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Abstract In this paper we consider a multi-objective group
scheduling problem in hybrid flexible flowshop with
sequence-dependent setup times by minimizing total
weighted tardiness and maximum completion time simulta-
neously. Whereas these kinds of problems are NP-hard, thus
we proposed a multi-population genetic algorithm (MPGA)
to search Pareto optimal solution for it. This algorithm com-
prises two stages. First stage applies combined objective of
mentioned objectives and second stage uses previous stage’s
results as an initial solution. In the second stage sub-popula-
tion will be generated by re-arrangement of solutions of first
stage. To evaluate performance of the proposed MPGA, it is
compared with two distinguished benchmarks, multi-objec-
tive genetic algorithm (MOGA) and non-dominated sorting
genetic algorithm II (NSGA-II), in three sizes of test prob-
lems: small, medium and large. The computational results
show that this algorithm performs better than them.

Keywords Multi-objective optimization · Genetic algo-
rithms · Hybrid flexible flowshops · Sequence-dependent
group scheduling

Introduction

Scheduling which is allocating the limited existing resources
for task has a significant role in manufacturing systems and
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its goal is minimizing problems performance measures.
Scheduling and producing variety of product may cause com-
plexities in productions process. Since grouping various parts
and products based on their similarities in design or process
would highly affect problems measure of effectiveness, we
use cellular manufacturing concept in our study. Concepts of
group scheduling emerged at the beginning of 20th century
that caused to reduce setup times by Mitrofanov (1996) and
Burbidge (1975). In this approach parts become sorted with
respect to their shape, size, material, operations or amount of
production Kusiak (1987). This would lead to reduction in
setup time, work in process inventories, tools requirement.
Specified numbers of part families should be assigned to each
cell which consists of group of machines. Liaee and Emmons
(1997) reviewed literature of scheduling group of jobs on
single or parallel machines. Mansini et al. (2004) studied
a scheduling group of task with precedence constraints on
three dedicated processors. In order to solve a group sched-
uling problem by minimizing makespan Baker (1988) pre-
sented a goal programming approach. Another heuristic was
presented for solving group scheduling problem and a com-
parison was carried out to show its preference by Logendran
et al. (1995). Liu and Yu (1999) proposed group technology
approach to minimize number of late job. Allahverdi et al.
(1999) and Cheng et al. (2000) presented a cell scheduling
problem with sequence-dependent setup time. This technique
combines flexibility of job shop with a flowshop produc-
tion. Each group’s jobs should be sequenced at first, and
then sequence of groups should be determined. For chang-
ing part from one group to another group, set-up time must
be considered. But for changing between parts in a group no
set-up time should be considered because setup time in each
group is negligible and this is because of similarities between
group parts which are an important difference between group
scheduling problem and flowshop scheduling problem.
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The first method in optimizing a two-machine sequence-
independent group scheduling problem was presented by
Ham et al. (1985). A two-machine flowshop group sched-
uling was presented by Baker (1990) and Sekiguchi (1983),
in which each group has a setup time. Yang and Chern (2000)
generalized Baker and Sekiguchi’s algorithm by another poly-
nomial time algorithm. Kuo and Yang (2006) proposed two
polynomial time algorithms for a time-dependent learning
effect and introduce it into the single-machine group sched-
uling problems. Polynomial time algorithms based on solv-
ing linear programming problems are presented to find an
optimal job sequence and resource values in single machine
group scheduling with resource dependent setup and process-
ing times by Janiak et al. (2005).

Schaller et al. (2000) and Reddy and Narendran (2003)
presented heuristics for solving the sequence-dependent
flowshop group scheduling problem by considering different
situation like non-availability of all jobs at the beginning. Leu
and Nazemetz (1995) analyzed different heuristic on group
technology in flowshop manufacturing problems. A heuris-
tic for the case of multiple setups per group is developed and
compared to a single setup per group at each stage, and inte-
grated into a genetic algorithm for scheduling non-similar
groups on a flow line by Wilson et al. (2004).

Flowshop problems schedule number of jobs which should
be processed on stages to make problems performance mea-
sure optimized. If some of these stages (at least one) consist
of multiple identical machines, problem would change to
hybrid flexible flowshop in which jobs should be processed
on at most one machine in each stage. In these kinds of prob-
lem, jobs cannot come back to any of stages. One of the
most important features of hybrid flexible flowshop is the
jobs capability to skip from stages which means that job do
not need to be processed at that stage (Naderi et al. 2008).
Vickson and Alfredsson (1992) proposed Johnson’s rule for
two-machine flowshop group scheduling problem and
Cetinkaya and Kayaligil (1992) continued and developed
their method by considering setup time. Group scheduling in
hybrid flexible flowshops was presented by Logendran et al.
(2005). Group scheduling within the context of sequence-
dependent setup times in hybrid flexible flowshops is con-
sidered in Logendran et al. (2006b) paper. They presented a
heuristic to solve it.

Two evolutionary algorithms, a genetic algorithm and a
memetic algorithm with local search, are proposed and empir-
ically evaluated for scheduling a flowshop manufacturing
cell with sequence-dependent family setups by Franca et al.
(2005). Logendran et al. (2006b) focused on two-machine
group scheduling problems with sequence-dependent set-
ups by using tabu search algorithm. Zandieh et al. (2008)
proposed two new meta-heuristics based on GA and SA
to minimize makespan in group scheduling problems with
sequence-dependent setup times in hybrid flexible flow shops.

They showed these new meta-heuristics outperformed the TS
of Logendran et al. (2006b). Behnamian et al. (2009) sug-
gested a hybrid meta-heuristic algorithm which combines
particle swarm optimization (PSO), SA, and variable neigh-
borhood search (VNS) in a population-based context. The
hybrid method outperformed the GA and SA of Zandieh et al.
(2008).

The majority of papers on these problems have concen-
trated on single objective or criterion problems, while con-
sideration of multiple objectives or criteria is more realistic.
Danneberg et al. (1999) proposed a permutation flowshop
scheduling problem with setup times by grouping similar
jobs together, but there is a limitation for number of jobs in
each group. They considered makespan and weighted sum
of completion time as objectives.

In this paper, we deal with a multi-objective hybrid flexible
flowshop group scheduling with sequence-dependent setup
times problem. We also present a mathematical model for
this problem. The makespan and total weighted tardiness are
to be optimized simultaneously. Because the simpler version
of this study (for example, researches of Gupta and Darrow
(1985, 1986), the two machine sequence-dependent make-
span minimization job scheduling problem) are proved to be
NP-hard, so our problem is NP-hard too and we have to use
meta-heuristic to solve it. To solve this problem we apply
a two stage multi-population genetic algorithm (MPGA) for
searching Pareto optimal solutions and also develop and adapt
two different meta-heuristics and compare them. The pro-
posed algorithm was presented by Cochran et al. (2003)
for parallel machine but we here investigate it for group
scheduling problem in hybrid flexible flowshop with
sequence-dependent setup times. The remainder of the paper
is organized as follows: “Problem definitions” gives the prob-
lem definitions. Definition of multi-objective optimization
problems is presented in “Multi-objective optimization”.
“Adaptive genetic algorithm” presents adaptive multi-pop-
ulation genetic algorithm. “Experimental design” is devel-
oped to our numerical results. Finally in the last section some
conclusions are given.

Problem definitions

In this paper, we consider a hybrid flexible flowshop group
scheduling problem. This problem investigates the sequence
of jobs in their group and sequence of these groups them-
selves. Skipping is a feature that gives a flexibility char-
acteristic to our problem. Skipping is a probability of not
being processed at some stages. Because of problems flexi-
bility characteristic there would be more than one machine in
some stages. So jobs of different groups may be processed in
same stage at the same time. For groups of jobs only a setup
time is required and this setup times are sequence-dependent.
Following assumptions are considered for this problem:
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– Jobs are available at zero time
– Job processing cannot be interrupted
– Machines are always available, with no breakdowns or

scheduled or unscheduled maintenance
– Infinite buffer exist between stages and before the first

and after the last stage
– Jobs are available for processing at a stage immediately

after processing completion at the previous stage
– Machines in parallel are identical in capability and pro-

cessing rate
– Each machine can process only one job at the same time
– The ready time for each job is larger than 0 and the time

it completes processing on the previous stage
– A job cannot process on more than one machine at the

same time.

Multi-objective optimization

In single objective optimization problem, algorithm’s termi-
nation depends on optimizing the objective function. But in
multi-objective problem it is a complex task to optimize some
objectives simultaneously. Thus we have to find a set of solu-
tions depending on non-dominance criterion.

A general multi-objective optimization (minimization)
problem can be defined as follows:

Find a vector x∗ = (x∗
1 , x∗

2 , . . . , x∗
n )minimizes the vec-

tor function f (x) = [ f1(x), f2(x), . . . , fk(x)], where x =
(x1, x2, . . . , xn) is the vector of decision variables.

Also a general definition of dominance solution is as
follows:

A vector u = (u1, u2, . . . , uk) is said to dominate v =
(v1, v2, . . . , vk) if and only if u is partially less than v, i.e.,

∀i ∈ {1, 2, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, 2, . . . , k}, ui < vi

Different approaches have been used to solve multi-objective
problems which can be classified as below:

• Weighting approach
• Hierarchical approach
• Goal programming
• Pareto approach
• Interactive approach
• Fuzzy method

We use the concept of Pareto approach via a meta-heuristic
method. Different methods to solve a multi-objective prob-
lem through a meta-heuristic procedure have been carried
out, for example a parallel search model based on the Pa-
reto archived evolution strategy (PAES) which is presented
by Knowles and Corne (2000), MOGA that is proposed by
Fonseca and Fleming (1993) and an integrated multi-objec-

tive immune algorithm (MOIA) is offered by Hou et al.
(2008). Murata et al. (1996), Zitzler et al. (2001) offered the
strength Pareto evolutionary algorithm (SPEA2) and multi-
objective scatter search (MOSS) was used by Beausoleil
(2006) and Deb et al. (2002) presented a non-dominated sort-
ing genetic algorithm II (NSGA-II).

Objectives functions

Minimizing makespan is the first objective that we consider
for this problem and is as:

Cmax = max{C j }, where C j is the completion time of
job j .

The second objective is to minimize total weighted tardi-
ness as below:

TWT =
P∑

j=1

w j Tj

where Tj = max{0, C j − d j }, d j is the due dates of job j,
w j is a weight related to job j.

Mathematical model

In this section we present a formulation of our problem using
Kurz and Askin (2004) concepts.

If we assume n as the number of jobs, at each stage we
should consider set up time for job 0 to job n +1. Definitions
of required variable are as below:

n: number of true jobs to be scheduled
g: number of serial stages
nG : number of groups
g j : last stage visited by job j
mt : number of machines at stage t
pt

i j : processing time for job i in group j at stage t
(assumed to be integral)

Pt
j : processing time for jobs in group j at stage t

di : due date of job i
st

pj : setup time for group j on stage t, if group j is
processed immediately after group p

Si : set of stages visited by group i
ei : set of stages visited by job i
St : set of group that visit stage t = {

i : pt
i > 0

}

ct
i : completion time for job i at stage t

CGt
i : completion time for group i at stage t

W j : weight of job j
x t

i j : 1 if job i is scheduled immediately before job
j at stage t and 0 otherwise

yt
i j : 1 if group i is scheduled immediately before

group j at stage t and 0 otherwise
U j : A Boolean variable; 1 if job j is tardy, and 0

otherwise
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The time for moving from point to point is named as setup
time. For jobs 0 and n + 1 processing times is consider as
zero. Processing of job 0 would be terminated at each stage
as soon as the beginning of set up at that stage.

This inequality
∣∣St

∣∣ ≥ mt, t = 1, 2, . . . g, so n ≥ max

t {mt } show the limitation on number of jobs in each stage
with respect to the number of machine in it.

P : min Z1, Z2

s.t.
(1)

n∑

j=1

xt
oj = mt t = 1, . . . , g, (2)

∑

j∈{st ,n+1}
yt

i j = 1, i = 1, . . . , nG , t ∈ Si (3)

∑

j∈{0,st}
yt

i j = 1, j = 1, . . . , nG , t ∈ Si (4)

ct
j − ct

i + Mt (1 − xt
i j ) ≥ pt

i j

i = o, . . . , n, j = 1, . . . , n, t ∈ ei (5)

ct
j − ct−1

i + Mt
j (1 − xt

i j ) ≥ pt
i j

i = o, . . . , n, j = 1, . . . , n, t ∈ ei − {1} (6)

CGt
j − CGt

i + Mt (1 − yt
i j ) ≥ st

i j + Pt
j

i = 0, . . . , nG , j = 1, . . . , nG , t ∈ Si (7)

CGt
j − CGt−1

j + Mt
G j (1 − yt

i j ) ≥ st
i j + Pt

j

i = 0, . . . , nG , j = 1, . . . , nG , t ∈ Si − {1} (8)

⎧
⎨

⎩

xt
i j ≤ pt

i j
i, j ∈ {0, 1, . . . , n, n + 1} , t = 1, . . . , g,

xt
ji ≤ pt

i j

(9)

ct
j ≥ ct

o j = 1, . . . , n, t = 1, . . . , g (10)

Z1 ≥ cgj
j j = 1, . . . , n, (11)

Tj ≥ cgj
j − d j j = 1, . . . , n, (12)

Tj ≥ 0 j = 1, . . . , n, (13)

MU j ≥ Tj j = 1, . . . n, (14)

Z2 =
n∑

j=1

W j Tj (15)

Ui ∈ {0, 1} , i = 1, . . . , n, (16)

xt
i j ∈ {0, 1} , i, j ∈ {0, 1, . . . , n, n + 1} , t = 1, . . . , g,

xt
i j = 0, i = j, t = 1, . . . , g, (17)

yt
i j ∈ {0, 1} , i, j ∈ {0, 1, . . . , nG , nG + 1} ,

t = 1, . . . , g,

yt
i j = 0, i = j, t = 1, . . . , g, (18)

ct
j ≥ 0, j = 0, . . . , n, t = 1, . . . , g, (19)

Objective functions, makespan (Z1) and total weighted
tardiness (Z2), are presented in (1). Constraint set (2) shows
that mt machines are scheduled in each stage. We ensure
the scheduling of each group on one and only one machine
in each stage by constraint sets (3) and (4). By constraint
(5) job j follow job i by at least i’s processing time. An
upper bound for processing completion time at stage t is
presented by Mt . Constraint set (6) is required to show the
processing completion of job j at stage t after completion of
its process at stage t − 1, plus its processing time at stage
t . Mt

j is calculated through following equality Mt
j = Pt

j .
Constraint sets (5) and (6) together prevent from beginning
setup for a job until its availability (being done at the pre-
vious stage) and previous job’s completion at the current
stage.

Constraint set (7) ensures that group j come after group i
by at least i’s total group processing time plus the setup time
from i to j if i is immediately before j . Group j at stage
t should be completed after its completion at stage t − 1
plus its processing time at stage t , plus the setup time from
its predecessor to j because of constraint set (8).The value
Mt

G j is equal to pt
j + maxi {st

i j }. The same as Constraints (5)
and (6) for jobs, constraints (7) and (8) together ensure that
a group cannot begin setup until it is available (done at the
previous stage) and the previous group at the current stage
is complete. Constraint sets (5), (6), (7) and (8) also used for
prohibition of creating any sub-tour.

Constraint set (9) prevents jobs from visiting a stage that
they are not assigned to that stage. Constraint sets (10) and
(11) state that a job at stage does not visit stage t , its com-
pletion time at this stage would set to its completion time
at stage t − 1. Constraint (11) is for creating the decision
variables cgj

j and Z1.
The lateness (L j ) value can be calculated by constraint

set (12). Constraint set (13) specifies only the positive late-

ness as the tardiness Tj = max
{

0, cgj
j − d j

}
. Constraint

sets (14)–(16) link the decision variable of the number of
tardy jobs; that is, if the tardiness is larger than zero, then the
job is tardy; otherwise, this job is not tardy. The value of M
is set to a very large constant, i.e., greater than the sum of all
job processing times and setup times. Constraints (17), (18)
and (19) provide limits on the decision variables.
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Adaptive genetic algorithm

Genetic algorithm in general

Genetic algorithm is one of the widely used stochastic search
method in order to solve an optimization problem, which is
based on Darwinian Theory. This algorithm simulates the
natural mechanism of survival of the fittest tenet and off-
spring creation. Each solution (chromosomes) is evaluated
with a fitness function that is appropriate for the problem at
hand.

Some papers have applied the genetic algorithm heuristic
to multiple objective problems. Schaffer (1985) developed
the vector evaluated genetic algorithm (VEGA) method for
finding Pareto optimal solutions of multiple objective opti-
mization problems. In his approach, population would be
divided into disjoint sub-populations, end each sub-popula-
tion find its objective’s optimal solution.

Cavalieri and Gaiardelli (1988) also presented hybrid
genetic algorithm for a multiple-objective scheduling prob-
lem. Murata et al. (1996) proposed a MOGA and applied
it to flowshop scheduling. Hyun et al. (1998) developed a
new selection scheme in GA, and showed its superiority for
multi-objective scheduling problems in assembly lines.

Adaptive multi-population genetic algorithm

In this paper we use the approach of a two-stage multi-
population genetic algorithm which was presented by
Cochran et al. (2003) First stage of the algorithm work by
minimizing combining of objective functions. After rear-
rangement of solution of this stage, second stage start by
using these solution as its initial solutions in different popu-
lation separately.

First stage

Step 1. Initialization: in order to start the algorithm some
of the algorithm’s parameters like initial population,
size of each sub-populations, and number of itera-
tion in each stage and rate of crossover should be
set.
Then initial population should be generated. Each
job is assigned a random real number whose integer
part is the machine number to which the job is allo-
cated and whose fractional part is used to sort the
jobs assigned to each machine. So we use this con-
cept in order to allocate group to machines. Because
of considering one setup time for each group, jobs
assignment is the same as group assignment. For the
first stage, we should produce real number for each
group between 1 and number of machines plus 1. To
define sequence of jobs in each group random num-

bers should be produced and the job with smaller
number would be processed earlier. In other stages
groups sequence would be defined based on their
completion time.
We choose the matrix representation form to show
our solution, in which rows represent groups and
each digit in each row is that group’s job.

Step 2. Evaluation: In this phase solution should be evalu-
ated through evaluation metrics. The most common
evaluation metric to assess and compare solutions is
the relative percentage deviation (RPD) which is as
below (Kim 1993; Kim et al. 1996):

RPD = A lgSol −BestSol

BestSol
× 100

where A lgSol is the solution obtained by a given
method and BestSol is the best solution obtained
among all the methods or the best known solution,
possibly optimal. If the objective function is tardi-
ness, the optimal solution may become zero and this
equation would become divided by zero. Thus we
have to another measure for calculating performance
of algorithms. Relative deviation index (RDI) is pro-
posed for this reason (Kim 1993; Kim et al. 1996):

RDI = A lgSol −BestSol

WorstSol − BestSol
× 100

BestSol and WorstSol are the best and worst evaluated
solution.
We present and examine two approaches of combin-
ing evaluation metrics in this study.
If we assume that N objectives are to be optimized,
combined objective values can be formulated as:
The first method is summation of measures with ran-
dom weights:

ft, j (x) =
N∑

i=1

wt,i ft,i, j (x);

i = 1, . . . , N , j = 1, 2, . . . , P

Second way of combining evaluation metrics that is
used here is multiplication of them:

ft, j (x) =
N∏

i=1

ft,i, j (x);

i = 1, . . . , N , j = 1, 2, . . . , P

where P is the population size, ft, j (x) is the com-
bined function at generation t of string j , wt,i is the
weight of evaluation metrics i at generation t , and
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ft,i, j (x) is the i th evaluation metrics of string j at
generation t . Note that wt,i is a predefined measure.

Step 3. Elitist strategy: The best solution of each objective
and the best one of the combined objective function
are stored in each generation. At the end of each
generation, if the selected solution is worse than the
preserved one, a randomly selected string is replaced
with the preserved solution.

Step 4. Selection: Selection is an operation that selects two
chromosomes as parents for crossover and mutation
operators. We apply roulette wheel strategy that uses
each chromosome’s probability for selection. Each
has a better fitness value would have greater proba-
bility to be selected. The following formula is used
to calculate probability:

pt, j (x) = S − ft, j (x)
∑P

j=1 (S − ft, j (x))

where ft, j (x) is the value of objective function for
j th string in t th replication and S is the summation
of ft, j (x) through population size.

Step 5. Crossover: Crossover is an operator which consists
of obtaining new individuals from two parent chro-
mosomes with the aim of producing better chromo-
some. These new individuals which called offspring
have features of both parents and can be either better
or worse than them. For this study we perform uni-
form crossover. In order to do that two chromosomes
in the current generation are selected at random as
a group and one job is chosen at random in each of
them as a job. For each job, a random number is gen-
erated. If the value is <0.7, the value from the “first”
chromosome is copied to the new chromosome, oth-
erwise the value from the “second” chromosome is
selected (Bean 1994) (Fig. 1).

Step 6. Mutation: Mutation operator produces random
changes in a chromosome and introduce new chro-
mosome and is generally increase diversification of
population. Here random mutation operator is used.
A digit is selected according to pre-defined mutation
probabilities and replaced with a different number.

Step 7. Turning criterion: After a predefined number of gen-
erations, the algorithm switches to the next stage.

Second stage

Step 1. Initialization: Rearrangement should be carried out
on solutions of previous stage due to their perfor-
mance. If N objectives should be optimized, N + 1
sub-populations will be created after rearrangement

(a)

(b)

(c)

Fig. 1 Uniform crossover example

to evolve separately using N mentioned objective
functions and combined objective.

Step 2. Selection, crossover, and mutation: The same selec-
tion, crossover, and mutation procedures used in
stage 1 are applied in each sub-population.

Step 3. Elitist strategy: The elitist strategy should select the
best solution of each objective and combined objec-
tive across all sub-populations. Selected chromo-
somes should be stored and replace the worst of
each objective and the combined objective in the
next generation.

Step 4. Stopping criterion: After a certain number of gen-
erations, the algorithm terminates.

Adaptive Pareto archive set

Pareto optimal solution can be the solution to multi-objective
problems instead of a single solution and provide decision
maker sufficient insight into the problem to make the final
decision. A Pareto optimal solution is such a solution that
dominates other ones, in the other words they are not worse
with respect to every objective, and better for at least one
objective. The archive is used to store and maintain some of
the non-dominant solution produced in multi-objective evo-
lutionary algorithm. Generally it has a predetermined size.
In this study, we use an adaptive Pareto archive set updat-
ing method to prevent losing new non-dominated solutions
found when Pareto archive size has reached its maximum
size (Tavakkoli-Moghaddam et al. 2008). Pareto archive is
updated by one of following strategy at the end of each iter-
ation when new solution is found:

– If the archive size is less than its maximum value, the
solution will be added to the archive.
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– If the archive size is less than its maximum value, the
new solution will be added to archive if its distance to
the nearest non-dominant solution of archive is greater
than “Duplication area”. This area is defined as a bowl
of center of the solution with the specified radius of λ.
This area is used to maintain the diversity of solutions.
The mentioned distance value would be calculated in the
Euclidean distance form.

When the new solution is added to the archive it would
be checked that if the new solution dominate some members
of the archive, so those members should be deleted from the
archive.

Experimental design

The comparison between performance of the proposed
multi-population genetic algorithm in solving multi-objective
problem and MOGA which has a very good performance for
solving flowshop scheduling problems and NSGA-II which
is professional in solving multi objective problems is pre-
sented in this section. These algorithms have been coded in
the Borland C++ 5.2.

Data generation

The experiments are implemented on three size of problem:
small, medium and large. For all of them we consider fol-
lowing assumptions:

Processing times are from a uniform distribution of
U (5, 75); setup times are uniformly generated in the inter-
val (5, 25). The due dates are uniformly distributed over the
interval [d̄ − Rd̄, d̄] with probability τ and over the inter-
val [d̄, d̄ + (Cmax − d̄)R] with probability (1 − τ), and
τ = 1 − d̄

Cmax
. The values of τ and R are set to 0.6 and

0.4 respectively, jobs weights are uniformly distributed inte-
gers in the interval [1, 4] and each experiment is repeated 10
times. As mentioned above, skipping probability is consid-
ered in this problem. Uniformly distributed random number
is generated between 0 and 1 for each job. If this number is
less than one minus probability value, job has positive pro-
cessing times, otherwise job’s processing times is zero.

Because of this problem flexible characteristic, we should
define the measure of flexibility for it. These values are pre-
sented in Table 1. Number of stages and groups are also
shown in Table 1. By multiplying the number of stages and
measure of flexibility we can calculate number of stages
which has parallel machines if this is a real number we should
round it to greater number (n). To know which stages have
more than one machine, we produce random permutation
of number of stage, then first n numbers are stages that have
parallel machine. These stages have 2 or 3 machines by prob-

Table 1 Characteristics of test problem

Factors Level Description

Number of stages Small 2–3

Medium 5–6

Large 7–8

Number of groups Small 4–5

Medium 7–9

Large 11–12

Flexibility Small 1/3

Medium 2/3

Large 1

Skipping probability 0.2

ability value equal to 0.5. Numbers of jobs for each group
are: in small problems between 3 and 5, in medium between
7 and 9 and in large between 10 and 12.

We also carry out tests for both of defined combined objec-
tives and for this reason examine 3 different weights for first
combining objective. These weights are: (0.2, 0.8), (0.5, 0.5)
and (0.8, 0.2).

Archive size is set to 30 and the value of λ for Pareto
duplication area is considered 1,000.

Performance measure

In order to calculate the performance of algorithm and do
comparisons we use performance measures presented by
Hyun et al. (1998). These measures are qualitative and quan-
titative measures. If N1 and N2 are Pareto optimal solutions
of algorithms A1 and A2 respectively, combined Pareto front
have N Pareto optimal solutions which is greater than N1

and N2 and less that N1 + N2.
Quantitative measure of each algorithm is its number of

Pareto optimal solutions (N1 and N2 respectively) and qual-
itative measures of algorithms A1 and A2 are represent as
N1/N and N2/N respectively.

MPGA parameters tuning

There are several different factors which affect the algorithm
in reaching to a suitable and desirable solution and param-
eters value is one of them. Whereas different parameters
combinations would lead to different solutions, we try to
find the most appropriate set of parameters for MPGA.

To achieve this goal firstly we carry out extensive experi-
ments in order to determine effective parameters using design
of experiments (DOE). Then an empirical study of various
possible combinations of parameters will be done to define
the best levels of those parameters (Table 2).
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Table 2 Level of genetic algorithm parameters

Problem size Popsize Iteration 1 Iteration 2 Crossover

Lower
level

Upper
level

Lower
level

Upper
level

Lower
level

Upper
level

Lower
level

Upper
level

Small 25 80 10 30 20 50 0.60 0.85

Medium 50 200 30 100 30 100 0.60 0.85

Large 100 400 100 500 50 300 0.60 0.85

Using this approach we recognize population size (pop-
size), number of iteration of both stage (iteration 1 and iter-
ation 2) and crossover rate (crossover) as effective factors.
During experiments it is achieved that the suitable size of each
sub-population) is about 0.4% of popsize value. Ranges of
these parameters are considered as follows:

Now here we perform response surface methodology
(RSM) approach to find the suitable value of each parameter
in each size of problem. RSM is a technique for determining
and representing the cause-and-effect relationship between
true mean responses and input control variables influencing
the responses as a two- or three-dimensional hyper surface
(Gunaraj and Murugan 1999).

In order to simplify the procedure we use SAS software
for finding the relation between outputs (objective functions)
and effective factors on outputs (popsize, iteration 1, itera-
tion 2 and crossover) and apply a standard model (fractional
central composite design) in it. RSM give us models as fol-
low respectively for each size of problem, moreover, it adjust
the levels of the input variables to the point that the set of
outputs optimize using these models. Results are shown in
Table 3.

Y1 = 0.035386 + 0.0064 × X1 − 0.000476 × X2

− 0.004964 × X3 − 0.00184 × X4

+ 0.007844 × X1 × X2 × X3

+ 0.00912 × X1 × X2 × X4

Y2 = 0.02037 − 0.00768 × X1

+ 0.00212 × X2 − 0.00172 × X3

− 0.00384 × X4 + 0.00279 × X1 × X4

− 0.003227 × X2 × X3

− 0.00213 × X2 × X4

+ 0.002164 × X1 × X2 × X3

Y3 = 29.7986 − 3.5347 × X1

+ 0.854167 × X2 − 0.78472 × X3

+ 5.4236 × X4 + 1.7986 × X1 × X2

+ 4.479167 × X1 × X4 + 5.6736 × X3 × X4

Table 3 Parameter setting results

Parameter Small Medium Large

Population size (popsize) 65 185 300

Iteration for first stage (iteration 1) 15 40 400

Iteration for second stage (iteration 2) 45 50 70

Crossover rate (crossover) 0.75 0.7 0.8

Experimental results

Several instances of different combination of data which are
presented before were solved for doing comparison between
this MPGA and benchmark MOGA and NSGA-II. Each
instance was run 10 times. These experiments contain tests
with both combined objectives, and all mentioned weights
for first objective. These experimental results show that first
combined objective by all weights value is better than sec-
ond one, and set of (0.5, 0.5) is the best weight among
others.

For each problem size Table 4 shows results which are
achieved via our considered measures. Each digit is aver-
age of 10 run of each problem with its respective method.
Win column show the number of preference of MPGA than
MOGA and NSGA-II in iterations for each test problem.

As shown in Table 4 in most tests MPGA outperforms
MOGA and NSGA-II qualitatively and quantitatively
and it works better as the size of problem get larger.

Better performance of MPGA than MOGA and NSGA-
II both in number of solutions in Pareto front and value of
solutions can be illustrated by figures for different sizes of
problem. Figures 2, 3 and 4 show the improvement of solu-
tions through iterations in small, medium and large problem
respectively.

Conclusion

This paper has presented an adaptive multi-population
genetic algorithm (MPGA) for solving a hybrid flexible
flowshop group scheduling with sequence-dependent setup
times problem with respect to the total weighted tardiness
and maximum completion time simultaneously.
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Table 4 Comparison of MPGA versus MOGA and NSGA-II

Problem Size Stage Group Quantitative Qualitative

MPGA MOGA NSGA-II WIN MPGA MOGA NSGA-II WIN

1 SMALL N N 6.00 4.20 5.3 5 0.52 0.18 0.3 8

2 SMALL N H 5.10 2.80 3.2 10 0.41 0.21 0.38 10

3 SMALL H N 7.10 3.20 4 3 0.4 0.27 0.33 9

4 SMALL H H 6.00 2.60 4.1 10 0.39 0.27 0.34 10

5 MEDIUM N N 13.60 3.00 2.5 10 0.64 0.17 0.19 10

6 MEDIUM N M 10.33 5.00 7.4 8.0 0.62 0.18 0.2 9.5

7 MEDIUM N H 18.00 2.10 6.8 10 0.58 0.17 0.25 10

8 MEDIUM H N 11.70 4.10 4.5 10 0.55 0.15 0.3 10

9 MEDIUM H M 12.56 5.30 8.9 9.0 0.7 0.11 0.19 9

10 MEDIUM H H 14.20 3.30 6.8 10 0.67 0.12 0.21 8.5

11 LARGE N N 14.40 3.10 5.5 10 0.59 0.17 0.24 9

12 LARGE N H 4.40 2.40 3.9 9.0 0.47 0.22 0.31 9

13 LARGE H N 12.10 3.10 4.6 10 0.39 0.29 0.32 9.5

14 LARGE H H 4.60 2.30 3.7 8.5 0.51 0.22 0.27 10.0

Fig. 2 Pareto front solutions for small problem

Fig. 3 Pareto front solutions for medium problem

Fig. 4 Pareto front solutions for large problem

In order to evaluate performance of proposed algorithm
we used extensive test problems and carried out compari-
son with two benchmark problems MOGA and NSGA-II.
Comparisons were based on two performance metrics, qual-
itative and quantitative measures. This combination of two
heuristic (VEGA and MOGA) has the better performance of
both of them in each three sizes, especially in large problems
according to above figures.

Maintaining the best solution in each iteration is one of our
aims and we use Pareto optimal solution for this end. Using
Pareto archive we can avoid losing best solution through iter-
ations and early convergence of algorithm, in addition we can
maintain diversity of solution space.
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