints of the
problems

Problem LI NI

Welded beam 2 5

Pressure vessel 3 1

Tension/comp. spring 1 3

Speed reducer 4 7

Gear train 0 0

LI The number of linear inequalities, NI The number of nonlinear
inequalities

In the experiments, results of the SCA (Ray and Liew
2003), versions of the Particle Swarm Optimization algo-
rithm (PSO, UPSOm) (He et al. 2004; Parsopoulos and Vra-
hatis 2005), the Evolution Strategy (μ + λ − E S) (Mezura-
Montes and Coello Coello 2005b) and the ABC algorithms
are compared to each other.

The values of the algorithm-specific control parameters
are given in Table 4. Discrete variables were handled by trun-
cating the real value to its closest integer value. We conducted
30 independent experiments for each problem. The best and
mean values, standard deviations and the maximum evalua-
tion numbers in order to terminate the algorithms are reported
in Table 5. While the best solution, indicated as “Best” in the
table, shows the ability of an algorithm to find the optimal, the
mean and standard deviation values give information about
the robustness of the algorithm. The maximum number of
evaluations may be a metric of convergence rate.

Depending on the results in Table 5, on welded beam prob-
lem, in which the solution is located on the boundaries of the
feasible region, the best solutions are produced by (μ+λ)-ES
and ABC algorithms. When the optimum is located on the
boundaries of the feasible space, the problem gets more diffi-
cult and the solution has neighbours that are both feasible and
infeasible. Although the best solutions found by (μ + λ)-ES
and ABC algorithms are the same, the mean values of 30 runs
show that the ABC algorithm is more successful in solving
the problem for overall runs. The evolution of the mean best
result obtained by the ABC algorithm through 30 runs for
Welded Beam problem is plotted on Fig. 2a.

For pressure vessel problem, (μ + λ)-ES is the most suc-
cessful algorithm in terms of “best” solution. The ABC algo-
rithm and the PSO of He et al. (2004) produce just about the
same best solutions, although the mean of solutions obtained
by ABC algorithm is the lowest in all of the algorithms. Con-
vergence of the mean best result produced by ABC algorithm
through 30 runs for Pressure Vessel problem for the first 500
cycles is figured out on Fig. 2b.

For tension/compression spring problem, in terms of the
best solution the PSO and ABC algorithms deliver equal per-
formances and the mean results of the PSO and ABC algo-
rithms are relatively close. However, the maximum evalua-

123



1008 J Intell Manuf (2012) 23:1001–1014

Table 4 The values of the control parameters of the algorithms

SCA PSO (μ + λ)-ES UPSOm ABC

CS 10*D SS 30 μ 15 χ 0.729 CSabc 30
TS 1,000 MGN 1,000 λ 100 c1 2.05 MCN 1,000
σ 0.25∼1 ω 0.8 Sr 0.97 c2 2.05 MR 0.9

c1 0.5 MGN 300 NR 1 SPP 400

c2 0.5 LR
τ=

(√
2
√

n
)−1

τ ′ =
(√

2n
)−1 UF 0.1 Limit CSabc*D*5

MSS σi(0) = 0.4
(
Δxi/

√
n
)

MGN 5,000
SS 20
Mt R 0.01
w1 100
w2 100

D Dimension of the problem, CS Civilization size, TS Time step, σ variance of normal distribution, SS Swarm size, MGN Maximum generation
number, ω inertia, c1 cognitive component, c2 social component, Sr Selection ratio, LR Learning rate, MSS Mutation step size, χ Constriction factor,
NR Neighbourhood radius, UF Unification factor, MtR Mutation rate, CSabc Colony size, MCN Maximum cycle number, SPP Scout production
period, MR Modification rate

Table 5 Statistical results of the SCA (Ray and Liew 2003)), PSO (He et al. 2004), (μ + λ)-ES (Mezura-Montes and Coello Coello 2005b),
UPSOm (Parsopoulos and Vrahatis 2005) and ABC algorithms

Problem Stats. SCAa PSOa (μ + λ)-ES UPSOm ABC

Welded beam Best NA NA 1.724852 1.92199 1.724852

Mean NA NA 1.777692 2.83721 1.741913

St. Dev NA NA 8.8E-2 0.682980 3.1E-02

Evaluations NA NA 30,000 100,000 30,000

Pressure vessel Best 6171.00 6059.7143 6059.701610 6544.27 6059.714736

Mean 6335.05 6289.92881 6379.938037 9032.55 6245.308144

St. Dev NA 3.1E+2 2.1E+2 995.573 2.05.E+02

Evaluations 20,000 30,000 30,000 100,000 30,000

Ten/comp.spring Best 0.012669 0.012665 0.012689 0.0131200 0.012665

Mean 0.012923 0.012702 0.013165 0.0229478 0.012709

St. Dev 5.9E-4 4.1E-5 3.9E-4 0.00720571 0.012813

Evaluations 25,167 15000 30,000 100,000 30,000

Speed reducer Best 2994.744241 NA 2996.348094 NA 2997.058412

Mean 3001.758264 NA 2996.348094 NA 2997.058412

St. Dev 4.0E+0 NA 0 NA 0

Evaluations 54,456 NA 30,000 NA 30,000

Gear train Best NA NA NA 2.70085E-12 2.700857E-12

Mean NA NA NA 3.80562 E-8 3.641339E-10

St. Dev NA NA NA 1.09631 E-7 5.525811E-10

Evaluations NA NA NA 100,000 60

Bold face indicates the winner of the algorithms, NA: not available
a The welded beam problems are different from the one employed in this paper

tion number of PSO is smaller than that of the ABC algo-
rithm. The evolution of mean best result in the first 500 cycles
obtained by ABC algorithm is given on Fig. 2c.

For speed reducer problem, the best result is found by
SCA, although the better mean value is obtained by (μ+λ)-

ES approach. Results of PSO (He et al. 2004) and results
of UPSOm (Parsopoulos and Vrahatis 2005) are not avail-
able for this problem. Evolution of mean error produced
by the ABC algorithm for the first 500 cycles is presented
on Fig. 2d.
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Fig. 2 Evolution of best mean results obtained by ABC algorithm through 30 runs

Table 6 Parameter and constraint values of the best solutions obtained
for welded beam problem

(μ + λ) ES ABC

x1 0.205730 0.205730

x2 3.470489 3.470489

x3 9.036624 9.036624

x4 0.205729 0.205730

g1 0.000000 0.000000

g2 0.000002 −0.000002

g3 0.000000 0.000000

g4 −3.432984 −3.432984

g5 −0.080730 −0.080730

g6 −0.235540 −0.235540

g7 −0.000001 0.000000

f(x) 1.724852 1.724852

For gear train problem, results of other algorithms except
the UPSOm and ABC algorithms are not available. Results
of the UPSOm and ABC algorithms are similar to each other.
But the maximum generation number of the UPSOm algo-
rithm is much more than the ABC algorithm. Parameter and
constraint values of the best solutions to the problems given
in Table 5 are given in Tables 6, 7, 8, 9 and 10.

For handling constraints, algorithms considered in this
study use some different techniques. The improved PSO
of He et al. (2004) requires a feasible initial popula-
tion (which, for some problems could be very difficult to
get), and it is designed to move only inside the feasible
region of a given problem. Therefore, after a solution
is produced, it is then checked whether it is feasible or
not. If it is not feasible, the previous solution is kept
in the population. The ABC algorithm does not need to
be initialized by feasible solutions, which is a compu-
tationally expensive process. SCA (Ray and Liew 2003)
algorithm uses a multilevel Pareto ranking scheme which
computes the non-dominated rank of every solution based
on the constraint matrix objective vector. For each cluster,
a leader is determined by this ranking and is migrated to
another society in order to exchange intersociety information.
UPSOm (Parsopoulos and Vrahatis 2005) transforms a
constrained problem to an unconstrained problem by penal-
izing the constraint violations. Despite simplicity and direct
applicability of the penalty approach, it requires carefully
tuning of the weights of the penalty functions. (μ+λ)-ES in
(Mezura-Montes and Coello Coello 2005b) uses a sorting
based handling method assuming that any feasible solution
is better than any infeasible one depending on Deb’s three
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Table 7 Parameter and
constraint values of the best
solutions obtained for pressure
vessel problem

SCA PSO (μ + λ) ES ABC

x1 0.8125 0.8125 0.8125 0.8125

x2 0.4375 0.4375 0.4375 0.4375

x3 41.9768 42.098446 42.098446 42.098446

x4 182.2845 176.636052 176.636596 176.636596

g1 −0.0023 0.000000 0.000000 0.000000

g2 −0.0370 −0.035881 0.035880 −0.035881

g3 −23420.5966 0.000000 0.000000 −0.000226

g4 −57.7155 −63.363948 −63.363404 −63.363404

f(x) 6171.0 6059.701610 6059.7143 6059.714339

Table 8 Parameter and
constraint values of the best
solutions obtained for
tension/compression spring
problem

SCA PSO (μ + λ) ES ABC

x1 0.0521602 0.051690 0.052836 0.051749

x2 0.368159 0.356750 0.384942 0.358179

x3 10.648442 11.287126 9.807729 11.203763

g1 0.000000 0.000000 −0.000001 −0.000000

g2 0.000000 0.000000 0.000000 −0.000000

g3 −4.075805 −4.053827 −4.106146 −4.056663

g4 −0.719787 −0.727706 −0.708148 −0.726713

f(x) 0.012669 0.012665 0.012689 0.012665

Table 9 Parameter and constraint values of the best solutions obtained
for speed reducer problem

SCA (μ + λ) ES ABC

x1 3.500000 3.499999 3.499999

x2 0.700000 0.699999 0.7

x3 17 17 17

x4 7.327602 7.300000 7.3

x5 7.715321 7.800000 7.8

x6 3.350267 3.350215 3.350215

x7 5.286655 5.286683 5.287800

g1 −0.073915 −0.073915 −0.073915

g2 −0.197999 −0.197998 −0.197999

g3 −0.493501 −0.499172 −0.499172

g4 −0.904644 −0.901472 −0.901555

g5 0.000000 0.000000 0.000000

g6 0.000633 0.000000 0.000000

g7 −0.7025 −0.702500 −0.7025

g8 0.000000 0.000000 0.000000

g9 −0.583333 −0.583333 −0.583333

g10 −0.054889 −0.051325 −0.051326

g11 0.000000 −0.010852 −0.010695

f(x) 2994.744241 2996.348094 2997.058412

feasibility rules. The ABC algorithm also uses these rules
in the selection process. However, both algorithms use these
rules in different manners; μ + λ)-ES algorithm produces

Table 10 Parameter and constraint values of the best solutions of ABC
algorithm obtained for gear train problem

x1 x2 x3 x4 f(x)

49 16 19 43 0

λ solutions and sorts (μ + λ) solutions using the three cri-
teria based on feasibility. It makes this selection process at
the population level. The ABC algorithm uses these rules
while making a selection between the current solution and its
neighbour. Moreover, in onlooker phase, the ABC algorithm
allows searching the neighbourhood of infeasible solutions
by assigning them probability values proportional to their
constraint violation values. In (Mezura-Montes and Coello
Coello 2005b), the authors argue that (μ + λ)-ES approach
requires more infeasible solutions in the population. In the
ABC algorithm, onlooker and scout processes may pro-
vide the algorithm to have infeasible solutions. Hence, this
improves the exploration capability of the algorithm and
maintains diversity in the population.

In terms of the complexity of the algorithms, while UPSO,
ABC and (μ + λ)-ES have similar complexities, PSO of He
et al. (2004) has more complexity since it requires a feasible
initial population and SCA adds extra computational cost
derived of clustering routines (Mezura-Montes and Coello
Coello 2005b).
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Conclusion

In this work, the performance of Artificial Bee Colony algo-
rithm was compared to that of the Differential Evolution and
Particle Swarm Optimization algorithms on unconstrained
large-scale well-known benchmark problems. It can be con-
cluded that the ABC algorithm has superior performance to
the DE and PSO algorithms on large-scale unconstrained
optimization problems since the ABC algorithm balances
exploration and exploitation processes and employs different
selection operators together: greedy selection, probabilistic
selection and random selection.

Engineering design problems are generally nonlinear and
constrained optimization problems. Therefore, in order to
solve these problems a global optimization algorithm is
required. In this work, a modified version of the ABC
algorithm has been proposed to solve engineering design
problems. From the studies, it can be concluded that ABC
algorithm is a promising tool for optimizing constrained engi-
neering problems.

Acknowledgement This work was supported by Erciyes University,
the Scientific Research Projects Unit under contract FBA–06–22.

Appendix: Constrained engineering design problems

Problem 1: the welded beam problem

Welded beam design illustrated in Fig. 3 minimizes the cost
of the beam subject to constraints on shear stress, τ , bend-
ing stress in the beam, σ , buckling load on the bar, Pc, end
deflection of the beam, δ, and side constraints. There are four
design parameters x1, x2, x3 and x4 correspond to h, l, t and
b variables, respectively, shown in Fig. 3.

The detailed formulation of the problem is as follows:

Fig. 3 The welded beam problem

min
x

f (X) = 1.10471x2
1 x2 + 0.04811x3x4(14.0 + x2)

subject to g1(X) : τ(x) − τmax ≤ 0
g2(X) : σ(x) − σmax ≤ 0
g3(X) : x1 − x4 ≤ 0
g4(X) : 0.10471x2

1 + 0.04811x3x4(14.0 + x2)

−5.0 ≤ 0
g5(X) : 0.125 − x1 ≤ 0
g6(X) : δ(x) − δmax ≤ 0
g7(X) : P − Pc(x) ≤ 0

where τ(X) =
√

(τ ′)2 + 2τ ′τ ′′ x2
2R + (τ ′′)2, τ ′ = P√

2x1x2
,

τ ′′ = M R
J ,

M = P
(

L + x2

2

)
, R =

√
x2

2

4
+
(

x1 + x3

2

)2

,

J = 2

{
x1x2√

2

[
x2

2

12
+
(

x1 + x3

2

)2
]}

,

σ (X) = 6P L

x4x2
3

, δ(X) = 4P L3

Ex3
3 x4

,

Pc = 4.013E
√

x2
3 x6

4
36

L2

(
1 − x3

2L

√
E

4G

)

where P = 6000 lb., L = 14 in, δmax = 0.25 in, E = 30 × 106

psi, G = 12 × 106 psi, τmax = 1, 3600 psi , σmax =
3,0000 psi, X = (x1, x2, x3, x4)

T, 0.1 ≤ x1, x4 ≤ 2.0,
0.1 ≤ x2, x3 ≤ 10.

Problem 2: the pressure vessel problem

Second example is minimization of the total cost comprising
of material, forming and welding costs of a cylindrical vessel
as shown in Fig. 4. The four design variables are x1 (thick-
ness TS of the shell), x2 (thickness TH of the head), x3 (inner
radius R) and x4 (length L of the cylindrical section of the
vessel, not including the head). x1 and x2 are to be in integral
multiples of 0.0625 inch which are the available thicknesses
of rolled steel plates. The radius x3 and the length x4 are
continuous variables.

min
X

f (X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1 x4

+19.84x2
1 x3

subject to g1(X) : −x1 + 0.0193x3 ≤ 0
g2(X) : −x2 + 0.00954 ≤ 0
g3(X) : −πx2

3 x4 − 4
3πx3

3 + 1296000 ≤ 0
g4(X) : x4 − 240 ≤ 0

where X = (x1, x2, x3, x4)
T. The ranges of the design

parameters are 0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200.
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Fig. 4 The pressure vessel problem

Fig. 5 The tension/compression spring problem

Problem 3: the tension/compression spring problem

The tension/compression problem deals with the minimiza-
tion of the weight of the tension/compression spring shown
in Fig. 5, subject to constraints on the minimum deflection,
shear stress, surge frequency, diameter and design variables.

The design variables are the wire diameter, d(x1), the mean
coil diameter, D(x2), and the number of active coils, N (x3).
The problem is formulated as:

min
X

f (X) = (N + 2)Dd2

subject to g1(X) : 1 − D3 N
71785d4 ≤ 0

g2(X) : 4D2−d D
12566(Dd3−d4)

+ 1
5108d2 − 1 ≤ 0

g3(X) : 1 − 140.45d
D2 N

≤ 0

g4(X) : D+d
1.5 − 1 ≤ 0

X = (d, D, N )T, 0.05 ≤ d ≤ 2.0, 0.25 ≤ D ≤ 1.3, 2.0 ≤
N ≤ 15.0

Problem 4: speed reducer design

The aim of the speed reducer design shown in Fig. 6 is to
minimize the weights of the speed reducer subject to con-
straints on bending stress of the gear teeth, surface stress,
transverse deflections of the shafts and stresses in the shafts.
Design parameters of the speed reducer problem, the face
width (b), module of teeth (m), number of teeth in the pin-
ion (z), length of the first shaft between bearings (l1), length
of the second shaft between bearings (l2) and the diameter
of the first shaft (d1) and second shaft (d2) correspond to

Fig. 6 The speed reducer problem

x1, x2, . . . , x7, respectively. Some optimization algorithms
have been reported to have difficulties in finding the feasi-
ble space and is an example of a mixed integer program-
ming problem. The third variable (number of teeth) is of
integer value while all other variables are continuous
(Mezura-Montes and Coello Coello 2005b).

f (x) = 0.7854x1x2
2 (3.3333x2

3 + 14.9334x3 − 43.0934)

−1.508x1(x2
6 + x2

7 ) + 7.4777(x3
6 + x3

7)

g1(x) = 27

x1x2
2 x3

− 1 ≤ 0

g2(x) = 397.5

x1x2
2 x2

3

− 1 ≤ 0

g3(x) = 1.93x3
4

x2x3x4
6

− 1 ≤ 0

g4(x) = 1.93x3
5

x2x3x4
7

− 1 ≤ 0

g5(x) =

((
745x4
x2x3

)2 + 16.9 × 106
)1/2

110.0x3
6

− 1 ≤ 0

g6(x) =

((
745x4
x2x3

)2 + 157.5 × 106
)1/2

85.0x3
7

− 1 ≤ 0

g7(x) = x2x3

40
− 1 ≤ 0

g8(x) = 5x2

x1
− 1 ≤ 0

g9(x) = x1

12x2
− 1 ≤ 0

g10(x) = 1.5x6 + 1.9

x4
− 1 ≤ 0

g11(x) = 1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤
28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤
x7 ≤ 5.5.

Problem 5: gear train design

Gear train design aims to minimize the cost of the gear ratio
of the gear train as shown in Fig. 7.
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Fig. 7 The gear train problem

The gear ratio is defined as:

gear ratio = nBnD

nF n A

The design variables of the problem n A, nB, nD, nF , will
be denoted as x1, x2, x3, x4 , respectively, are all integers in
the range [12,60]. The problem is formulated as:

min
X

f (X) =
(

1
6.931 − x3x2

x1x4

)2

subject to 12 ≤ xi ≤ 60, i = 1, . . . , 4
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