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Abstract Improving manufacturing quality is an important
challenge in various industrial settings. Data mining meth-
ods mostly approach this challenge by examining the effect of
operation settings on product quality. We analyze the impact
of operational sequences on product quality. For this purpose,
we propose a novel method for visual analysis and classifica-
tion of operational sequences. The suggested framework is
based on an Iterated Function System (IFS), for producing a
fractal representation of manufacturing processes. We dem-
onstrate our method with a software application for visual
analysis of quality-related data. The proposed method offers
production engineers an effective tool for visual detection
of operational sequence patterns influencing product quality,
and requires no understanding of mathematical or statisti-
cal algorithms. Moreover, it enables to detect faulty opera-
tional sequence patterns of any length, without predefining
the sequence pattern length. It also enables to visually distin-
guish between different faulty operational sequence patterns
in cases of recurring operations within a production route.
Our proposed method provides another significant added
value by enabling the visual detection of rare and missing
operational sequences per product quality measure. We dem-
onstrate cases in which previous methods fail to provide these
capabilities.
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Introduction

Extensive research had been performed in order to improve
manufacturing quality by identifying the causes for prod-
uct defects. The main methods utilized for the detection of
quality-related data in manufacturing processes are Statisti-
cal Process Control (SPC) methods and data mining tech-
niques.

SPC methods monitor manufacturing processes in order
to identify events which have a significant effect on product
quality based on statistical techniques. These methods collect
data from samples at various points within the process, and
attempt to detect process variations that affect the quality of
the end products. Ben-Gal et al. (2003) categorize SPC meth-
ods into two major categories: (1) Methods for processing
independent data, where observations are not interrelated,
versus methods for processing dependant data. (2) Methods
that are model specific, requiring a priori assumptions on
the process characteristics, usually defined by an underly-
ing analytical distribution or closed-form expression, such as
autoregressive integrated moving average (ARIMA), versus
methods that are termed model generic, which try to estimate
the underlying model with minimum a priori assumptions.

Data mining classification techniques are often applied for
improving manufacturing quality. The data mining task is to
detect the manufacturing parameters (the input attributes)
that affect product quality (the target attribute) and to train
a classifier from sample data. The trained classifier can then
predict product quality based on manufacturing parameters.

The main distinction between classical SPC methods and
data mining techniques in relation to improving manufac-
turing quality is that SPC methods often aim to monitor
the process and not to identify the relationship between
the target attribute and the input attributes. Data mining is
considered “a secondary data analysis of large databases”
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(Hand 1998), since the primary purpose of the database is
data collection. Moreover, the volume of the collected data
makes it impractical to explore and detect complex relations
between the parameters of different processing steps using
standard statistical procedures (Rokach et al. 2008).

Many classification data mining problems for improving
manufacturing quality analyze the effect of operation settings
on product quality, e.g., Rokach and Maimon (2006) and
Rokach (2008). Da Cunha et al. (2006) were the first to ana-
lyze the effect of the production sequence on product quality.
They suggest that the analysis of production sequence is sig-
nificant for assemble-to-order production strategies. Accord-
ing to this type of strategy, the same product components can
be used to configure a variety of end products. The end prod-
ucts are modular, flexible and customized according to the
customer’s request. As result of the growing trend of mass
customization, it is impossible for the manufacturer to build
all possible configurations in advance. Accordingly, assem-
bly is performed only when the confirmed customer order
is received. Nevertheless, in order to compete with other
manufacturers, the assembly lead-time should be as short
as possible and any rework due to quality problems should
be avoided. Since the quality tests of the components can be
performed in advance, the focus should be on the quality of
the final assembly operations. Da Cunha et al. (2006) pro-
vide an industrial example of electrical wire harnesses in the
automobile industry. There are millions of different wire har-
nesses for a unique car model, mainly because wire harnesses
control many functions (such as the electrical windows) and
every function has different versions depending on various
parameters such as engine type.

The fractal visual analysis approach presented in this
paper uses production data to determine the sequence of final
assembly operations that minimizes the risk of producing
faulty products. It extends the research of Da Cunha et al.
(2006) by providing a visual application, enabling a produc-
tion engineer to visually detect operational sequence patterns
that cause product defects. Moreover, it overcomes the lim-
itations of existing methods such as the n-gram approach
utilized by Da Cunha et al. (2006), by detecting faulty oper-
ational sequence patterns of any length, without predefining
the pattern length, and by distinguishing between different
faulty operational sequence patterns, even in cases where
operations are performed more than once in the same manu-
facturing process.

The proposed approach is based on an Iterated Function
System (IFS) for producing a fractal representation of manu-
facturing processes. For demonstration purposes, a software
application is developed for visual detection of faulty opera-
tional sequence patterns. The application is aimed at produc-
tion engineers, and comprises such features as color codes
and zoom functions, in order to facilitate the visual analy-
sis process. Visual data analysis usually allows faster data

exploration and often provides better results, especially in
cases where automatic algorithms fail (Keim 2002). Since
the proposed method and application are aimed at production
engineers, it is of great importance that the faulty operational
sequence pattern detection process and results be intuitive
and easy to understand.

Review of existing methods for discovering production
sequences affecting product quality

In this section we review existing methods for discovering
operational sequences that affect product quality. We present
the main limitations of each existing method. On the pro-
ceeding sections, we demonstrate how the proposed method
overcomes these limitations.

The n-gram approach

Da Cunha et al. (2006) concluded that in order to identify
the production sequences causing faulty products, the chal-
lenge was to find a method for restructuring the input data.
They suggest utilizing the bi-gram representation method in
order to represent the production sequences. The bi-gram is
a subgroup of the n-gram representation method, and a com-
mon and proven method used for text classification problems
(Cavner and Trenkle 1994). A character n-gram is simply
any sequence of n consecutive letters taken from a text. As
an example of bi-grams, consider a two letter wide sliding
window moving from the beginning to the end of a text, one
letter at a time. The content of the window at each step is a
bi-gram.

Consider the production route illustrated in Fig. 1. It com-
prises five operations; afterwards an inspection test is carried
out in order to determine the quality of the product. In this
case the product was identified faulty; hence rework of oper-
ation 1 needs to be done. Afterwards another inspection test
takes place, in order to examine the end product quality. The
production route 31452 transformed by bi-gram representa-
tion is therefore the set of characters: {B_3, 3_1, 1_4, 4_5,
5_2, 2_F}. Character B_3 indicates that operation 3 is the
first operation, and character 2_F indicates that operation 2
is the last operation of the manufacturing process. After uti-
lizing the bi-gram approach for representation, Da Cunha
et al. 2006 utilized an association rules algorithm (Agrawal
and Srikant 1994) in order to extract classification rules, ana-
lyzing the effect of production sequence on the quality of the
product.

The bi-gram representation method has several draw-
backs:

A. It is restricted to finding two length sequence patterns.
More generally, the n-gram approach predefines a spe-
cific sequence pattern length.
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Fig. 1 Illustration of a product route

B. It assumes that a normal operation can be performed
at most once per product, i.e. a manufacturing process
such as 9-2-7-1-5-3-6-9 is not allowed. In case an
operation is performed more than once in a manufactur-
ing process, the bi-gram method is incapable of distin-
guishing between the different occurrences of the same
operation. For example, if the following two unrelated
operational sequence patterns: 3-6-9 and 9-2-7-1 are
responsible for product defects, the bi-gram represen-
tation method detects the faulty operational sequence
patterns 3-6, 6-9, 9-2, 2-7, 7-1, with no additional infor-
mation regarding the fact that these are two unrelated
operational sequence patterns, each consisting of a dif-
ferent occurrence of operation 9. In order for the bi-gram
method to reveal the full operational sequence patterns,
another step is required, examining all permutations of
3-6-9-2-7-1 using association rules.

C. Rokach et al. (2008) provide another limitation of the
bi-gram method. They state that although bi-gram can
be extended to detect patterns whose length is greater
than two operations (i.e. n-gram), it is not efficient
for long sequences, because it requires a much higher
dimensionality. Increasing the dimensionality may cause
some problems to data mining algorithms – a phenom-
enon known as the “curse of dimensionality”.

The method we propose in this work overcomes these disad-
vantages, while providing comparable results.

Hidden Markov model

The Hidden Markov Model (HMM) is a common and proven
machine learning method in which the system being modeled
is assumed to be a Markov process with unknown parame-
ters. The challenge is to determine the hidden parameters
from the observable ones.

HMM models are especially known for their applica-
tions in domains such as speech recognition and biological
sequence analysis. We did not find any work that implements
HMM for the detection of faulty operational sequence pat-

terns in manufacturing processes, although the HMM method
could be utilized to perform this task.

The HMM method has several drawbacks:

A. Adapting this method for the detection of faulty oper-
ational sequence patterns in manufacturing processes
requires a complex task of selecting the model structure
(i.e. defining the states and the available transitions).
Rokach et al. (2008) state that this is especially true in
cases where the model aims to discover long sequence
patterns.

B. The model is considered a “black box” in the sense that
its meaning is inexplicable. Hence this model does not
provide a production engineer tools for comprehending
the causes for product defects.

The method proposed in this paper enables production engi-
neers to visually identify and therefore comprehend the pro-
duction sequences causing product defects.

Iterated function system (IFS)

IFS was originally developed as a method for construct-
ing fractals as discussed in detail in Barnsley (1988). Other
main applications of IFS are image compression (Barnsley
and Hurd 1993) and analysis of genomic sequences (Jeffrey
1990).

We utilize IFS in order to represent manufacturing pro-
cesses as fractals. For this purpose, IFS is used as an iterative
contractive mapping technique that represents a sequence as
vectors in �. This type of transformation of a sequence, also
known as the ‘Chaos Game Representation’, produces a self
similar fractal formed graph, and has the following signifi-
cant properties:

1. An IFS of a sequence provides a unique representation of
it. It can be seen as the ‘fingerprint’ of a sequence. Every
point on the graph achieved via IFS represents uniquely
all sequence history up to this point. Consequently, an
IFS representation comprises all information regarding
all subsequences existing in a sequence.

2. The source of the sequence can be inversed from the
graph.

Barnsley (1988) provides the following definition for IFS:
An Iterated Function System consists of a complete metric
space (X, d) together with a finite set of contraction map-
pings wn : X → X , with respective contractivity factors sn ,
for n = 1, 2, . . ., m.

A mapping wi (x) is contractive in (X, d), if d(wi (y), wi (z))
≤ si · d(y, z)∀y, z ∈ X for some contractivity factor 0 <

si < 1.
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Barnsley (1988) uses the following general notation for IFS
transformation in �2:

wi (x) = wi

([
x1

x2

])
=

[
ai bi

ci di

] [
x1

x2

]
+

[
ei

fi

]

Varying the IFS parameters produces a variety of IFS trans-
formations.

As an example, IFS transformation is utilized for visual
analysis of genomic sequences since Jeffrey’s foundation
essay in 1990. This can be accomplished by using the fol-
lowing IFS:

w1(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[
0.5
0.5

]

w2(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[−0.5
0.5

]

w3(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[
0.5

−0.5

]

w4(x) =
[

0.5 0
0 0.5

] [
x1

x2

]
+

[−0.5
−0.5

]

In order to apply this IFS transformation for visual analysis
of genomic sequences, one follows the following procedure:

1. Associate each nucleotide (A,C,G,T) with one of the con-
tractive mappings wi (x), i ∈ {1, 2, 3, 4}. For example:
A = w1(x), C = w2(x), G = w3(x), T = w4(x).

2. Accordingly, represent the genomic sequence of length N
as a sequence of N corresponding contractive mappings
{wi(n)(x) : i ∈ {1, 2, 3, 4} and n = 1, 2, . . ., N }.

3. Plot x0, an arbitrary point in �2.
4. Recursively apply each of the N contractive mappings

wi(1)(x), wi(2)(x), . . . , wi(N )(x) by their sequence order
as follows: apply contractive mapping wi(1)(x)to point
x0 in order to achieve point x1, then apply contrac-
tive mapping wi(2)(x) to point x1 in order to achieve
point x2, etc. More generally, xn = wi(n)(xn−1) for
n = 1, 2, 3, . . . , N and i ∈ {1, 2, 3, 4}. This results in a
sequence of N points in �2 {xn : n = 1, 2, 3, . . . , N }.

The sequence of points produces a square-formed fractal-like
graph that enables visual analysis of genomic sequences. If
the original sequence of four category types would be uni-
formly random and long enough, this IFS transformation
would produce an equally filled in square. Since the trans-
formed sequence is not uniformly random, the graph reveals
its underlying correlations by varying densities of points in
different zones.

For illustration purposes, Fig. 2 shows the results of imple-
menting the above IFS transformation on amylase enzyme.

This program was coded in MATLABTM language.
The interpretation of the graph is done by the addresses

of points on a fractal (Barnsley 1988). Figure 3 shows the

Fig. 2 IFS transformation of amylase enzyme

Fig. 3 IFS addresses

addresses for this specific IFS. The addresses are utilized
for the purpose of inversing and analyzing the subsequences
that led to a specific point. The length of the inversed subse-
quence depends on the address resolution. In theory, we can
display infinite address resolutions or subsequence lengths.
In practice this is limited by display resolution.

Based on the IFS addresses, one is able to provide the fol-
lowing analysis of the amylase enzyme IFS transformation
presented in Fig. 2: The largest empty square formed area
right and below the center diagonal line and other empty
areas indicate that the subsequence ‘CG’ is rare in amylase
enzyme. Moreover, the A to T diagonal indicates that various
combinations of A and T are frequent in amylase enzyme.

This approach is restricted to visual analysis of sequences
consisting of four category types. Nevertheless, the num-
ber of category types in production sequences is determined
by the number of operation types and cannot be predefined.
Consequently, the proposed algorithmic framework enables
us to visually analyze sequences consisting of any number
of categories, yet to keep the representation in �2 for com-
puter-based visual analysis.

Algorithmic framework

Overview

In order to enable visual analysis of the effect of production
sequence on the product quality measure, we suggest using
the framework presented in Fig. 4. The process consists of
four phases:
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1. Production sequence representation: A domain-specific
task designed to represent each set of manufacturing pro-
cesses that share a common quality measure as one long
string of tokens.

2. Production sequence transformation: Applying an IFS
scheme with circle transformation to each established
string of tokens in order to receive a fractal-like graph
that enables visual analysis of production sequences.

3. Production sequence patterns detection: Visual detec-
tion of operational sequence patterns for each group of
manufacturing processes that share a common product
quality measure. The process is based on interpretation
of the graph via addresses of points on fractals.

4. Classifiers selection: A heuristic for filtering the detected
operational sequence patterns in order to select the ones
that cause product defects. The operational sequence pat-
terns that influence product quality are selected as clas-
sifiers.

The following subsections describe in detail each of the above
phases.

Production sequence representation

The manufacturing process of each product is represented
as a string of tokens, each token representing a different
operation activity. For instance, the production sequence
3-1-4-5-2 illustrated in Fig. 1 is represented as the string
“3 1 4 5 2”.

Next, we group manufacturing processes by their quality
measure (for example passed /failed quality control) or by the
required rework operation. We concatenate the manufactur-
ing process representations of each group to form one string,
while adding a delimiter between manufacturing processes
in order to differentiate between them.

Production sequence transformation

We utilize an IFS with circle transformation, based on the IFS
developed by Weiss (2008). This unique IFS transformation
provides the flexibility of analyzing sequences consisting of
any number of category types, yet keeping representation in
�2 in order to enable visual analysis (Weiss 2008).

Following is a description of the suggested IFS transfor-
mation for a sequence consisting of m types of categories:

wi (x) =
[

αi 0
0 αi

] [
x1

x2

]
+

[
βi

δi

]
for i = 1, 2, . . . , m

When

βi = cos

(
i · 2π

m

)
for i = 1, 2, . . . , m

δi = sin

(
i · 2π

m

)
for i = 1, 2, . . . , m

αi = α ∀i for i = 1, 2, . . . , m

It is also required that α fulfills: α
1−α

< sin
(

π
m

)
. For proof

see Appendix A.
We introduce an explanation of the steps for applying IFS

with circle transformation to a sequence of length N consist-
ing of m category types C = c1, c2, . . ., cm .

1. Associate each category type c1, c2, . . ., cm with one of
the contractive mappings wi (x), i ∈ {1, 2, . . . , m}.

2. Accordingly, represent the sequence of length N consist-
ing of m category types as a sequence of N corresponding
contractive mappings {wi(n)(x) : i ∈ {1, 2, . . . , m} and
n = 1, 2, . . ., N }.

3. Plot x0, an arbitrary point in �2.
4. Recursively apply each of the N contractive mappings

wi(1)(x), wi(2)(x), . . . , wi(N )(x) by their sequence order
as follows: apply contractive mapping wi(1)(x)to point
x0 in order to achieve point x1, then apply contractive
mapping wi(2)(x) to point x1 in order to achieve point
x2, etc. More generally, xn = wi(n)(xn−1) for n =
1, 2, 3, . . . , N and i ∈ {1, 2, 3, . . . , m}. This results in a
sequence of N points in �2 {xn : n = 1, 2, 3, . . . , N }.

The sequence of points produces a circle-formed fractal-
like graph that enables visual analysis of sequences. If the
original sequence of m category types is uniformly random
and long enough, this IFS transformation results in a graph of
a self-similar fractal consisting of m equally filled and discon-
nected circles, each circle at each resolution also comprising
m circles. If the sequence is not uniformly random, the graph
will reveal its underlying correlations by varying densities of
points in different zones.

For example, Fig. 5 shows the result of transforming a uni-
formly random sequence of length N = 20,000 consisting of
m =26 category types. In this example, we chose α = 0.08.
Note that α fulfills the requirement mentioned above. The
Figure presents the 1st and 2nd resolutions of the graph. By

1. Sequence 
Representation

2. Sequence 
Transformation

3. Patterns
Detection

4. Classifiers
Selection 

Fig. 4 The process overview
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Fig. 5 IFS circle transformation of a random sequence of m = 26 categories, 1st and 2nd resolutions

examining the 2nd resolution (zooming into the upper left
area) we can conclude that the sequence was only pseudo-
random, since the circles are not equally filled. This program
was coded in MATLABTM language.

IFS of circle transformation is separately applied to each
of the concatenated strings of tokens established in the first
stage of the process.

Production sequence pattern detection

We refer to the term sequence pattern as a frequent subse-
quence existing in a set of sequences sharing the same target
class. The frequency level is defined by a threshold. More
specifically, we aim to detect operational sequence patterns
in every set of manufacturing processes sharing the same
product quality measure, in order to reveal the operational
sequences causing each type of product defect.

The fractal graph is interpreted by utilizing the address
of points on a fractal (Barnsley 1988). The location of
every point on the graph holds the information of the whole
sequence up to this point. This allows us to translate areas on
the graph such as empty areas, areas of relatively low den-
sity, and areas of relatively high density, into missing sub-
sequences, rare subsequences, and frequent subsequences,
respectively.

As mentioned in Section “Production Sequence Transfor-
mation”, the IFS of circle transformation results in a graph
of a self-similar fractal consisting of m disconnected circles,
each circle at each resolution also comprising m circles. Since
we associated every category, i.e. every operation type, to a
certain contractive mapping, the address of every circle rep-
resents a category type, i.e. an operation activity. More spe-
cifically, category ci , which was associated with mapping

wi (x), is the address of the circle centered at

[
βi

δi

]
. The

address length is determined by the graph resolution. Fig-
ure 6 demonstrates addresses of 1st, 2nd and 3rd resolutions
for IFS of circle transformation. In the example, we show
the result of transforming a uniformly random sequence of

length N = 15,000 consisting of m = 9 categories (c1 = 1,

c2 = 2, . . ., c8 = 8, c9 = 0). The IFS parameter α = 0.08
was chosen.

This program was coded in MATLABTM language.
Defining the addresses of points on the graph enables us

to suggest the following algorithm for the detection of oper-
ational sequence patterns affecting product quality:

1. Detect an area of relatively high density on the 1st reso-
lution of the fractal graph, i.e. one of the m circles com-
prising a high percentage of points. A circle of relatively
high density is defined by a certain percentage threshold.

2. Drill into the relevant circle.
3. Detect an area of relatively high density on the next res-

olution, i.e. one of the m circles comprising a high per-
centage of points.

4. Drill into the relevant circle.
5. Repeat steps 3 and 4 until the relevant circle contains

points almost uniformly distributed between approxi-
mately m circles, with no area of relatively high density.
This is where the sequence pattern ends.

6. Compute the address of the relevant circle location in
order to recover the operational sequence pattern. For
example, if the sequence pattern ends at the 4th resolu-
tion, we conclude that the sequence pattern’s length is
3. We therefore recover the three length address of the
relevant circle from the 3rd resolution.

7. Repeat steps 1–6 for a different area of relatively high
density in order to reveal another operational sequence
pattern.

8. End after exploring all areas of relatively high density,
i.e. after all operational sequence patterns have been
revealed.

During this stage we therefore apply the Operational
sequence Pattern Detection Algorithm separately to each of
the fractal graphs established in the prior stage of the process.
It should be noted that we could also use the same algorithm
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Fig. 6 Addresses of points for 1st resolution, 2nd resolution (zooming
into circle address 1) and 3rd resolution (zooming into circle address
01) resulting from IFS of circle transformation

to explore empty areas and areas of relatively low density for
detecting missing and rare operational sequences per product
quality measure, respectively.

Classifiers selection

Applying stages 1–3 of the algorithm results in a set of oper-
ational sequence patterns detected for each product quality
measure. Next, we filter the operational sequence patterns

that have been detected by using a simple heuristic compris-
ing the following steps:

1. Select one of the operational sequence patterns detected
for a certain product quality measure.

2. Check whether the operational sequence pattern was
detected for other product quality measures. If the
sequence pattern was detected exclusively for the cer-
tain product quality measure, go to step 3. Otherwise go
to step 4.

3. Conclude that the selected operational sequence pattern
affects the specific product quality measure and therefore
it can be selected as a classifier.

4. Conclude that the selected operational sequence pattern
does not affect the product quality measure and therefore
it cannot be used as a classifier.

5. Repeat steps 1-4 for another detected operational
sequence pattern.

6. End after exploring all operational sequence patterns
detected for all product quality measures.

It should be emphasized, that a more accurate approach
would be to apply any data mining classification algorithm
at this stage. For this purpose, each detected operational
sequence pattern represents a different feature. The feature
value is 1 if the corresponding operational sequence pat-
tern exists in a manufacturing process; otherwise it is 0.
The target class is the product quality measure. A classifi-
cation algorithm such as C4.5, which creates a classification
decision tree (Quinlan 1993), could be utilized at this stage.
Nevertheless, since we aim to provide manufacturing
engineers a practical tool that requires no background
in data mining or statistics, our simple heuristic is
sufficient.

Faulty operational sequence detection application

We propose a software application for the purpose of improv-
ing the process of visual data exploration. The software appli-
cation consists of the following main features:

1. Color code: The detection of areas of relatively high den-
sity should be immediately visible to the production engi-
neer. We therefore provide a color code for relatively high
density areas.

2. Zoom function: In order to explore areas of relatively
high density until the full operational sequence pattern
is revealed, it is necessary to zoom into the relevant cir-
cles. The application offers this functionality.

3. Method for recovering the sequence pattern address: The
application presents the corresponding addresses (i.e. the
corresponding operation activities) near each circle as a
part of the graph.

123



488 J Intell Manuf (2012) 23:481–495

The software application was developed in MATLABTM lan-
guage

Experimental study

Overview

This study demonstrates that the proposed method matches
the performance of the previous work of Da Cunha et al.
(2006) given the same conditions and outperforms it when
the complexity of the problem increases, such as what might
occur in more realistic conditions. We present cases in which
our method was exclusively able to reveal the full operational
sequences that affect product quality.

Experiment setup

Quality can be measured in many different ways. Usually
the quality of product batches is measured and not that of a
single product. The quality measure can either have nominal
values (such as “passed” or “not passed”) or continuously
numeric values. Even if the measure is numeric, it can still
be reduced to a sufficiently discrete set of interesting ranges
(Rokach 2008).

The experiment assumes that the quality measure has
nominal values. The goal is to detect patterns in operational
sequences that affect the product quality measure. More spe-
cifically, we wish to detect operational sequence patterns of
any length that cause product defects requiring a specific
rework operation.

For this purpose, we represent each manufacturing process
of each product as a string of tokens, each token representing
a different operation activity.

We generate three manufacturing datasets in order to
examine if the suggested method is capable of visually detect-
ing operational sequence patterns of different lengths that
affect product quality. In order to prove that the method is
effective in identifying the causes of product quality issues
in the presence of noise, deriving in part from unexpected
events, the data includes random events that occur in pro-
duction systems.

Following are the assumptions of the generated datasets:
All three generated datasets share the following assump-

tions:

1. There are 8 types of operation activities. We represent
operation activity types by tokens 0,1,2,…,7.

2. An operation activity can be performed more than once
in a product route.

3. 1,000 product routes were randomly generated per data-
set.

Dataset 1: Faulty manufacturing processes requiring rework
of operation 4

1. We determined that all manufacturing processes of the
generated dataset resulted in faulty products requiring
the rework of operation 4.

2. The following systematic faulty operational sequence
patterns were planted in the dataset:

a. Faulty operational sequence 4-7-2 (i.e. operation 4
followed by operation 7, then followed by operation
2) was randomly distributed in 10% of the faulty
manufacturing processes requiring rework of opera-
tion 4. The sequence pattern’s location in every man-
ufacturing process was randomly chosen with one
exception: the pattern was never planted at the begin-
ning of a manufacturing process.

b. Faulty operational sequence 5-0-4 was randomly
distributed in 10% of the manufacturing processes
requiring rework of operation 4. In these processes,
the sequence pattern was located at the beginning of
the manufacturing process.

Note that operation 4 was deliberately chosen to appear in
both faulty operational sequence patterns. This was done in
order to examine whether the suggested method could still
distinguish between the two different operational sequence
patterns and not mistakenly detect one faulty operational
sequence pattern of 5-0-4-7-2.

Dataset 2: Faulty manufacturing processes requiring
rework of operation 1

1. We determined that all manufacturing processes of the
generated dataset resulted in faulty products requiring
the rework of operation 1.

2. The following systematic faulty operational sequence
pattern was planted in the dataset: faulty operational
sequence 2-2-1 (i.e. operation 2 followed by a second
operation 2, followed by operation 1) was randomly dis-
tributed in 10% of the faulty manufacturing processes
requiring rework of operation 1. The sequence pattern’s
location in every manufacturing process was randomly
chosen with one exception: the sequence pattern was
never located at the beginning of a manufacturing pro-
cess.

Dataset 3: Manufacturing processes of products that passed
quality control

1. We determined that all manufacturing processes of the
generated dataset resulted in products that passed quality
control.

2. No operational sequence pattern was planted in the data-
set
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Algorithmic framework implementation

Production sequence representation

The manufacturing processes generated are represented as
strings of tokens, each token representing a different oper-
ation activity (tokens 0,1,2,…,7 represent all eight types of
operation activities). Since each dataset consists of manufac-
turing processes sharing a common product quality measure,
we concatenate all manufacturing processes per each data-
set to form one string. We choose token ‘8’ as the delimiter.
We denote the concatenated strings as Si , i = 1, 2, 3 corre-
sponding to datasets 1, 2 and 3 respectively.

Production sequence transformation

We transform each string Si , i = 1, 2, 3 using an IFS of circle
transformation. This transformation results in three fractal-
like graphs, i.e. a graph for each dataset.

Faulty production sequence pattern detection

We explore each generated fractal graph in order to detect
operational sequence patterns per product quality measure.

This phase results in a set of operational sequence patterns
for each dataset, i.e. for each product quality measure.

For illustration purposes, we demonstrate a full visual pat-
tern detection process for dataset 1.

Figure 7 shows the 1st resolution of the graph derived from
transforming dataset 1 using an IFS of circle transformation.
Every circle represents an operation activity. The mid-right
circle represents operation activity 0. Then, moving counter-
clockwise to the following circles, operations activities 1-7
and the delimiter 8 are represented respectively.

The color code we chose for this experiment was red for
points located in relatively high density areas, and blue for
the rest of the points. We define areas of relatively high den-
sity in this experiment as circles of 3rd resolution that consist
of more than 0.5% of the points. We can easily visually detect
three areas of relatively high density located in circles 0, 2
and 4 (See Fig. 7).

Table 1 summarizes the steps for exploring a complete
faulty operational sequence pattern for dataset 1.

Similarly, we visually detect the remaining operational
sequence patterns of all three datasets. A full demonstration
can be found in Appendix B.

Classifiers selection

We filter the operational sequence patterns detected in the
three datasets by implementing the suggested heuristic.

All production sequence patterns detected (presented in
Table 1 and in Appendix B) were unique for each prod-
uct quality measure. We therefore conclude that all detected
operational sequence patterns affect product quality. Explic-
itly, all detected operational sequence patterns are selected
as classifiers.

Fig. 7 IFS graph, 1st resolution. Note that three areas of relatively high density marked by color code red are detected in circles 0, 2 and 4. (Color
figure online)
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Table 1 Exploring an operational sequence pattern from IFS graph of dataset 1

Process step Action Result Conclusion Corresponding figure

1 Explore 1st resolution of
dataset 1 IFS graph

One relatively high
density area is detected
in circle address 2.

Partial sequence pattern
detected: 2

Fig. 8

2 Zoom into circle address
2

An area of relatively
high density is
detected in circle
address 72.

Partial sequence pattern
detected: 7-2

Fig. 9

3 Zoom into circle address
72

An area of relatively
high density is
detected in circle
address 472.

Partial sequence pattern
detected: 4-7-2

Fig. 10

4 Zoom into circle address
472

1. No area of relatively
high density is
detected

1. Full sequence pattern
detected: 4-7-2

Fig. 11

2. Circle address 8472 is
nearly empty

2. Sequence 8-4-7-2 is rare

Interpretation: The first faulty operational sequence pattern we discover for dataset 1 is therefore 4-7-2. Note that circle address 8472 is nearly
empty (See Fig. 11), i.e. sequence 8-4-7-2 is rare. Since token 8 represents the delimiter, it represents the beginning of a manufacturing process in
this case. We therefore conclude that operational sequence pattern 4-7-2 may be the cause of product defects requiring rework of operation 4 in
cases where the sequence pattern is not performed at the beginning of a manufacturing process

Fig. 8 IFS graph, 1st resolution. One area of relatively high density is
detected in circle address 2

Fig. 9 IFS graph, zooming into circle address 2. An area of relatively
high density is detected in circle address 72

Fig. 10 IFS graph, zooming into circle address 72. An area of rela-
tively high density is detected in circle address 472

Fig. 11 IFS graph, zooming into circle address 472. Points seem to be
almost uniformly distributed between circles of addresses 0472-7472.
No area of relatively high density is detected

123



J Intell Manuf (2012) 23:481–495 491

Experimental results

We present a summary of the faulty operational sequence pat-
terns detected by the suggested algorithm, compared to those
detected by the bi-gram approach suggested by Da Cunha
et al. (2006).

Following are the detected faulty operational sequence
patterns causing product defects:

1. Operational sequence pattern 4-7-2, in cases where it is
not performed at the beginning of a manufacturing pro-
cess, is the cause of faulty products requiring rework of
operation 4.

2. Operational sequence pattern 5-0-4, in cases where it is
performed at the beginning of a manufacturing process
(i.e. the full sequence pattern is 8-5-0-4), is the cause of
faulty products requiring rework of operation 4.

3. Operational sequence pattern 2-2-1, in cases where it is
not performed at the beginning of a manufacturing pro-
cess, is the cause of faulty products requiring rework of
operation 1.

Table 2 Faulty sequence patterns requiring rework of operation 4:
results summary

Method Faulty sequence patterns detected

Bi-gram approach
suggested by Da Cunha
et al. (2006)

8-5

5-0

0-4

4-7

7-2

Fractal visualization
method

4-7-2 rarely occurs after 8 (i.e.
rarely occurs at the beginning of
a manufacturing process)

8-5-0-4 (5-0-4 mostly occurs at the
beginning of a manufacturing
process)

Operation 4 appears on both
patterns, but these are 2 different
occurrences of it.

Table 3 Faulty sequence patterns requiring rework of operation 1:
results summary

Method Faulty sequence patterns detected

Bi-gram approach
suggested by Da Cunha
et al. (2006)

2-1

2-2

Fractal visualization
method

2-2-1 rarely occurs after 8
(i.e. rarely occurs at the beginning
of a manufacturing process)

Tables 2 and 3 compare the results of the faulty operational
sequences detected by the suggested fractal visualization
algorithm to those detected by the approach suggested by
Da Cunha et al. (2006).

Conclusions and further research

The assemble-to-order strategy is aimed at reducing product
lead-time while offering a large portfolio of products. Since
the delivery time is short, any product rework may violate the
delivery time constraint. Rework of a faulty product reduces
the cost of faults when its cost is lower than the cost of the lost
material and labor. Nevertheless, when the product delivery
time is a contractual requirement, overdue payment is added
to the cost of rework. This type of fault should be particularly
avoided (Da Cunha et al. 2006).

Assemble-to-order strategy enables to perform quality
tests on the stocked modules without impacting the assembly
schedule. Consequently, quality tests should focus on final
assembly operations (Da Cunha et al. 2006).

The fractal visual analysis approach presented in this
paper uses production data to determine the sequence of final
assembly operations that minimizes the risk of producing
faulty products.

The proposed method has the following advantages:

1. The proposed method enables visual data analysis. The
main advantages of visual data exploration techniques
over automatic data mining techniques from statistics or
machine learning are as follows (Keim 2002):

A. Visual data exploration can easily deal with noisy
data.

B. Visual data exploration is intuitive and requires no
understanding of mathematical or statistical algo-
rithms or parameters.

Therefore we provide an analytical tool that can be eas-
ily utilized by the engineering staff in a manufacturing
environment.

2. The proposed method can detect faulty production
sequence patterns of any length without predefining the
length of the pattern. It is only limited by display reso-
lution.

3. In case an operation activity is performed more than
once in a product route, such as might occur in realis-
tic conditions (e.g., in the semi-conductor industry), the
proposed method is able to distinguish between the
different occurrences of the same operation activity. For
example, as demonstrated, if the following two faulty
operational sequence patterns, 8-5-0-4 and 4-7-2, cause
a product defect, our method detects these two different
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patterns and therefore clearly distinguishes between the
different occurrences of operation 4.

4. The proposed method provides significant added value
by enabling visual detection of rare and missing opera-
tional sequences per product quality measure.

In the next phase we plan to apply the method to actual data
from a manufacturing assemble-to-order environment, e.g. an
automobile plant. This step will help in studying the robust-
ness of this approach.

Further research should consider additional manufactur-
ing parameters that affect product quality such as operation
settings and material data.

The algorithmic framework is applicable for many addi-
tional domains, for example, visual analysis of churned
customers’ action history, visual analysis of product defect
codes history, and more.

The application is utilized by the General Motors research
labs located in Bangalore, India, for visual analysis of vehicle
warranty claims data.

Appendix A

The described IFS with circle transformation must be a
‘totally disconnected’ IFS (Barnsley 1988). In other words,
the graph resulting from circle transformation must consist of
m disconnected circles on all resolutions. Theorem In order
to fulfill this requirement, the relation between α and number
of categories m needs to fulfill:

α

1 − α
< sin

(π

m

)

Proof The graph resulting from IFS of circle transformation
is in the form of m circles, with each circle at each resolution
comprising m circles.

Fig. 12 Tangent circles of radius R on 1st resolution

We assume a case of circles of the 1st resolution being
tangent to each other (See Fig. 12).

Due to contraction mapping by α, the radius of the m cir-
cles at the 1st resolution is α, and contracts at the factor of α

respectively for every resolution. In other words, the radius
of the circle in resolution j is given by α j .

Note that the radius of the primary circle on the 1st reso-
lution equals 1. (The primary circle is the main circle which
comprises all centers of m circles of the 1st resolution. See
Fig. 12).

In order for the IFS to be ‘totally disconnected’, the dis-
tance between two centers of two neighboring circles on the
1st resolution must be larger than twice the sum of the radii
of all circles in all resolutions.

The sum of the radii of all circles in all resolutions is
denoted as R and is given by:

R =
∞∑

k=1

αk = α

1 − α

The distance between two centers of two neighboring cir-
cles on the 1st resolution is denoted as D, and is given by:
D = 2sin(π/m), see Fig. 12.

Therefore, in order for the circles to be disconnected, they
should obey:

2R < D ⇔ α

1 − α
< sin

(π

m

)
�	

Appendix B

Full demonstration of sequence pattern visual detection pro-
cess—continuation of Section “Faulty production sequence
pattern detection”.

See Tables 4, 5 and 6.

Fig. 13 IFS graph, 1st resolution. One relatively high density area is
detected in circle address 4
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Table 4 Exploring a second sequence pattern from IFS graph of dataset 1

Process step Action Result Conclusion Corresponding figure

1 Explore 1st resolution of
dataset 1 IFS graph

One relatively high density
area is detected in circle
address 4.

Partial sequence pattern
detected: 4

Fig. 13

2 Zoom into circle address 4 An area of relatively high
density is detected in
circle address 04.

Partial sequence pattern
detected: 0-4

Fig. 14

3 Zoom into circle address 04 An area of relatively high
density is detected in
circle address 504.

Partial sequence pattern
detected: 5-0-4

Fig. 15

4 Zoom into circle address
504

An area of relatively high
density is detected in
circle address 8504.

Partial sequence pattern
detected: 8-5-0-4

Fig. 16

5 Zoom into circle address
8504

No area of relatively high
density is detected

Full sequence pattern
detected: 8-5-0-4

Fig. 17

Interpretation: The second sequence pattern discovered for dataset 1 is 8-5-0-4. The second sequence pattern consists of three operations and the
delimiter 8. Hence 5-0-4 is the operational sequence pattern, while token 8 indicates that operational sequence pattern 5-0-4 is mostly located at
the beginning of the manufacturing process. We therefore conclude that operational sequence pattern 5-0-4 may be the cause for product defects
requiring rework of operation 4, in cases where operation 5 is the first assembly operation, operation 0 is the second operation, and operation 4 is
the third operation in the manufacturing process

Fig. 14 IFS graph, zooming into circle address 4. An area of relatively
high density is detected in circle address 04

Fig. 15 IFS graph, zooming into circle address 04. An area of rela-
tively high density is detected in circle address 504

Fig. 16 IFS graph, zooming into circle address 504. An area of rela-
tively high density is detected in circle address 8504

Fig. 17 IFS graph, zooming into circle address 8504. Points seem to
be almost uniformly distributed between circles 08504-78504. No area
of relatively high density is detected
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Table 5 Exploring a sequence pattern from IFS graph of dataset 2

Process step Action Result Conclusion Corresponding
figure

1 Explore 1st resolution of
dataset 2 IFS graph

An area of relatively high
density is detected in
circle address 1.

Partial sequence
pattern detected:
1

Fig. 18

2 Zoom into circle address 1 An area of relatively high
density is detected in
circle address 21.

Partial sequence
pattern detected:
2-1

Fig. 19

3 Zoom into circle address 21 An area of relatively
high density is
detected in circle
address 221.

Partial sequence
pattern detected:
2-2-1

Fig. 20

4 Zoom into circle address
221

1. No area of relatively high
density is detected

1. Full sequence
pattern detected:
2-2-1

Fig. 21

2. Circle address 8221 is
nearly empty

2. Sequence
8-2-2-1 is rare

Interpretation: The detected operational sequence pattern for dataset 2 is therefore 2-2-1. Note that circle address 8221 is nearly empty, i.e. sequence
8-2-2-1 is rare. Since token 8 represents the delimiter, it represents the beginning of a manufacturing process in this case. We therefore conclude
operational sequence pattern 2-2-1 may be the cause for product defects requiring rework of operation 1 in cases where the sequence pattern is not
performed at the beginning of a manufacturing process

Fig. 18 IFS graph, 1st resolution. An area of relatively high density is
detected in circle address 1

Fig. 19 IFS graph, zooming into circle address 1. An area of relatively
high density is detected in circle address 21

Fig. 20 IFS graph, zooming into circle address 21. An area of rela-
tively high density is detected in circle address 221

Fig. 21 IFS graph, zooming into circle address 221. Points seem to be
almost uniformly distributed between circles of addresses 0221-7221.
No area of relatively high density is detected

123



J Intell Manuf (2012) 23:481–495 495

Table 6 Exploring sequence patterns from IFS graph of dataset 3

Process step Action Result Conclusion Corresponding
figure

1 Explore 1st resolution of dataset
3 IFS graph

No area of relatively high
density is detected

No sequence patterns exist in
the dataset

Fig. 22

Interpretation: Dataset 3 represents all manufacturing processes that resulted in products that passed quality control. No production sequence pattern
was detected for these processes

Fig. 22 IFS graph, 1st resolution. No area of relatively high density is
detected
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