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Abstract A kind of serial-parallel hybrid polishing
machine tool based on the elastic polishing theory is devel-
oped and applied to finish mould surface with using bound
abrasives. It mainly consists of parallel mechanism of three
dimensional moving platform, serial rotational mechanism
of two degrees of freedom and the elastic polishing tool sys-
tem. The active compliant control and passive conformity
of polishing tool are provided by a pneumatic servo sys-
tem and a spring, respectively. Considering the contradiction
between the machining quality and efficiency, the optimi-
zation model of process parameters is found according to
different machining requirements, namely single objective
optimization and multi-objective optimization, which pro-
vide a choice of parameters as a basis for the operators in
practice. Many polishing experiments are conducted to col-
lect the data samples. The genetic algorithm integrated with
artificial neural network is used for researching for the opti-
mal process parameters in term of the various optimization
objectives. This research also lays the foundation for further
establishing polishing expert system.
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Introduction

Mould polishing with bound abrasives is a kind of finish-
ing process in order to obtain good surface quality and
shape accuracy of workpiece. In the machining of mould,
it often takes a long time to finish the mould surfaces pol-
ishing, which are usually finished by the experienced oper-
ators at present. So it is meaningful to develop a kind of
special mould polishing equipment. Many automatic finish-
ing equipment used for mould surface polishing have been
investigated, which are mostly based on the conventional
machine tool structure (Ahn et al. 2002; Wu et al. 2007;
Pessoles and Tournier 2009), the industrial robot structure
(Furukawa et al. 1996; Tsai and Huang 2006; Fusaomi et al.
2007) and the parallel structure (Li 2002; Brecher et al. 2006;
Liao et al. 2008). For the polishing system based on the
industrial robot structure, they have many advantages such
as greater workspace, good flexibility and so on, and the
control of force and position can be finished steadily. How-
ever it is relatively difficult for finishing plan and track of
free-form surface like computer numerical control (CNC)
machine and trajectory error is relatively great. For parallel
polishing machine, it is usually faster and stronger than tradi-
tional articulated polishing robot. However, their workspaces
are usually more limited. In recent years, the hybrid machine
tool with serial-parallel conformation has been developed
(Huang et al. 2005). This kind of machine structure has
the problems of motion inaccuracy due to the low stiff-
ness. The polishing of mould surfaces is often finished by
the elastic polishing and polishing force is relatively small,
which decrease the requirements for stiffness and accuracy of
machine. So this paper presents that the serial-parallel hybrid
machine is applied to the finishing process of mould surfaces,
which gives full play to the advantage of this machine and
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provides a kind of finishing equipment for mould manufac-
ture.

It is an important problem for every mould polishing
system to deal with the contradiction between quality and
efficiency in machining. Among selecting machining param-
eters in process planning is a very key step, which have effects
on the quality and efficiency. The polishing efficiency is rel-
atively low or the better surface roughness can’t be obtained
if the selected parameters are conservative and far from the
optimum values. At present, automation and optimization of
manufacturing processes are becoming increasingly impor-
tant tasks due to the increasing demand for higher preci-
sion and productivity in manufacturing processes in modern
industry (Lee and Shin 2004). Much work about the polishing
process research used for mould polishing with bound abra-
sives has been done, such as the polishing expert system inte-
grated with sensor information (Ahn et al. 2001), an intelli-
gent polishing system using an acoustic emission-based intel-
ligent monitoring scheme (Ahn et al. 2002), the optimization
of process parameters based on the Taguchi method (Tsai
and Huang 2006), etc. Levent and Krishnaswamy (1997) pre-
sented an overview of robot-assisted die and mould polishing
with emphasis on process modeling in the framework of a
conceptual automation structure consisting of process, con-
trol, surface measurement and planning phases. Above these
research results lay a foundation for the establishing of mould
polishing expert system and developing of the intelligent pol-
ishing machinery like a skilled operator.

In this paper, main structure and work principle of this self-
developed serial-parallel hybrid machine tool based on the
elastic polishing theory is presented firstly. In order to pro-
vide a choice of parameters as a basis for the operators in prac-
tice, the optimization model of process parameters is found
according to different machining requirements, namely sin-
gle objective optimization and multi-objective optimization,
which enable solve the contradiction between surface quality
and machining efficiency. Many polishing experiments were
conducted to collect the data samples. The GA integrated with
ANN model is used for researching for the optimal process
parameters according to the various optimization objectives.

Structure of machine tool and experiment

The serial-parallel hybrid polishing machine tool

Structure diagram of the polishing machine tool is shown
in Fig. 1. This machine tool mostly consists of the parallel
mechanism, the serial rotational mechanism and the elas-
tic polishing tool system. The parallel mechanism has three
degrees of freedom and controls space position of polish-
ing tool. The serial rotational mechanism has two rotational
degrees of freedom and controls pose of polishing tool. The
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Fig. 1 Structure diagram of the polishing machine tool

end actuator based on the elastic polishing theory is fixed in
the serial mechanism. The polishing tool is driven the spindle
motor in end actuator and polishing force is controlled by
adjusting cylinder pressure of pneumatic servo system. Equal
material removal can be obtained by real-timely controlling
pressure, velocity and displacement.

Elastic polishing is defined that the tool system using the
elastic abrasive tool, such as rubber binder or resin binder,
are compliant controlled (i.e. active compliant control and
passive compliant control) according to the surface shape
of workpiece. The active compliant tool can actively adjust
the tool compliance by using actuators. However, the passive
compliant tools are made only by employing various passive
mechanisms, such as springs, and it relies on compliance in
the tool itself to maintain a nominal contact force. The serial-
parallel hybrid machine tool is very useful for the polishing
of the free-form surface because this machine tool has the
advantages of both parallel mechanism and serial mechanism
such as the rapid response, the short transmission chain and
the high environmental adaptability. Meanwhile, it can com-
pensate the shortcoming of the small workspace of the paral-
lel mechanism. Yu et al. (2004) studied the dynamic charac-
teristics of the hybrid machine tool by means of the theory of
dynamics of flexible multi-body systems. The stable status of
polishing can be obtained at all periods of the movement of
the machine except the beginning of the movement. In addi-
tion, CNC system of this machine tool is self-developed par-
allel double CPU system based on Programmable Multi-Axis
Controller (PMAC). Background management and human-
machine interface etc. are conducted by industrial Personal
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Fig. 2 Process system scheme of the serial-parallel machine tool

Computer (PC). Real-time motion control foreground such as
six-axial motion and switch signal control are implemented
by PMAC.

The process system scheme of this polishing machine
is presented in Fig. 2. A series of steps involves subdivid-
ing curved surface, planning path, selecting abrasive tool
and machining parameters. Subdivision and path planning
for free-from surface have been investigated. These research
results play a certain guiding role in practical machining.
Selecting machining parameters in process planning is a very
key step, which have effects on the quality and efficiency. The
following contents is how to selecting machining parameters
can meet different requirements considering the contradic-
tion between quality and efficiency.

Polishing experiment

A number of polishing experiments were implemented in the
serial-parallel hybrid polishing machine tool. According to
the characteristics of machine tool, tool speed n(rotational
speed of polishing tool), feed rate Va(movement velocity of
moving platform), force F(the axis force acted on the tool
pole by pneumatic cylinder) and pose angle αare consid-
ered process parameters that have great impact on the sur-
face roughness of workpiece in this research. Pose angle is the
included angle between the out-normal direction of curved
surface and the tool pole axis direction. The about experiment
conditions are given in Table 1. By polishing experiments,
the training samples and the testing samples are achieved,
which are given in Tables 2 and 3, respectively. The parame-
ters in the experiment are determined according to the work-
ing range of machine tool and the experience. The average
surface roughness before polishing Ra0 is equal to 3.5 um.

Table 1 Parameters of polishing experiment

Item Condition

Tool diameter φ15 mm

Tool shape Sphere

Bond type Resin

Abrasive grit 240#

Abrasive material White aluminium oxide (WA)

Workpiece shape Plane

Workpiece material 45 Steel

Table 2 Training samples for ANN model

No. Tool speed
n(rpm)

Feed rate
V a(m/min)

Force
F(N)

Pose angle
α(◦)

Ra(um)

1 600 0.2 40 30 1.014

2 600 0.4 10 40 1.542

3 600 0.6 20 50 1.521

4 600 0.8 30 60 1.813

5 800 0.2 10 50 1.495

6 800 0.4 20 60 1.518

7 800 0.6 30 30 0.997

8 800 0.8 40 40 1.449

9 1,000 0.2 20 60 1.176

10 1,000 0.4 30 50 0.745

11 1,000 0.6 40 40 0.893

12 1,000 0.8 10 30 1.538

13 1,200 0.2 30 40 0.415

14 1,200 0.4 40 30 0.551

15 1,200 0.6 10 60 1.543

16 1,200 0.8 20 50 1.272
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Table 3 Testing samples for ANN model and prediction results

No. Tool speed
n(rpm)

Feed rate
V a(m/min)

Force
F(N)

Pose angle
α(◦)

Ra (um)

Experiment Prediction

1 800 0.2 10 30 1.319 1.201

2 800 0.6 10 50 1.706 1.658

3 800 0.2 30 30 0.785 0.638

4 800 0.6 30 50 1.171 1.212

5 1,200 0.2 30 30 0.365 0.332

6 1,200 0.6 30 50 0.752 0.814

7 1,200 0.2 10 30 0.898 0.957

8 1,200 0.6 10 50 1.286 1.476

Polishing force was measured with force sensor (NS-TH1
type). The average surface roughness of workpiece after pol-
ishing was measured with a geometric profile tester (SRM-
1D type). Average surface roughness Ra is calculated by
taking the average of 10 different positions.

Surface roughness and polishing efficiency

Prediction model of surface roughness

Polishing is a kind of complex material removal operation
involving rubbing, ploughing and cutting. The surface rough-
ness of workpiece is related to the polishing pressure, feed
rate, tool speed, the abrasive grain size etc. There are many
about the prediction models of surface roughness at pres-
ent. Benardos and Vosniakos (2003) presented the various
methodologies and practices that are being employed for
the prediction of surface roughness. The approaches are
classified into those based on machining theory, experimen-
tal investigation, designed experiments and artificial intel-
ligence. Many researches are carried out to achieve the
surface roughness model of polishing, which involve machin-
ing theory (Xi and Zhou 2005; Savio et al. 2009), experi-
mental investigation (Ahn et al. 2001; Márquez et al. 2005),
designed experiments (Tsai and Huang 2006) and artificial
intelligence.

Computing intelligence techniques, such as artificial neu-
ral network (ANN), genetic algorithms (GA) and so on, have
been widely applied in many engineering optimization prob-
lems (Brinksmeier et al. 1998; Westkämper and Schmidt
1998; Zhang et al. 2009). Among artificial neural networks
(ANNs) are widely accepted as a technology offering an
alternative way to simulate complex and ill-defined prob-
lems. They have been used in diverse applications in con-
trol, robotics, pattern recognition, forecasting, power sys-
tems, manufacturing, optimization (Malakooti and Raman
2000), signal processing, etc., and they are particularly use-
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Fig. 3 The structure of BP neural network

ful in system modeling (Shen et al. 2007). ANNs has been
widely applied in prediction of surface roughness of part at
present, such as milling machining (Benardos and Vosniakos
2002; Oktem et al. 2006) and the electrical discharge machin-
ing (Markopoulos et al. 2008). ANN theory, the nonlinearity
tool is good at solving nonlinearity problem with charac-
ters of nonlinearity map, self-organizing configuration and
high-parallel process. Network framework based on back-
propagation (BP) is applied most broadly as a kind of ANN
model, because it solves the problem that multilayer network
with hidden layer studies difficultly. A feed forward BP neu-
ral network is used for modeling surface roughness in this
paper.

A neural network is composed of a set of neurons grouped
in layers. Usually three types of layers are used: input layer,
hidden layer and output layer. The neural network architec-
ture used in this study is shown in Fig. 3 in terms of above
experiments. It is seen from this figure that the network con-
sists of one input layer (four neurons), one hidden layer and
one output layer (one neuron). Neurons in input layers are
tool speed, feed rate, force and pose angle, respectively. Neu-
ron of output layer is average surface roughness of workpiece.
The node number of the hidden layer determined by train
trials is equal to 6. In this study, the sample data is divided
into two groups, namely the training samples and the
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Fig. 4 Flowchart of ANN model

testing samples. It has to be stressed that the testing sam-
ples do not participate in the training process. The testing
samples are only used to test the trained ANN. Training pro-
gram of neural network is shown in Fig. 4. The basic steps
of ANN model can be summarized as follows:

Step 1: Input data and normalization
For stability reasons it is necessary to normalize the
values of input and output to a specific range, which
is commonly between −1 and +1. To decrease cal-
culation error, sample data is normalized the range
[0.1, 0.9]. Normalization equation is given as fol-
lows:

xin = 0.1 + 0.8 × (x − xmin)/(xmax − xmin) (1)

where x is the sample value before normalization,
xin is the sample value after normalization, xmin and
xmax are the minimum and maximum value of sam-
ple data, respectively. Denormalization equation is
expressed as

yout = ymin + (y − 0.1) × (ymax − ymin)/0.8 (2)

where y is the output value, yout is the output value
after denormalization, ymin and ymax are the min-
imum and maximum value of output data, respec-
tively.

Step 2: Network initialization
The powerful Levenberg-Marquardt (LM) algo-
rithm, which dramatically improves the ability to
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Fig. 5 The training epoch versus MSE

generalize and the required training time, is selected
for training the ANN. The activation function of
the hidden layers is the Tan-sigmoid transfer func-
tion. Linear transfer function was used for the output
layer.

Step 3: Training network
During the training, input data is presented to the
network and the output data of the network is com-
pared with a desired output. The training stops when
mean square error (MSE) is less than the goal value
(0.001) during training. Figure 5 shows the training
epoch versus MSE.

Step 4: Testing network
The trained neural network is tested using testing
samples in Table 3. The ANN model is saved when
sum square error (SSE) of prediction results is less
than the goal value (0.03). The results predicted from
the ANN model are compared with experimental
results shown in Table 3. Average relative error is
equal to 0.0906. It can be seen from this table that
prediction results of ANN model presents a good
agreement with experimental results. It can basically
map the relationship between input parameters and
output parameter.

Polishing efficiency

The polishing efficiency is defined as follows: for a specified
area, the amount of surface roughness reduced by a polishing
task with a certain time span (Tsai and Huang 2006):

E f = �Ra A

T
= (Ra0 − Ra)A

T
(3)
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where E f is the polishing efficiency, Ra0 is average surface
roughness before polishing, Ra is average surface rough-
ness after polishing, A is the area polished and T is the
total polishing time. According to the elastic mechanics, it
is assumed that the pressure distribution is Hertzian at the
contact between the tool and the workpiece surface. The
contact region between the tool and the workpiece is dif-
ferent at various forces. The width and depth of the mate-
rial removal profile increase with increasing polishing force
(Zhang et al. 2002), namely the contact area and removal
depth also increase when polishing force increases in cer-
tain conditions. However, polishing area per unit time is
mainly related to feed rate in this research. The effect of force
on the polishing efficiency is mainly the material removal
depth, namely related to Ra. So E f is calculated as fol-
lows:

E f = (Ra0 − Ra)V aL (4)

where L is contacting width orthogonal to feed rate direction
in contact region between tool and workpiece.

Optimization of process parameters

In this research, two kinds of optimization cases are
presented in detail, namely single objective optimization
(surface roughness) and multi-objective optimization (sur-
face roughness and polishing efficiency). Single objective
optimization should be selected if minimum surface rough-
ness is only required. To ensure better surface roughness and
high polishing efficiency at the same time, multi-objective
optimization should be selected.

Optimization model

(1) Single-objective optimization
Decision variables
Tool speed n(rpm), feed rate Va(m/ min), force F(N ),
pose angle α(◦).
Objective function
Minimum surface roughness Ra : f1(X) = f1[n, V a,

F, α], namely the prediction model of surface rough-
ness based on the ANN.
Variable bounds

600 ≤ n ≤ 1,200(rpm), 0.2 ≤ Va ≤ 0.8(m/ min),

10 ≤ F ≤ 40(N ), 30 ≤ α ≤ 60(◦)

Fitness function
Fitness function F1(X) is defined by

F1(X) = 1/ f1(X) (5)

(2) Multi-objective optimization

Decision variables
Tool speed n(rpm), feed rate Va(m/ min), force F(N ),

pose angle α(◦).
Objective function
Minimum surface roughness Ra : f1(X) = f1[n, V a,

F, α], namely the prediction model of surface roughness
based on the ANN.

Maximum polishing efficiency E f : f2(X) = f2[n, V a,

F, α] = (Ra0 − Ra)V aL
Variable bounds

600 ≤ n ≤ 1, 200(rpm), 0.2 ≤ Va ≤ 0.8(m/ min),

10 ≤ F ≤ 40(N ), 30 ≤ α ≤ 60(◦)

Fitness function
In order to solve many goals conflicts mutually in multi-

objective optimization, the weight coefficient method is used
for transforming the multi-objectives to the simple target.
Fitness function F2(X) is defined by

F2(X) = 1/(M + w1 f1(X) − w2 f2(X)) (6)

where M is a predefined constant to ensure a positive fitness
function, w1 and w2 are weight coefficients for f1(X) and
f2(X), respectively.

GA optimization based on ANN model

GA is one of the most powerful and broadly applicable opti-
mization techniques in engineering design problems, espe-
cially approaches of GA integrated with other techniques
have been applied in production planning (Morad and Zalzala
1999; Moon et al. 2006) and process optimization (Sedighi
and Afshari 2009). Shen et al. (2007) proposed a combin-
ing artificial neural network and genetic algorithm method
to optimize the injection molding process. Hou et al. (2007)
applied the parameter design of the Taguchi method, response
surface method and genetic algorithm to set the optimal
parameters for a nano-particle milling process. The GA is
a stochastic search technique based on the mechanism of
natural selection and natural genetics to imitate living beings
for solving difficult optimization problems with high com-
plexity and an undesirable structure. In GA, a highly effective
search of the solution space is performed, using a population
of strings representing possible solutions to evolve through
the basic random operators of selection, crossover and muta-
tion. In this study, the detailed procedures of GA/ANN opti-
mization are shown in Fig. 6. The basic steps are summarized
as follows:

Step 1: Initialization
Represent the problem variables as a chromo-
some of a fixed length, and choose the size of a
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chromosome population, the crossover probability
and the mutation probability.

Step 2: Randomly generate an initial population of chromo-
somes
A binary string representation for coding chromo-
some is adopted and each process parameter that is
normalized in the interval of 0.1 ∼ 0.9 is encoded
into 20 binary digits.

Step 3: ANN prediction
Objective function values are calculated by ANN
simulation using current population.

Step 4: Calculate fitness value

In this step, the fitness function based on ANN model
is used to calculate the fitness value of each chro-
mosome. Higher fitness value indicates goodness of
the solution, so the chromosomes that have the best
fitness value are preserved.

Step 5: Termination test
A pre-set generation number is used as the stopping
criteria in this research. If a pre-set stopping con-
dition is not satisfied, go to Step 6. Otherwise, the
algorithm stops and the optimized parameters are
output.

Step 6: Selection, crossover and mutation

The selection, crossover and mutation are used to
reproduce the new population to replace the current popula-
tion in next generation. Selection is an operation to select two
parent chromosomes from the current population for mating
(crossover or mutation). In this research, a pair of chromo-
some is selected from the entire population according to their
fitness values. The crossover operation is used to create a
pair of offspring chromosomes. The mutation operation is
applied to generate the new chromosome by a pre-set muta-
tion probability. When a number of offspring chromosomes
are created, then go to step 3.

One important step for the evolutionary search is to define
the fitness function, which is related to the objective func-
tion and the constraints of the problem, because the genetic
algorithm will seek to increase the fitness as it operates.

Optimization results

For a single objective optimization, after several test runs, ini-
tialization parameters that are found to give better solution
are as follows: number of iterations: 100, population size: 80,
crosser over probability: 0.9, mutation probability: 0.03, total
string length: 80, bits per variable: 20. Figure 7a shows the
variation of surface roughness with generations, and Fig. 7b
shows the variation of fitness of the best solution with gen-
erations. With an increase of generation, surface roughness

Fig. 7 GA optimization for
single objective
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Table 4 Experiment results of the optimized and unoptimized process parameters

No. Tool speed
n(rpm)

Feed rate
V a(m/ min)

Force
F(N)

Pose angle
α(◦)

Surface roughness (um) Polishing efficiency
(um cm2/min)

Experiment Prediction Experiment Prediction

1. Single objective 1,195 0.2106 31.1 30.6 0.362 0.306 16.47 16.82

2. Multi-objective 1198.1 0.7993 32.3 30.3 0.814 0.731 53.72 55.33

3. Unoptimized (1) 800 0.6 30 50 1.171 1.212 34.94 34.32

4. Unoptimized (2) 1,200 0.6 30 50 0.752 0.814 41.22 40.29
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Fig. 8 GA optimization for multi-objective

decreases and fitness value increases gradually. Fitness value
is basically unchangeable and equal to 3.2680 when gener-
ation is greater than 40. The optimized process parameters
are given in Table 4.

For multi-objective optimization, after several test runs,
initialization parameters that are found to give better solu-
tion are as follows: number of iterations: 100, population
size: 100, crosser over probability: 0.9, mutation probabil-
ity: 0.03, total string length: 80, bits per variable: 20, Ra0 =
3.5, M = 50, w1 = 0.6, w2 = 0.4. Figure 8a and b show the
variation of surface roughness and polishing efficiency with
generations, respectively. Figure 8c shows the variation of fit-
ness of the best solution with generations. With an increase
of generations, surface roughness decreases and polishing

efficiency and fitness value increase gradually. Fitness value
is basically unchangeable and equal to 0.4335 when gener-
ation is greater than 80. The optimized process parameters
are given in Table 4.

Experimental verification

Experiments were conducted in the serial-parallel hybrid pol-
ishing machine tool using the optimized process parameters.
Experiment results are given in Table 4. In addition, Experi-
ment result of using unoptimized process parameters is also
given in Table 4 for comparative analysis. It can be seen
from Table 4 that the predicted results are consistent with the
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experimental results. For single objective optimization, the
prediction value of surface roughness is basically the same as
no. 5 of the testing sample, and this result is smaller than other
all training samples and testing samples. For multi-objective
optimization, although surface roughness is lager than that of
single objective, this result is satisfactory and the polishing
efficiency relatively increases.

The increase of tool speed raises the number of the abra-
sive grains participating in the cutting on workpiece surface,
as a result surface roughness can be decrease rapidly and pol-
ishing efficiency also increase, so all the optimized results of
tool speed in above two cases are high and close to 1,200 rpm.
The decrease of feed rate increases the number of the abrasive
grains participating in the cutting on workpiece surface, so
optimized result of feed rate for minimum surface roughness
is low. But polishing efficiency is low at this condition, so feed
rate for multi-objective optimization is close to 0.8 m/ min.
The material removal rate increases with the increase of pres-
sure in certain range, and the material removal rate ceases to
increase with any further increase in the pressure. The opti-
mal polishing force in above two cases is about 30 N because
in certain conditions too great pressure can not obtain high
removal rate and may decrease surface quality. Change of
pose angle results in the change of pressure and polishing
velocity at the same time. So when choosing pose angle, it
is important to consider synthetically the change of pressure
and velocity in polishing region in order to obtain smaller
surface roughness and high polishing efficiency.

Conclusions

The serial-parallel hybrid polishing machine tool based on
the elastic polishing is investigated and applied to the mould
surface polishing with bound abrasives, which can give full
play to the advantage of this machine and provide a kind of
finishing equipment for mould manufacture. This polishing
machine consists of parallel mechanism of three dimensional
moving platform, serial rotational mechanism of two degrees
of freedom and elastic polishing tool system. The parallel
mechanism controls the spatial position of the polishing tool
and serial mechanism controls the pose of the polishing tool.
The elastic polishing tool system enable realize active control
provided by the pneumatic servo system and passive confor-
mity provided by a spring.

The process system scheme of this polishing machine is
analyzed. The optimization model of process parameters is
found according to the different machining requirements in
this paper, namely single objective optimization model and
multi-objective optimization model, which solves the contra-
diction between quality and efficiency in machining from the
practical application and provides a choice of parameters as a
basis for the operators in practice. The optimization method

of GA based on ANN is used for finding the optimal parame-
ters for mould polishing. Comparison between optimization
results and experimental results provide reasonable quanti-
tative agreement. By comparative analysis, it is concluded
that minimum surface roughness can be obtained for a sin-
gle objective optimization, and better surface roughness and
high polishing efficiency can be obtained for multi-objective
optimization.

Acknowledgments This work was supported by the National Natu-
ral Science Foundation of China under Grant No. 50575092 and the
National High-Tech Research and Development Plan of China under
Grant No. 2006AA04Z214.

References

Ahn, J. H., Lee, M. C., Jeong, H. D., Kim, S. R., & Cho, K.
K. (2002). Intelligently automated polishing for high quality
surface formation of sculptured die. Journal of Materials Pro-
cessing Technology, 130–131, 339–344.

Ahn, J. H., Shen, Y. F., Kim, H. Y., Jeong, H. D., & Cho, K.
K. (2001). Development of a sensor information integrated
expert system for optimizing die polishing. Robotics and Com-
puter Integrated Manufacturing, 17, 269–276.

Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface
roughness in CNC face milling using neural networks and Tagu-
chi’s design of experiments. Robotics and Computer Integrated
Manufacturing, 18, 343–354.

Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface rough-
ness in machining: a review. International Journal of Machine
Tools & Manufacture, 43, 833–844.

Brecher, C., Lange, S., Merz, M., Niehaus, F., Wenzel, C., &
Winterschladen, M. (2006). NURBS based ultra-precision free-
form machining. Annals of the CIRP, 55(1), 547–550.

Brinksmeier, E., Tönshoff, H. K., Czenkusch, C., & Heinzel,
C. (1998). Modelling and optimization of grinding pro-
cesses. Journal of Intelligent Manufacturing, 9, 303–314.

Furukawa, T., Rye, D. C., Dissanayake, M. W. M. G., &
Barratt, A. J. (1996). Automated polishing of an unknown three-
dimensional surface. Robotics & Computer-Integrated Manufac-
turing, 12(3), 261–270.

Fusaomi, N., Tetsuo, H., Zenku, H., Masaaki, O., & Keigo,
W. (2007). CAD/CAM-based position/force controller for a mould
polishing robot. Mechatronics, 17, 207–216.

Hou, T. H., Su, C. H., & Liu, W. L. (2007). Parameters optimiza-
tion of a nano-particle wet milling process using the Taguchi
method, response surface method and genetic algorithm. Powder
Technology, 173, 153–162.

Huang, T., Li, M., Zhao, X. M., Mei, J. P., Chetwynd, D. G., & Hu,
S. J. (2005). Conceptual design and dimensional synthesis for a
3-DOF module of the trivariant—a novel 5-DOF reconfigurable
hybrid Robot. IEEE Transactions on Robotics, 21(3), 449–456.

Lee, C. W., & Shin, Y. C. (2004). Modeling of complex manufac-
turing processes by hierarchical fuzzy basis function networks
with application to grinding processes. Journal of Dynamic Sys-
tems, Measurement, and Control, Transactions of the ASME, 126,
880–890.

Levent, G., & Krishnaswamy, S. (1997). An overview of Robot-
assisted die and mould polishing with emphasis on process
modeling. Journal of Manufacturing System, 16(1), 48–58.

Li, Y. P. (2002). Theoretical study on a non-transmission high effi-
cient parallel camber grinding machine. Journal of Materials
Processing Technology, 129, 551–554.

123



374 J Intell Manuf (2012) 23:365–374

Liao, L., Xi, F. F., & Liu, K. F. (2008). Modeling and control
of automated polishing/deburring process using a dual-purpose
compliant toolhead. International Journal of Machine Tools &
Manufacture, 48(12–13), 1454–1463.

Márquez, J. J., Pérez, J. M., Ríos, J., & Vizán, A (2005). Process
modeling for robotic polishing. Journal of Materials Processing
Technology, 159, 69–82.

Malakooti, B., & Raman, V. (2000). An interactive multi-objective
artificial neural network approach for machine setup optimiza-
tion. Journal of Intelligent Manufacturing, 11, 41–50.

Markopoulos, A. P., Manolakos, D. E., & Vaxevanidis, N.
M. (2008). Artificial neural network models for the prediction
of surface roughness in electrical discharge machining. Journal
of Intelligent Manufacturing, 19, 283–292.

Moon, C., Seo, Y., Yun, Y., & Gen, M. (2006). Adaptive genetic algo-
rithm for advanced planning in manufacturing supply chain. Jour-
nal of Intelligent Manufacturing, 17, 509–522.

Morad, N., & Zalzala, A. (1999). Genetic algorithms in integrated
process planning and scheduling. Journal of Intelligent Manufac-
turing, 10, 169–179.

Oktem, H., Erzurumlu, T., & Erzincanli, F. (2006). Prediction of min-
imum surface roughness in end milling mold parts using neural
network and genetic algorithm. Materials and Design, 27, 735–
744.

Pessoles, X., & Tournier, C. (2009). Automatic polishing process
of plastic injection molds on a 5-axis milling center. Journal of
Materials Processing Technology, 209, 3665–3673.

Savio, G., Meneghello, R., & Concheri, G. (2009). A surface rough-
ness predictive model in deterministic polishing of ground
glass moulds. International Journal of Machine Tools & Man-
ufacture, 49, 1–7.

Sedighi, M., & Afshari, D. (2009). Creep feed grinding optimiza-
tion by an integrated GA-NN system. Journal of Intelligent
manufacturing, doi:10.1007/s10845-009-0243-4.

Shen, C. Y., Wang, L. X., & Li, Q. (2007). Optimization of injection
molding process parameters using combination of artificial neu-
ral network and genetic algorithm method. Journal of Materials
Processing Technology, 183, 412–418.

Tsai, M. J., & Huang, J. F. (2006). Efficient automatic polishing
process with a new compliant abrasive tool. International Journal
of Advanced Manufacturing Technology, 30, 817–827.

Westkämper, E., & Schmidt, T. (1998). Computer-assisted manu-
facturing process optimization with neural networks. Journal of
Intelligent Manufacturing, 9, 289–294.

Wu, X. J., Kita, Y., & Ikoku, K. (2007). New polishing technology
of free form surface by GC. Journal of Materials Processing
Technology, 187–188, 81–84.

Xi, F. F., & Zhou, D. (2005). Modeling surface roughness in the
stone polishing process. International Journal of Machine Tools
& Manufacture, 45, 365–372.

Yu, M., Zhao, J., Zhang, L., & Wang, Y. Q. (2004). Study on the
dynamic characteristics of a virtual-axis hybrid polishing machine
tool by flexible multi-body dynamics. Proceedings of the Insti-
tution of Mechanical Engineers, Part B Journal of Engineering
Manufacture, 218(9), 1067–1076.

Zhang, L., Tam, H. Y., Yuan, C. M., Chen, Y. P., & Zhou, Z.
D (2002). An investigation of material removal in polishing with
fixed abrasives. Proceedings of the Institution of Mechanical Engi-
neers, Part B, Journal of Engineering Manufacture, 216, 103–112.

Zhang, Y. F., Huang, G. Q., Ngai, B. K. K., & Chen, X. (2009). Case-
based polishing process planning with fuzzy set theory. Journal
of Intelligent manufacturing, doi:10.1007/s10845-009-0259-9.

123

http://dx.doi.org/10.1007/s10845-009-0243-4
http://dx.doi.org/10.1007/s10845-009-0259-9

	Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm
	Abstract
	Acknowledgments
	References


