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Abstract In condition based maintenance (CBM) optimi-
zation, the main optimization objectives include maximiz-
ing reliability and minimizing maintenance costs, which are
often times conflicting to each other. In this work, we develop
a physical programming based approach to deal with the
multi-objective condition based maintenance optimization
problem. Physical programming presents two major advan-
tages: (1) it is an efficient approach to capture the decision
makers’ preferences on the objectives by eliminating the iter-
ative process of adjusting the weights of the objectives, and
(2) it is easy to use in that decision makers just need to
specify physically meaningful boundaries for the objectives.
The maintenance cost and reliability objectives are calcu-
lated based on proportional hazards model and a control limit
CBM replacement policy. With the proposed approach, the
decision maker can systematically and efficiently make good
tradeoff between the cost objective and reliability objective.
An example is used to illustrate the proposed approach.
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Introduction

Condition based maintenance (CBM) aims to achieve reliable
and cost-effective operation of engineering systems such as
aircraft systems, manufacturing systems, power stations, etc.
CBM is based on the understanding that a piece of equipment
goes through multiple degraded states before failure. The
health conditions can be monitored and predicted (Dong and
He 2007a,b; Yang and Chen 2009), and optimal maintenance
actions can be scheduled for preventing equipment break-
down and minimizing total operation costs (Jardine et al.
2006).

A CBM optimization approach based on proportional haz-
ards model (PHM) has been developed, aiming at determin-
ing an optimal replacement policy, that is, an optimal risk
threshold control limit in this approach, for minimizing the
long-run replacement cost (Makis and Jardine 1992; Banjevic
et al. 2001; Ghasemi et al. 2007). This approach was devel-
oped into the CBM optimization software EXAKT (Ban-
jevic et al. 2001), and it has been successfully applied in
many industries, including mining industry, food processing
industry, utility industry, manufacturing industry, etc. In “Pro-
portional hazards model and its applications”, we will sum-
marize the basics of PHM and the applications of the PHM
based CBM methods.

In condition based maintenance optimization, there are
multiple and typically conflicting design objectives, such
as minimizing the maintenance costs, maximizing the reli-
ability, minimizing equipment downtime, etc. The existing
methods only consider single optimization objective (Banje-
vic et al. 2001). In some cases, minimizing cost is the only
optimization objective. In some other cases, maximizing reli-
ability, or minimizing failure probability, is the only optimi-
zation objective. When cost is the optimization objective,
for example, reliability can be used as a constraint, and vice
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versa. However, the disadvantage of single-objective optimi-
zation is that we cannot systematically investigate the trade-
off between the optimization objectives and find the optimal
solution that best represents the decision maker’s preference
on the optimization objectives. Physical programming is an
effective multi-objective optimization approach developed
in 1996 (Messac 1996), and it has proved its effectiveness in
addressing a wide array of multi-objective optimization prob-
lems in the field of structural optimization, product family
design, control, robust design, reliability optimization, etc.
(Huang et al. 2005b; Tian and Zuo 2006; Tian et al. 2008).
In this work, we develop an approach based on physical pro-
gramming to deal with the multiple optimization objectives
involved in CBM optimization, that is, the cost objective and
the reliability objective. Physical programming presents two
major advantages: (1) it is an effective approach to capture
the decision makers’ preferences on the objectives by elim-
inating the iterative process of adjusting the weights of the
objectives, and (2) it is easy to use in that decision makers
just need to specify physically meaningful boundaries for the
objectives. An example will be used to illustrate the approach.

Proportional hazards model and its applications

Proportional hazards model

Since the proportional hazards model (PHM) was introduced
in 1972 by D.R. Cox, it has been utilized in many fields such
as biomedicine, maintenance, transportation, politics, etc.
(Xu and Gamst 2007; Kumar et al. 1997). It was especially
widely applied in the field of biomedicine and thousands of
papers related to this topic can be found. But the research
and application in the field of maintenance reliability engi-
neering has not yet come to maturity. From 1990s, interest in
applications of the PHM in this field has greatly increased.
PHM has begun to be adopted to deal with various compo-
nents and systems, such as aircraft engines, machine tools,
and power transmission cables. The most important reason
that the PHM is a good approach to analyze the reliability data
is that it can take into account the condition monitoring data
and operating condition data to estimate the failure probabil-
ity and for making maintenance decisions. The proportional
hazards model is a valuable statistical procedure to estimate
the risk of failure of equipment when it is under condition
monitoring. In this model, the effects of different covariates
influencing the time to failure of a system can be estimated,
such as the parts per million (PPM) of iron or lead in the
lubricant oil in the truck transmission system. The PHM can
take various forms, but all of them are made up of two parts:
a baseline hazard function and a function including all the
covariates which affect the time to failure.

The basic model of PHM combines a Weibull baseline
hazard function with a component including all the covari-
ates which affects the time to failure, as follows (Jardine et al.
2006):

h(t, Z(t)) = β

η

(
t

η

)β−1

exp

{
m∑

i=1

γi zi (t)

}
(1)

where h(t, Z(t)) is the hazard value, or failure rate value, at
time t , given the values of z1(t), z2(t), . . ., zm(t). The first
part of this model is the baseline hazard function β/η(t/η)β−1,
which takes into account the age of the equipment at time of
inspection, given the values of parameters β and η. The sec-
ond part exp {γ1z1(t) + γ2z2(t) + · · · + γm zm(t)} takes into
account the covariates which can be considered to be the key
factors reflecting the health condition of equipment.

Applications of the proportional hazards model
based methods

The applications of PHM based methods in maintenance opti-
mization and reliability engineering are reviewed in this sec-
tion.

Applications in maintenance optimization

Applications in maintenance optimization combine the age
data with the condition monitoring data in PHM, so as to
more accurately represent the equipment health condition
and failure probability. Jardine et al. (2008a) described the
development of an optimal predictive maintenance program
for shear pump bearings in the food processing industry.
Measurements are taken in three directions for the bearings
under investigation: axial, horizontal and vertical. In each of
these directions, the velocity spectrum is obtained in five fre-
quency bands. In addition, overall velocity and acceleration
are also measured in the three directions. Lin et al. (2006) pro-
posed the application of a principal components proportional
hazards regression model in condition based maintenance
(CBM) optimization. The oil analysis data set was collected
from transmissions on haul trucks in a mining company.
A similar research using oil data from transmissions in 240-
ton heavy hauler trucks can be found in the paper by Makis
et al. (2006).

PHM was utilized by Vlok et al. (2002) to determine the
optimal replacement policy for a vital item which is subject
to vibration monitoring. In their study they chose circulating
pumps in a coal wash plant as the research case. The lifetime
data was collected based on a period of 2 years. Their study
showed that, even with some problems in collected data,
vibration measurements can be used in proportional hazards
model and that a useful decision policy can be obtained.
Kobbacy et al. (1997) proposed a heuristic approach for
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implementing the PHM to schedule future preventive main-
tenance actions on the basis of the equipment’s full condition
history, using data from four pumps operating in a continuous
process industry.

Jardine et al. (2008b) used the EXAKT software to build
an optimized condition based maintenance policy model for
the interpretation of inspection data from hydro-dyne seals in
a nuclear reactor station. The PHM based statistical decision
methodology was applied to determine the optimal times at
which to perform proactive maintenance. Ansell and Phillips
(1997) used PHM to illustrate the repairable data from the
hydrocarbon industry. The data set consists of failure data in
a pipeline arising from a set of different causes and infor-
mation supplied on a daily basis on average temperature and
the stress the system was under. In the research by Rao &
Prasad (2001), PHM was used to analyze failure data and
plan maintenance intervals for dumpers in mining industry.
In this paper PHM was applied to model the failure rate of a
repairable equipment whose performance is affected by con-
comitant variables. Graphical methods were used to deter-
mine the maintenance intervals.

Applications in reliability analysis

Applications in reliability analysis are applying PHM in the
measurement and prediction of the reliability of equipment
by using covariates to describe different operating condi-
tions. Kumar et al. (1992) used PHM to examine the effects
of two different designs and maintenance on the reliability
of a power transmission cable of an electric mine loader. The
study by Prasad and Rao (2002) considered failure data from
cables of an electrical loader hauler dumper in an under-
ground coal mine. The failures due to electrical problems,
compressed air and cable fault were found to be significant.
They also applied PHM to study the reliability of repairable
systems considering the effect of operating conditions with
an example of thermal power unit. Elsayed and Chan (1990)
developed a PHM method to estimate thin oxide dielectric
reliability and time-dependent dielectric breakdown hazard
rates, including two groups of models: group one doesn’t
consider interactions between temperature and electric field,
while group two analyzes interactions between these two fac-
tors. JoWiak (1992) developed an approach to utilize PHM
in reliability exploration of microcomputer systems. In this
approach, he examined the effects of two concomitant vari-
ables, temperature and mean daily user’s exploitation time
of the system, on system reliability, and found that the PHM
with Weibull baseline failure rate has considerable potential
for estimating equipment failure rate in the presence of time-
dependent and time-independent concomitant variables.

Campean et al. (2001) presented a general PHM based
methodology for camshaft timing-belt life prediction model-
ing. The approach aimed to establish a correlation between

the degradation mechanism, the real world customer usage
profile and rig life testing. The proportional hazards model
is also widely utilized in many other fields, such as air-
craft engines (Jardine and Anderson 1987), locomotive diesel
engines (Jardine et al. 1989), etc.

Multi-objective optimization techniques

Review of multi-objective optimization methods

Engineering optimization problems typically involve multi-
ple conflicting objectives. A general multi-objective optimi-
zation problem is to find the design variables that optimize
a set of different objectives over the feasible design space.
A mathematical formulation of the multi-objective optimi-
zation problem is given as follows (Huang et al. 2005a):

minimize f (x) = { f1(x), f2(x), ..., fm(x)}
Subject to x ∈ X

(2)

where x is an n-dimensional vector of design variables, X is
the feasible design space, m is the number of design objec-
tives, fi (x) is the objective function for the i th design objec-
tive, and f (x) is the design objective vector.

Because of the conflicting nature among different design
objectives, it is typically impossible to achieve the best val-
ues for all the objectives simultaneously. One of the most
widely used methods for multi-objective optimization is the
Weighted-sum Method. It converts a multi-objective optimi-
zation problem into a single-objective optimization problem
by using a weighted sum of all the objective functions as the
single objective. The mathematical model of the Weighted-
sum Method takes the following form:

minimize f =
m∑

i=1
wi fi (x)

Subject to x ∈ X
(3)

wherewi is the weight of objective i , and
∑m

i=1 wi = 1, wi ≥
0, i = 1, 2, . . . , m.

Augment weighted Tchebycheff programs (AWTPs) is
another widely used method for multi-objective optimiza-
tion. The mathematical model of AWTPs is presented as fol-
lows (Huang et al. 2005a):

min α + ρ
m∑

i=1
(1 − zi )

s.t. α ≥ λi (1 − zi ), ∀i

zi = fi (x)− f nadir
i

f ideal
i − f nadir

i
, ∀i

x ∈ X

(4)

where a is a variable satisfying the condition in the con-
straint, and ρ is a small positive scalar. f ideal represents the
utopian point, that is, f ideal

i is the optimization result with
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the i th design objective as objective function and x ∈ X as
constraints. λi is the weight of objective i , and

∑m
i=1 λi = 1,

λi ≥ 0, i = 1, 2, . . . , m. f nadir
i denotes the worst value

of the i th objective function among all the Pareto points, or
non-dominant point. A design variable vector is said to be
Pareto solution if there exists no feasible design variable
vector that would improve some objective functions with-
out causing a simultaneous increase in at least one objective
function. znadir

i can be estimated by the optimization result
with the minus of the i th design objective as objective func-
tion and x ∈ X as constraints, or it can be estimated by simply
being assigned a value based on experience.

The Weighted-sum method and the AWTPs method are
hard to use, because we need to specify the weigh values,
which do not have physical meanings, and there are no sys-
tematic approaches to find the best set of weight values for
these models. Other more sophisticated multi-objective opti-
mization methods have been reported in the literature. Huang
et al. (2005a) proposed an interactive multi-objective opti-
mization method, and applied it to reliability optimization.
Baykasoglu et al. (2004) presented a tabu search method for
solving multi-objective flexible job shop scheduling prob-
lems. Taboada et al. (2008) developed a multi-objective
multi-state genetic algorithm for system reliability optimal
design. Li et al. (2009) presented a two-stage approach for
multi-objective decision making. Konak et al. (2006) gave a
tutorial on multi-objective optimization using genetic algo-
rithms. However, comparing to the multi-objective optimi-
zation methods presented above, the physical programming
method is easier to use, because it does not include the inter-
active process of adjusting the weighs, and it is very effective
in capturing the designers’ preferences on different design
objectives. The physical programming method will be dis-
cussed in more details in the next section.

The physical programming method

Physical Programming is an effective multi-objective opti-
mization method that explicitly incorporates the designer’s
preferences on different design objectives. Physical program-
ming captures the designer’s preferences using class func-
tions. A class function is a function of a design objective.
The value of a class function represents the preference of the
designer on the objective function value, and the smaller the
class function value is, the better. Class functions are classi-
fied into four classes: smaller is better (i.e., minimization),
larger is better (i.e., maximization), value is better, and range
is better. Consider for example the case of class-1 soft class
function (class 1-S), the qualitative meaning of the prefer-
ence function is given in Fig. 1. The value of the objective
function, gi , is on the horizontal axis, and the corresponding
class function, ḡi , is on the vertical axis.
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Fig. 1 The Class-1 soft class function

Physical programming allows the designers to express
ranges of differing levels of preference with respect to each
design objective with more flexibility. For Class 1-S, as shown
in Fig. 1, there are six ranges: Highly desirable range (gi ≤
gi1), Desirable range (gi1 ≤ gi ≤ gi2), Tolerable range
(gi2 ≤ gi ≤ gi3), Undesirable range (gi3 ≤ gi ≤ gi4),
Highly undesirable range (gi4 ≤ gi ≤ gi5), and Unac-
ceptable range (gi ≥ gi5). The parameters gi1 through gi5

are physically meaningful constants associated with design
objective i . What the designer needs to do is just to spec-
ify ranges of different degrees of desirability (highly desir-
able, desirable, tolerable, undesirable, highly undesirable,
and unacceptable) for the class function of each objective.
Given the specified boundary values, the class function for a
design objective can be constructed using the method devel-
oped by Messac (1996).

The range boundary values define the intra-objective pref-
erence, while the “One versus Others” criteria rule (OVO
rule) describe the inter-objective preference. Suppose there
are two options: (1) full reduction for one criterion across
a given preference range, say, the tolerable range; (2) full
reduction for all the other criteria across the next better range,
say, the desirable range. The OVO rule decides that option
(3) is preferred over option (4). The OVO rule is incorporated
in the method of constructing the class functions.

The aggregate objective function is built by combining all
the soft class functions, and thus the multi-objective optimi-
zation problem is converted into a single-objective optimi-
zation problem, and can be solved using optimization codes.
Typically, only Class 1-S functions (to be minimized) and
Class 2-S functions (to be maximized) are the soft class func-
tions that we have, and the physical programming problem
model can be formulated as follows (Messac 1996; Tian and
Zuo 2006):

min
x

g(x) = log10

{
1

nsc

∑nsc
i=1 ḡi [gi (x)]

}
s.t. gi (x) ≤ gi5 (for class 1 - S)

gi (x) ≥ gi5 (for class 2 - S)
x jm ≤ x j ≤ x j M

(5)

where xjm and xjM are the corresponding minimum and max-
imum values for design variable j , nsc is the number of the
soft design objectives in the problem.
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The physical programming method has the following
advantages (Messac 1996; Tian and Zuo 2006). Equation
(1) the iterative weight-adjusting process is eliminated, thus
the computational burden is substantially reduced; (2) The
designers only need to specify the physically meaningful
boundary values for each design objective, not those mean-
ingless weights, which makes this approach very easy to use;
(3) The designers’ preferences are specified on each design
metric individually, therefore, physical programming is suit-
able to deal with a larger number of design objectives.

The approach for multi-objective CBM
optimization using physical programming

In this section, we present the approach for multi-objective
CBM optimization using physical programming. The meth-
ods for calculating the cost and reliability objective values
will be presented first.

Calculation of the cost and reliability values

The CBM optimization approach based on proportional haz-
ards model, and the method for calculating the cost and reli-
ability objective function values, were developed in Makis
and Jardine (1992) and Banjevic et al. (2001). A summary of
method is given in this section. In the PHM based CBM pol-
icy, if the observed hazard rate h(t, z(t)) multiplied by K at
the given inspection point of time is greater than a certain risk
threshold value d, preventive replacement action should be
taken; otherwise operation can continue. If a failure occurs, a
failure replacement will be performed. Thus, the risk thresh-
old value d determines the PHM based CBM policy. The
objective of CBM optimization is to find the optimal risk
threshold to optimize the cost and reliability objectives.

The cost objective C , that is, the total expected cost per
unit of time, can be calculated based on the following formula
(Banjevic et al. 2001):

C = C p(1 − Q(d)) + (
C p + K

)
Q(d)

W (d)
, (6)

where C is the average cost per unit of time. C p is the pre-
ventive replacement cost and C p + K the failure replace-
ment cost. Q(d) is the probability that failure replacement
will occur, that is, Q(d) = P(Td ≥ T ) . Td = inf{t ≥ 0 :
Kh(t, z(t) ≥ d} is the preventive time at the risk level d.
W (d) is the expected time until replacement, regardless of
whether it is a preventive action or failure, that is, W (d) =
E(min{Td , T}), where T is the failure time. Once the optimal
risk level, d*, is determined, the item is replaced at the first
moment t when β/η(t/η)β−1 exp(γ Z(t)) ≥ d ∗ /K .

The reliability under a CBM policy is defined as the prob-
ability of performing preventive replacements, that is, the

probability of preventing failure from occurring. Thus, the
reliability objective R can be calculated using the following
equation:

R = 1 − Q(d). (7)

The cost and reliability objective values can be calculated
using the method developed by Banjevic et al. (2001).

The physical programming model

The physical programming model for the multi-objective
CBM optimization is developed in this section. In this work,
we have two optimization objectives, cost and reliability. The
cost objective class function is an increasing function, as
shown in Fig. 2. The lower the cost, the better it is. The val-
ues in the figure are just to qualitatively illustrate the cost
class function. The reliability class function is a decreasing
function of reliability value, as shown in Fig. 3. The higher
the reliability, the better it is.

The physical programming approach transforms a multi-
objective optimization problem into a single-objective opti-
mization model. The soft class functions of design objectives
are combined into the aggregate objective function f , which
is to be minimized. The physical programming-based opti-
mization model for CBM optimization problem is given as:

min f (d) = log10
{ 1

2 [ḡR (R(d)) + ḡC (C(d))]
}

s.t.
R ≥ R0, C ≤ C0

d > 0

(8)

Fig. 2 The cost objective class function

Fig. 3 The reliability objective class function
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where ḡR and ḡC are the class functions for the reliability
objective and the cost objective, respectively. R0 and C0 are
the reliability and cost constraint values, respectively. Given
a risk threshold value d, the corresponding cost and reliability
under the CBM policy can be calculated. The objective func-
tion values are used to further calculate the corresponding
class functions. The aggregate objective function can then
be calculated and optimized to find the optimal risk thresh-
old value. As can be seen from (7), the optimization problem
can be formulated as a single-variable optimization prob-
lem. Many optimization methods can be used to solve such
an optimization problem.

An example

To illustrate the proposed approach, we use the example of
CBM of shear pump bearings in a food processing plant.
The case was reported by Banjevic et al. (2001). The objec-
tive is to find an optimal condition based replacement policy
to minimize total long-run expected replacement cost, and
to improve reliability, given the condition monitoring data
(vibration data) and replacement histories.

Totally 21 vibration measurements were collected using
accelerometers, including vibration data in axial, horizon-
tal and vertical directions for the overall velocity, velocities
in 5 bands and acceleration. There are 25 histories in the
recorded data, including 13 failure replacements (ended with
failure) and 12 preventive replacements (ended with suspen-
sion). Using the software EXAKT (Banjevic et al. 2001),
the significance analysis was performed, and three signifi-
cant covariates were identified: VEL#1A (band 1 velocity in
the axial direction), VEL#1V (band 1 velocity in the vertical
direction), and VEL#2A (band 2 velocity in the axial direc-
tion). The PHM parameters can thus be estimated, and the
resulting hazard function is given as follows:

h(t, Z(t)) = β

η

(
t

η

)β−1

· exp {γ1z1A(t)+γ2z2A(t)+γ3z1V (t)}
= 4.992

1,584

(
t

1,584

)4.992−1

· exp {5.831z1A(t)+36.55z2A(t)

+24.05z1V (t)} (9)

The transition probability matrix is required for calculating
the cost and reliability measures. The transition probability
matrix indicates the probabilities of a covariate in different
ranges at the next inspection time given its current range.
Assume the inspection interval is 20 days. The transition
probability matrices for the three covariates can also be esti-
mated using EXAKT. The transition probability matrix for
covariate VEL#1A is shown in the Fig. 4. As can be seen,
the covariate is divided into 5 ranges, and the transition prob-
ability values are shown in the figure. The matrices for the
other two covariates will not be listed here.

In this application, the preventive replacement cost is esti-
mated to be $1,800, and the failure replacement cost is
$16,200. Thus we have K equal to $14,400. Given a certain
risk threshold value d, the corresponding cost and reliability
value can be calculated. The cost versus risk threshold plot
and the reliability versus risk threshold plot are shown in
Figs. 5 and 6, respectively. The risk threshold d is in the log-
arithm scale, since the relationships can be better presented
in the plots in this way.

To use the physical programming approach, we need to
first indicate the preferences on the objectives by specifying
the boundary values for each objective. Suppose the specified
boundary values for cost and reliability are given as follows:

[gC1, gC2, gC3, gC4, gC5,] = [8, 10, 12, 15, 20,] ,

[gR1, gR2, gR3, gR4, gR5,] = [0.99, 0.98, 0.95, 0.90, 0.80,].

(10)
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Fig. 5 The cost versus risk threshold plot

Fig. 4 The transition
probability matrix for covariate
VEL#1A
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Fig. 6 The reliability versus risk threshold plot

Using the Malab Optimization Toolbox to perform the opti-
mization, we can obtain the following optimal solution:

d∗ = 10.79 /day, C∗ = 10.48 /day, R∗ = 0.9915 (11)

As can be seen, the optimal cost falls into the tolerable range,
and the optimal reliability is in the highly desirable range. The
optimization results can reflect the designer’s preferences on
the objectives, and the tradeoff between the two design objec-
tives.

Now let’s investigate another scenario, in which the deci-
sion maker has high requirement on the reliability objective.
The decision maker can specify such preference on the reli-
ability objective by specifying the boundary value settings for
the reliability objective. Assume the cost objective boundary
values are kept the same.

[
gC1, gC2, gC3, gC4, gC5,

] = [8, 10, 12, 15, 20,] ,[
gR1, gR2, gR3, gR4, gR5,

]
= [0.9999, 0.999, 0.995, 0.99, 0.95,]. (12)

Conducting the optimization, we can obtain the following
optimal solution:

d∗ = 3.4897 /day, C∗ = 11.22 /day, R∗ = 0.9973. (13)

As can be seen, when there is a higher requirement on reli-
ability, the optimal risk threshold value decreases. Both of
the optimal cost and optimal reliability fall into the tolerable
ranges, in order to make the best tradeoff between these two
objectives. The optimization results reflect the change in the
designer’s preferences.

Conclusions

In condition based maintenance optimization, main optimi-
zation objectives include maximizing reliability and mini-
mizing maintenance costs, which are often times conflicting

to each other. In this work, we develop a physical program-
ming based approach to deal with the multi-objective condi-
tion based maintenance optimization problem. The physical
programming method presents two major advantages: (1) it
is an efficient approach to capture the decision makers’ pref-
erences on the objectives by eliminating the iterative process
of adjusting the weights of the objectives, and (2) it is easy
to use in that decision makers just need to specify physically
meaningful boundaries for the objectives. With the proposed
approach, the decision maker can systematically and effi-
ciently make good tradeoff between the cost objective and
reliability objective. The example illustrates the effective-
ness of the proposed approach.
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