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Abstract There is a small subset of any repairable compo-
nent population that can develop a failure mode outside the
scope of the standard repair and overhaul procedures, which
makes them “rogue”. When this happens, a Darwinian-like
“natural selection” phenomenon ensures that they will be
placed in the most disadvantageous position in the asset man-
agement program, negatively affecting multiple aspects of
the operational and maintenance organizations. Rogue com-
ponents have long plagued the airline industry and created
havoc in their asset management programs. In this paper, we
describe how these rogues develop, outline the natural selec-
tion process that leads to their hampering the asset manage-
ment program, and examine some of the negative impacts
that ensue. Then we propose a Condition based maintenance
approach to control the development of these components.
We explore the use of a supervised learning data mining tech-
nique called Logical analysis of data (LAD) in CBM for the
purpose of detecting rogues within a population of repair-
able components. We apply the resulting LAD based deci-
sion model on an inventory of turbo compressors belonging
to an airline fleet. Finally, we evaluate the applicability of
LAD to the rogue component detection problem and review
its efficiency as a decision model for this type of problem.
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Introduction

Aircraft maintenance and reliability programs are essential
for the safety and airworthiness of airplanes. Maintenance,
repair and overhaul (MRO) operations take up a large por-
tion of aviation companies’ spending. Aerostrategy estimated
total air transport MRO costs at $40.8 billion in 2006 (Flint
2007). According to OAG (Official Airline Guide), global
MRO spending on military aviation will witness a 14.9%
increase over the next decade to reach $67.3 billion a year
in 2018 (OAG 2008). The performance of an aircraft oper-
ator often hinges on its capability to provide fast and effi-
cient replacement of defective components in its fleet. For
that reason, operators may either carry in-house maintaining
capability or subcontract component availability (Kilpi and
Vepsalainen 2004). In both cases the operator’s inventory
must be composed of ready-to-replace components.

As mandated by many civil aviation authorities, mainte-
nance programs rely on condition monitoring (CM) to track
the performance of the different parts and components of an
aircraft.

An aircraft operator‘s program usually handles many
repairable components of the same type. Such components
could be in one of three places within the system:

1. In service on one of the aircraft
2. Undergoing repairs in the maintenance shop
3. In the spare part inventory

Each component has a unique serial number S/Ni . Most
components have exhibited many installation and removal
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instances throughout their lifetime within the population.
These instances are noted and logged in records (removal
records) which are kept for every single component.

The integrity of components installed as replacements to
failing parts is essential to the viability of the operator’s
asset management program. Typically, a repairable compo-
nent works as expected for its designed lifecycle or between
scheduled events (Carroll 2008). In some cases, a component
fails to fulfill these expectations for three possible reasons:

1. The component has a manufacturing flaw which can be
detected as it exhibits a failure or a series of failures in
its early service life.

2. The component is aging and is thus suffering from con-
secutive failures towards the end of its service life.

3. The component is classified as rogue. Rogue components
are repairable parts that develop a failure mode outside
the scope of the standard repair and overhaul procedures.

Each of these reasons has identifiable characteristics.
Rogue components, however are extremely difficult to iden-
tify and can spread throughout the component population.

If an asset management program includes repaired, recon-
ditioned or overhauled parts, there is an ever-present risk of
“rogue” components developing in the population. When this
happens, there is a compounding negative effect across these
aspects of operational and maintenance organizations:

– Operational Reliability
– Asset Management Programs
– Maintenance Effectiveness
– Preventive Maintenance Programs
– Maintenance Support & Training Programs
– Component Repair Facility
– Components Themselves
– Mechanical System Hardware
– Operator/OEM Engineering

The main problem occurs when rogue components slip
into the asset management system through the operator’s
spare parts inventory. The detection of such components is
important to ensure the reliability of the system.

A study was performed in 1995 to calculate the financial
impact to an airline when a rogue component develops. It
was determined that on the average, a single rogue compo-
nent will cost $50,000 (US) over its life. This number pertains
only to the maintenance burden and does not include flight
delays and / or cancellations or flight restrictions because of
the perpetuated system problems when installed to correct
an aircraft system problem. Additionally, due to the high
usage of spares as a result of multiple installations to resolve
the perpetuated system problem, the asset management pro-
gram may procure additional spare inventory, resulting in
abnormally high inventory levels and an increased manpower
hours. In an effort to resolve the unconfirmed failure in the

shop, the OEM may elect to modify the component. Most
times, these modifications are ineffective, and the airline
bears the brunt of the cost. This is an extremely costly failure
mode and impacts the effectiveness of many different aspects
within the airline maintenance organization.

Condition Based Maintenance (CBM) is defined as perpet-
ual monitoring of a system‘s health such that maintenance is
performed when an intervention is deemed necessary. Rogue
component detection is an example of how CBM can be used
in aviation to detect faults. Today commercial airline oper-
ators have adopted several aspects of CBM; and with the
advancement of technology, they will be able to adopt its full
benefits (Teal and Sorensen 2001).

Current practice in rogue component detection

Current condition monitoring methods rely generally on
statistical analysis tools or different combinations of para-
metric and non-parametric tools in order to evaluate the per-
formance of aircraft components. The main drawback to the
use of statistical tools is the precondition that the collected
failure data are homogeneous and independent and identi-
cally-distributed (i.i.d). Many statistical analysis methods
assume that the data belong to a certain probability distri-
bution; such assumptions are not always true. An example
is presented in Leung et al. (2007) where a hybrid para-
metric and statistical technique is used to classify aircraft
components according to their maintenance status using their
removal records as input data. The classification decision is
done manually based on a visual evaluation of the output
charts. In Carroll (2008), a set of indicators where proposed
that would identify whether such a component is rogue or
not by assessing its installation and removal history.

This paper is organized as follows: first we define rogue
components and explain how they develop by outlining the
“natural selection” phenomenon. Next we examine some
of the negative impacts caused by rogue components by
recounting two possible real life scenarios. Then we pro-
pose the use of Logical Analysis of Data (LAD) as a
decision model for detecting rogue components within a
population and describe the indicators involved in rogue com-
ponent detection. We explain LAD methodology and explain
its implementation in rogue component detection. Finally, we
test the LAD technique on data obtained from the industry
and study the results.

Rogue component definition

A rogue component is defined as an individual repairable
component, which repeatedly experiences consecutive short
in-service periods, manifests the same mechanical system
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fault each time it is installed, and when it is removed from
service, the mechanical system fault is corrected.

The reason a component develops a rogue failure is
because its repair and/or overhaul tests do not address 100%
of the component’s operating functions, characteristics or
environment. Interviews with various Original Equipment
Manufacturers (OEM) revealed the test coverage is typically
about 85% of the component’s complete functionality. Even
if all the functions were covered, the operating environment
of the component when it is installed in the mechanical sys-
tem is usually quite different than the repair facility, so if a
failure is dependent upon a particular in-service environmen-
tal condition, it is unlikely that it will be duplicated during
test.

Additionally, the repair and / or overhaul tests are devel-
oped to identify anticipated failures, focused on testing
things that are expected to fail. For example, it would not
make sense to check all the screws or electrical ground straps
each time a component comes into the shop, since the chance
of failure for those pieces is practically zero and the cost
of performing such extensive testing during each shop visit
would be exorbitant.

When a component experiences a failure that was either
unaddressed or unanticipated by the testing procedures, a
rogue is born. Since every test that is performed misses that
specific aspect of the component’s functionality, the fault will
never be identified and resolved (Leung et al. 2007).

The rogue failure cannot be predicted if, when, and where
it will occur. It is a random failure that develops and will
remain until definitive action is taken to resolve it. Not every
part number population will develop rogue failures. Also,
when a rogue failure occurs, not all the individual compo-
nents within that part number population will necessarily
develop that failure. However, any part number population
has the potential for individuals to develop rogue failures,
regardless of how simple or complex the design and func-
tionality.

Natural selection phenomenon

There is a Darwinian-like “natural selection” process that
ensures the rogue components will be positioned in the most
disadvantageous places in the asset management program.
The following depiction demonstrates the mechanics of this
“natural selection” phenomenon.

Initially, it starts with a spare inventory and in-service
population that are comprised of serviceable (Good) com-
ponents that function as expected. As a part fails in service,
it is removed and replaced with a good part from the spare
pool in order to solve the mechanical system problem. The
component repair facility tests and duplicates the problem
with the failed unit, repairs and returns it to the spare pool.

The “natural selection” process begins when a rogue fail-
ure develops in one of the in-service components. When this
occurs, the component is removed and sent to the repair facil-
ity. It typically tests normally, as “No fault found” (NFF), and
returns to the spare pool with no corrective action taken to
resolve that failure.

As long as there are no failures in the in-service popula-
tion, the rogue component will remain in the spare pool. If
the unique rogue failure mode is not recognized and resolved,
then other components may develop the same condition.

Every new rogue component is removed from service and
sent to the repair facility where it tests as NFF, and is returned
to the spare pool. As such, the potential negative effect of the
rogues is multiplied.

Though these rogue components make up a very small
part of the general population, the “natural selection” process
ensures that they are sorted out to the most critical place in
the asset management process—the spare inventory. Accord-
ing to accounts from experts in the industry, there are docu-
mented cases where the entire spare pool had been comprised
of rogues.

The effect of rogue components

When rogue components develop within a part number
group, there are significant detrimental impacts to various
aspects of the operational and maintenance organizations.
These impacts will below.

Maintenance effectiveness

Mechanical system problem resolution relies on the spare
inventory being comprised of serviceable components. When
a component is installed from the spare inventory and the
system problem continues, it is illogical to assume that the
replacement was a defective part. When a rogue component
is installed, it severely compromises maintenance effective-
ness. The following scenario describes an actual case:

Case study

There is a system that maintains a constant air pressure by
adjusting the opening of a vent valve to react to operational
and environmental changes. This system is comprised of
an electronic control unit, various sensing units, and a vent
valve.

A system malfunction occurred that caused the vent valve
to intermittently lock up in mid-position during high oper-
ational demands. The maintenance technicians could not
duplicate the fault, so they replaced the control unit as the
most likely component to cause this problem.
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The problem repeated. Since the control unit did not
resolve the problem, the vent valve was replaced, which
required considerable system down time and maintenance
resources. Now when the system operated during high
demand periods, the valve intermittently oscillated open and
closed, when it should remain in a fixed position. This prob-
lem could not be duplicated by maintenance.

Since this new issue surfaced immediately after the instal-
lation of the valve, it was replaced again in the assumption
that it was defective from stock. The system was down again
for a considerable amount of time during this second replace-
ment. However, the oscillation problem continued.

All the wiring was checked leading to the valve, and after a
number of additional repeat complaints, all the valve electri-
cal connectors and sensors were replaced, with no result. The
control unit was replaced again and the oscillation problem
was resolved.

Root cause analysis

The root cause of the initial system malfunction (when the
valve would stop during operation) was a faulty vent valve.
The control unit first installed was a rogue component, which
had an existing failure that would cause the valve to inter-
mittently oscillate during high operational demands.

However, this rogue failure could not manifest itself until a
serviceable vent valve was installed, since the original defec-
tive valve would lock up during operation, thus preventing
the oscillation from occurring.

This type of compound problem is not common. Usually
the introduction of a rogue component causes the original
system problem to continue, which results in the replace-
ment of the associated system components, extensive system
troubleshooting and repeat replacement of the rogue compo-
nent until a “good” spare is installed.

Mechanical support

When a chronic system problem that is caused by the
introduction of a rogue component persists after all the com-
ponents have been replaced, the next logical step is to trou-
bleshoot the interconnecting wiring or plumbing.

It is very likely that much of this hardware is located in
areas that are very difficult or time consuming to access,
possibly requiring special tooling or OEM expertise to dis-
assemble and reassemble. In some cases, OEM engineering
drawings or wiring schematics are also needed in order to pro-
ceed with the next phase of troubleshooting, which can take
a considerable amount of time and / or expense to acquire.

Since the root cause of the continuing problem is actually
rogue component, this in-depth troubleshooting and exten-
sive maintenance support will not resolve the system mal-
function.

Operational reliability

When the maintenance effectiveness is compromised by the
presence of rogue components, the mechanical system oper-
ational reliability naturally suffers. There are repeat events
of system failures and associated down time, along with
extended periods of in-depth troubleshooting.

Case study

An Auxiliary Power Unit (APU) provides electrical and
pneumatic power, comprised of a turbine and a generator,
with a main electronic control, and a number of external sen-
sors. One of these sensors is located in an actuator that opens
a door to allow air to enter the APU during operation. It is
a switch that provides a signal to the electronic control unit
that the door is open, so the APU can be started and allowed
to run.

If the door should start to close at any time, the switch will
immediately signal the electronic control unit to shut the APU
down to prevent catastrophic damage. The electronic control
unit also has a monitoring circuit to record which stage of the
start or run cycle had failed, providing direction for system
troubleshooting.

In this case, a door actuator had failed, which caused the
APU to shut down when it was running. It was replaced with
a rogue door actuator. Now the APU would intermittently
shut down during various stages of the start cycle. This prob-
lem could not be duplicated during system troubleshooting,
so maintenance reacted to the fault codes recorded by the
electronic control unit.

Since there were different fault codes each time, a con-
siderable amount of various components were replaced and
the interconnecting wiring was checked a number of times.
New wires were strung between the electronic control unit
and the APU.

When another door actuator was installed, the problem
stopped. This recurring problem generated 45 complaints that
spanned a period of 344 days, with a total of 46 days of com-
plete system shut down.

Root cause analysis

The first door actuator that was installed was a rogue com-
ponent that had an intermittent failure of the sensor, which
would indicate the APU door was closing when it was open.

Because this malfunction intermittently happened during
different stages of the APU start cycle, the electronic con-
trol unit’s fault recording system would record the each stage
of the start sequence that was interrupted and list the most
likely device that could be responsible for causing that failure
at that particular time in the start cycle.
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Unfortunately, the monitoring system would not record
that the door actuator switch had signaled the door was clos-
ing during the start cycle.

Asset management

When a significant portion of the spare inventory is com-
prised of rogue components, traditional asset management
models are no longer effective.

Typically, multiple spares must be withdrawn to resolve
in-service problems, resulting in sporadically high spare
usage and low spare levels. If the available spare inventory
repeatedly reaches critically low levels, then more spares will
be added. As more rogue components develop, this process
will repeat until there is an abnormally high number of spares,
which cannot be managed effectively.

Case study

An operator had a fleet of 40 aircraft, each having an auto-
pilot system comprised of a control panel, pitch computer,
roll computer, and a number of servomotors and sensors. The
asset management program determined that 6 pitch comput-
ers were needed for the spare inventory to maintain a satis-
factory level of support.

After a number of years, it was difficult to keep the spare
levels up, so more computers were procured. It was assumed
that the equipment was getting older, so the increased usage
of the spares was a natural progression. This chain of events
repeated as the years went on until there were 28 spare com-
puters to support the 40 that were in service

Root cause analysis

Initially, the pitch computer population developed a small
number of rogue components, which was a substantial per-
centage of the spare population. The result was a recurring
low spare level, so more computers were procured to off-
set the demand. As new computers were added to the spare
inventory, the percentage of rogue to non-rogue spares was
reduced, so it was possible to maintain a satisfactory spare
level, despite the rogue component presence.

Over time more rogue components developed, again
increasing the rogue to non-rogue percentage in the spare
inventory, with the same reaction from the asset management
program, which diluted the rogue component impact to the
asset management program. This cycle continued with the
incremental increases to the spare inventory until extremely
high levels were obtained.

After an analysis of the pitch computer population’s in-
service performance, it was discovered that 20 of the 28 spare
computers were rogue components. Once these were identi-
fied and resolved, it was possible to surplus 20 of the spares.

Each computer was valued at approximately $12,000 (US),
so the cost of acquiring the excess inventory totaled around
$240,000 (US). When the excess components were sold on
the surplus market, only a small fraction of the initial expense
was recovered.

Preventive maintenance programs

Some major components receive regularly scheduled pre-
ventive maintenance to ensure they operate through their
designed life cycle, such as oil and filter changes. If rogue
failures develop in these components, then an increasing
number of in-service failures will occur despite these pre-
ventive maintenance actions. In an effort to eliminate these
failures, typically the interval between preventive mainte-
nance actions will be reduced from what was originally set.
This is a very expensive action to take, as it could double
or triple the recurring maintenance burden and cost. If the
rogue failure mode is not corrected, then the failures will
still continue despite the additional preventive maintenance.

Case study

On a turbine engine, the Constant Speed Drive (CSD) gear-
box drives the electrical power generator at a constant RPM,
regardless of the engine RPM. This gearbox has a preventive
maintenance program in place to replace the oil and filter
every 1,000 operating hours. After several years of operat-
ing these engines, several CSDs exhibited failure mode that
resulted in oil starvation and catastrophic failure.

The immediate plan to resolve this situation was to change
the oil and filter every 500 h, instead of the original 1,000 h.

With a CSD population of 240 units that had the filter and
oil replaced about three times a year at a cost of $150 and
2 man-hours labor, the total annual maintenance burden was
approximately $108,000 (US) and 1440 man-hours per year.
Reducing the preventive maintenance interval to 500 h would
double the cost and man-hour consumption.

Root cause analysis

Of the total CSD population, only 10 had exhibited this fault,
but had done so repeatedly. These individuals developed a
rogue failure that caused the oil pressure to fluctuate and
damage an oil pressure relief valve, which then starved the
CSD of oil.

An analysis of the rogue components revealed the unusual
failure, which was resolved. The oil and filter interval
remained the same and the reliability returned to the pre-
vious level.
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Maintenance training programs

If mechanical system problems become chronic, it appears
that maintenance efforts are ineffective, so the formal mainte-
nance training programs are typically reassessed in an effort
to raise the technical expertise.

When no formal technical training exists for those trou-
blesome mechanical systems, then courses may be created
to improve the overall understanding of system description,
operation, troubleshooting and repair. If a formal technical
training program exists, then the course material must be
lacking, so a great deal of time and effort is spent to amplify
the various aspects of the training to provide more detail.

When the maintenance effectiveness still does not
improve, then the technical personnel may be required to
attend recurrent training, assuming that repeated exposure to
the same information will improve their expertise.

In all these situations, the expanded / additional / recur-
rent training will typically have little positive effect, since the
root cause of the issue is not system knowledge, but rogue
components. In addition, the maintenance personnel gener-
ally have a good understanding of the systems they work
with, so subjecting them to additional training can convey
the impression that management believes they are technically
deficient, rather than taking action to identify and resolve the
root cause of the problem. This can create or compound a
division between management and the technical workforce.

Component repair facility

Rogue components cause a sporadic rate of removals, so
the component repair facility has a correspondingly sporadic
workload. Typically, there are periods of relative inactivity
that are punctuated by high demands, can exceed the repair
facility’s manpower and testing capability.

The resulting low spare inventory levels, high repair back-
log and extended lead times can force a selective type of
testing that centers on the components that require the least
amount of work, as satisfying the demand for serviceable
spares outweighs the need to perform the necessary in-depth
analysis of rogue failures. This tactical approach perpetuates
the existing rogue component population and allows more to
develop, which amplifies the demands and difficulties for the
repair facility.

Case study

A certain component required three elapsed hours to per-
form a serviceability test, 12–14 h to calibrate, and 20–24 h
to overhaul. Any failure that was above and beyond the typ-
ical overhaul could take upwards of 40 h to repair.

Because of a rogue component presence, the unservice-
able components arrived in batches, which severely taxed

the two test stations in the repair facility and created a sig-
nificant backlog. Additionally, the resulting low spare inven-
tory levels pressured the repair facility to produce serviceable
components quickly in order to support the needs of the oper-
ation. If one or more of the components required overhaul or
extensive repair, then the remaining backlog was audited to
determine which ones could be turned around, that is, tested
with no adjustment, repair or overhaul required.

Once several components were returned to the spare inven-
tory, the production pressure lessened and the more time-con-
suming repairs or overhauls could resume.

The unserviceable components that could be turned
around were the ones that had been replaced as a result
of poor troubleshooting and the rogue components, as they
both tested normally. Since there was no in-depth analysis
of the rogue failures, the rogue component population grew,
increasing the volume of the sporadic returns and intensify-
ing the pressures on the repair facility to produce serviceable
spares more quickly.

The turn-around methodology became a standard operat-
ing procedure, which became a self-feeding rogue compo-
nent problem.

Operator/OEM engineering

When a significant rogue population develops, the number
of system complaints grows and the repair facility has a
high rate of NFF. As the operational reliability continues
to decrease despite all the maintenance technical expertise
improvements, then the operator or OEM engineering may
be tasked with identifying the root causes.

Since a definite problem cannot be identified, then the
efforts turn to theorizing what could be a root cause and com-
ponent or system design modifications may be developed in
an attempt to resolve the assumed shortcomings. Generally,
the reliability improvement modifications do not address the
true root cause, which is the rogue failure.

The poor operational reliability continues, with the risk
that the incorporated change can also negatively impact the
reliability of the general population.

Rogue components can present another challenge when
a modification is introduced to enhance the operation of in-
service components, such as a functionality or performance
change. When these upgrade modifications are started, the
spare inventory is modified as “seed” units, and then placed
into service to remove the next wave of components to be
modified. This process continues until all the modifications
have been accomplished.

If the spare inventory contains a significant amount of
rogue components, it will critically impact the modification
campaign. The “natural selection” phenomenon ensures all
the rogue components are in the spare inventory. When these
components are modified and placed in service at the same
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time, they create their natural system failures. Since multiple
system faults appear coincidentally as the modification was
introduced, it is logical to assume the modification was the
root cause of this sudden spike in operational problems.

The engineering group will typically halt the modification,
so they can analyze each aspect of the modification, looking
for something that was introduced that could cause such an
adverse reaction. However, since the analysis does not focus
on the rogue failure, it will consume a tremendous amount of
manpower and resources for nothing. In some cases, a com-
pletely new modification will be developed—with the same
results.

Case study

The heart of an engine indicating system is a computer that
processes all the various inputs and displays the operational
parameters on a monitor. This computer has an internal test-
ing system that continually checks its functionality. If it
detects an internal or external anomaly, it will display a fault
message. In this case, there were 46 of these computers in
service, with excellent overall operational reliability.

A modification to the computer software was introduced
that changed the display characteristics. As the first batch
of modified units was placed into service, a high number of
system failures immediately occurred. When the modified
computers were removed from service and tested, there were
no faults found.

It was assumed that something in the new software must
be the cause of these anomalies. A great deal of engineering
time was spent reviewing all the software changes, but noth-
ing could be identified as a root cause. The modification was
halted.

Root cause analysis

The spare inventory had a significant number of rogue com-
ponents (approximately 75%). When all the modified rogue
components were placed into service at the same time, there
was an abnormal spike in the amount of system faults, and
when the modified computers were removed, the system reli-
ability returned to normal.

The engineering group could find no problems with the
modification, so an analysis of the in-service performance of
all the modified components was initiated. It revealed that
approximately 25% of them did not exhibit any problems
when placed into service.

If the software modification was the root cause, then all the
modified components should have exhibited faults. Since a
segment of the modified components had no faults, the mod-
ification was exonerated. However, a considerable amount
of engineering time and resources were expended needlessly
analyzing the modification.

Mechanical system hardware

For the most part, rogue components create intermittent sys-
tem faults. When a system problem persists after all the com-
ponents have been replaced, the next logical step is to suspect
an intermittent malfunction of the interconnecting wiring and
connectors that could be caused by dynamic operational con-
ditions, such as vibration, flexing, heat, cold, water ingres-
sion, etc.

Generally, the maintenance technician will attempt to rep-
licate these conditions by subjecting it to physical stress and
environmental conditions that could immediately create a
new problem or weaken the wiring or connectors so another
intermittent problem will develop in the future.

Typically, an ohmmeter is used to check the continuity
of the wiring, which is measured with two metal probes. In
order to accomplish the checks, one probe might be inserted
into the female pins of the electrical connectors, which can
consist of a high number of very small gauge pins. If the
probe is not the exact size of the male counterpart, when it is
inserted it can spread the internal contact points of the female
pin, which will create an intermittent connection when the
connectors are rejoined. When this occurs, the troubleshoot-
ing of this induced fault is extremely difficult to locate and
resolve.

Another method of identifying a wiring problem that is
intermittently shorting to ground is to use test equipment
known as a “megger”, which uses a high voltage to deter-
mine if the wiring insulation is breaking down. If it is not
used correctly, it could damage the insulation. Additionally,
if all the interconnected electrical components are not dis-
connected, it will damage their internal workings, creating
additional system faults.

Components themselves

As an inordinate amount of components are replaced to
resolve a single system problem caused by a rogue com-
ponent, damage can occur during the removal, installation,
and shipping of the components to and from the repair facil-
ity. Additionally, damage can occur during installation from
electrical or pressure surges during the connection / discon-
nection of the components, which could create another inter-
mittent fault. All of these scenarios are very expensive and
time consuming to resolve.

Control of rogue components

Rogue components cannot be prevented. It is impossible to
proactively anticipate a failure that could occur and develop
a new test to identify it before it happens. Therefore, the only
action that can be taken is reactive, which is to detect and
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isolate rogue component from the population they’re embed-
ded in. Once detected and isolated, their unique failure modes
can be analyzed in order to develop tests to identify them in
the future.

The first step in the detection of rogue components is to
develop a data collection system that captures system main-
tenance events and tracks the installed / removed components
by part and unique serial number.

By monitoring certain indicators in the data collection sys-
tem, patterns that are unique to rogue components can be
discovered. Carroll (2008) reported the following patterns
that are unique to rogue components after years of manually
monitoring repairable component removal records:

1. Repeated short in-service installation periods. Shortness
of the period is determined by comparison to a typical
service life time of a component. A third consecutive
short in-service time triggers the rogue flag.

2. Repeated identical reasons for removal. If the compo-
nent exhibits identical system fault manifestation for the
last 3 removals, then the rogue flag is triggered.

3. Shop records indicate that the failure cannot be detected
by standard testing procedures: No Failure Found.

4. Removal of the failing component from the operating
system resolves the system fault. If the system is still
at fault even when the component is removed, then this
means the rogue condition is not satisfied.

If these patterns or occurrences are found in a certain compo-
nent’s removal record, then that component can be classified
as rogue. It takes the presence of all the above criteria to be
able to classify a component as rogue.

Current practice in the identification of rogue components
involves searching through thousands of removal records
manually and detecting visually the above mentioned pat-
terns in order to extract these outlier components. The auto-
mation of this process through an automatic decision model
that classifies repairable components into two classes: (1)
Rogue and (2) non-rogue, provides a better solution to this
problem. LAD, as a decision model that is capable of auto-
matically generating patterns from input data, is an ideal
method to automate the above process.

In what follows is a description of the LAD methodology
and its implementation in rogue component detection.

LAD methodology

LAD is a data mining technique that classifies observations
into the categories they are associated to. The history of this
method goes back to 1988 where it was first proposed in
Cama et al. (1988) as a method for classifying binary data.
LAD has been proven to give comparable and even supe-

rior results in some cases to the traditional decision models
used in CBM, such as neural networks and support vector
machines (Salamanca 2008; Boros and Hammer 2000). The
main advantages of LAD are:

1. It is not based on statistical analysis. Consequently, it
does not assume that the data belong to a specific statis-
tical distribution. The method therefore does not require
statistical analysis of data prior to its use.

2. LAD automatically extracts features and generates
patterns from the indicators collected from the obser-
vations and, accordingly, sorts the components into sep-
arate classes based on the patterns generated.

3. Unlike other data analysis techniques, such as neural net-
works and support vector machines, LAD is a transparent
method; the output of LAD can be traced back to the spe-
cific root causes that resulted in the categorization of a
specific observation into a certain class. This explana-
tory power, a potential asset to maintenance experts, is
attributed to the patterns that LAD can generate from the
observation and analysis of criteria that are pertinent to
the classification problem.

As LAD is a supervised learning technique, it relies on
the presence of training data, already sorted into the existing
classes, in order to generate the patterns. Training data are a
learning set of pre-classified observations based on which the
algorithm develops its decision function. In the case of rogue
component detection, these observations are the records of
installation and removal (removal records) of some compo-
nents in the population whose rogueness or nonrogeness is
already confirmed. A typical training set is composed of two
subsets: a positive observation subset composed of rogue
observations and a negative observation subset composed of
non-rogue observations.

After the acquisition of training data, the LAD algorithm
can be divided into three steps:

1. Data binarization
2. Pattern generation
3. Theory formation

Data binarization

The information extracted from the training observations is
binarized prior to analysis. Each observation can be consid-
ered as a vector of m indicators. As LAD is based on discrete
mathematics and combinatorial enumeration, its input, the
observation vectors formed by the non-binary indicators, are
transformed into Boolean observation vectors of n binary
attributes.
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The binarization of non-binary indicators depends on their
type. Indicators can be divided to two categories: descrip-
tive indicators (e.g. code type) and numerical indicators (e.g.
time, temperature, etc. . . .). Descriptive indicators can take
up many possible values. Binarization, in this case, occurs
by allocating to each value vn of the indicator x a Boolean
variable b (x, vn)such that (Boros and Hammer 2000):

b (x, vn) =
{

1 if x = vn

0 otherwise
(1)

Numerical indicators are binarized using two types of
binary variables: Level variables and Interval variables. Level
binary variables are obtained by first sorting the values of
the numerical indicator in the observation set in descending
order and then introducing 1 cut-point between each interval
vn < vn−1 such that vn ∈ S+ and vn−1 ∈ S− or vice versa,
where S+ and S− represent the positive and negative obser-
vation subsets respectively and the cut-point t is calculated
as (Boros and Hammer 2000):

t = 0.5(vn + vn−1) (2)

The resulting binary attributes are Boolean variables
defined by each cut-point t such that (Boros and Hammer
2000):

b (x, t) =
{

1 if x ≥ t
0 if x < t

(3)

Interval binary variables, as the name implies, take the
value of 1 when the value of the numerical indicator is
within a certain interval and 0 otherwise. These intervals are
formed by the cut-points calculated for the level variables. An
interval binary variable of a numerical indicator is therefore
obtained from every two cut-points found for that indica-
tor while calculating the level variables, and would have the
following form (Boros and Hammer 2000):

b (x, t1, t2) =
{

1 if t1 ≤ x ≤ t2
0 otherwise

(4)

The cut-points t1 and t2 belong to the level binary attri-
butes obtained for the numerical indicator.

The outcome of the binarization of an observation set
is a set of Boolean observation vectors with a number of
attributes n exceeding the initial number of non-binary indi-
cators m(m > n). For a total of R observations, we thus
obtain R Boolean observation vectors O1, O2,…, OR of
dimension n. A Boolean observation vector has the form
Or = y1 y2 y3 · · · yn where yi is a binary digit.

Pattern generation

After transforming the observation set into Boolean obser-
vation vectors of dimension n, a bottom-up pattern genera-
tion approach is implemented to generate the patterns. This

approach starts by finding a binary variable that covers one or
more observations. Such a variable is called a literal in alge-
braic terms. A literal that covers an observation Or has the
form bi if the value of yi in Or is 1 and the form bi if the value
of yi is 0. A combination of literals is referred to as a term. A
term is said to cover a certain observation when all the literals
of that term cover the Boolean observation vector. For exam-
ple, the term b2b3b4 covers the observation Or = 1011101
since the value of that binary observation vector at the digits
y2 y3 y4 is 011. Similarly, the term b1b2b3b4 covers an obser-
vation Or = 0101011. A term is said to be of degree k if
it is composed of k literals. For example, the terms in the
examples above are of degree 3 and 4, respectively.

If a literal covers both positive and negative observations,
then it is considered a candidate. More literals are added
to it progressively, each time checking whether it still cov-
ers observations. If by adding more literals, the number of
observations covered becomes zero, then that particular term
is discarded. Otherwise, the term keeps its candidate status as
long as it covers at least one positive observation and one neg-
ative observation or vice versa. If, by adding another literal,
the resulting term covers only positive (negative) observa-
tions, then it is considered a positive (negative) prime pattern.
This methodology favors the generation of small patterns,
thus following the simplicity principle (Boros and Hammer
2000). In order to reduce the amount of computations nec-
essary, the lexicographic order is followed in generating the
patterns (Boros and Hammer 2000):

b1 < b1 < b2 < b2 < · · · (5)

The number of terms to be searched for patterns increases
exponentially with the number of binary attributes that con-
stitute a Boolean observation vector. For n attributes, the total
number of terms is given as:

n∑
i = 1

2i ·
(

n
i

)
(6)

For example, for a number of attributes n = 45 which is
typical of a problem of this nature, the total number of terms
to be searched is 2.95431 × 1021. Therefore, due to compu-
tational and time constraints, a limit is set on the maximum
degree of terms to be searched for patterns.

Theory formation

The generated positive patterns which cover the positive
observations are denoted by P1, P2,…, Pk,…, PK , whereas
the negative patterns are denoted by N1, N2,…, Nl ,…, NL .
These positive and negative patterns are used to produce a
discriminant function which, in the context of this paper, can
separate rogue components from non-rogue ones. This func-
tion is of the form (Boros and Hammer 2000):
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�(Or ) =
K∑

k=1

w+
k Pk (Or )−

L∑
l=1

w−
l Nl (Or ) (7)

where the value Pk Oγ is one if the positive pattern Pk covers
observation

(
Oγ

)
and zero otherwise. Similarly, the value

Nl
(
Oγ

)
is one if the negative pattern Nl covers observa-

tion Oγ and zero otherwise. The resulting discriminant �

is thus the weighted sum of the values of all the generated
positive and negative patterns for a certain observation Or .
The weights w+

k and w−
l can be calculated in multiple ways.

The method used here is to compute the weight of a pattern
as a normalized function of the number of observations it
covers (Salamanca 2008):

w+
k =

∑R
r=1 Pk (Or )∑K

k=1
∑R

r=1 Pk (Or )
(8)

The negative weights are calculated similarly.
The output of the discriminant function shown in (7) is

therefore a value between −1 and +1. If the value of � is
closer to +1, then the observation is classified as positive
(Rogue). If the value of � is closer to −1, then the obser-
vation is classified as negative (non-Rogue). A value close
to 0 indicates that the results are inconclusive, therefore no
classification takes place. A threshold ±τ , set by the user, is
the smallest value beyond which the observation is regarded
as unclassified. The LAD algorithm decision function can
therefore be formulated as:

f =
⎧⎨
⎩

Positive if � ≥ +τ

Negative if � ≤ −τ

Unclassified if −τ < � < +τ

(9)

The above decision function can be used to test for the rogue-
ness of any new observation:

The necessary indicators are extracted from its removal
records and binarized. Then, the resulting Boolean attributes
are plugged into the discriminant function to get �. The deci-
sion function then reveals to what class that specific compo-
nent belongs to.

Implementation

In CBM, the detection of a fault can only be achieved if there
exists a set of indicators that can reveal information about
the status of the asset by monitoring them.

LAD, as a supervised learning decision model, has only
recently been adopted in CBM in Salamanca (2008). Imple-
menting LAD for the purpose of detecting rogue components
requires the preparation of training data in the form of obser-
vation vectors before binarization can occur. As explained
in the previous section, these observation vectors are formed
by the indicators used to monitor the component’s status in
CBM. The binarization step then transforms these observa-
tion vectors to Boolean observation vectors.

F1: Removal 

F2: Unscheduled

F4: Failure F5: Unjustified

F6: Non-Induced F7: Induced 

F3: Scheduled 

F9: UnconfirmedF8: Confirmed

Fig. 1 Fault confirmation codes as presented in Leung et al. (2007)
describe the nature of the removal

In the case of repairable components of an aircraft fleet,
the indicators that form the observation vectors are extracted
from the indicators in the removal records of these compo-
nents. Judging from the criteria that characterize rogue com-
ponents, the following indicators found in the components’
removal records can be extracted and used to form the LAD
observation vectors:

1. Fault Confirmation Codes (FCC): When a component is
removed, it is taken to shop for check-up and repair. After
each repair, a “Fault Confirmation Code” is added to the
component’s record. There are 9 possible removal con-
firmation codes: F1, F2 . . . and F9. As shown in Fig. 1, a
these codes describe what kind of removal had occurred,
whether the removal was scheduled or not, whether a
failure was justified or not, whether it was induced or
not, etc. . . . A combination of those codes will describe
the removal (Leung et al. 2007).

2. Reason for Removal Codes (RRC): These codes describe
the cause or mode of failure of the component (e.g. leak
in sealing area, wear in bearing, etc. . . .). One compo-
nent can have a mixture of reasons for removal describing
the same failure incident. For a given component type, q
known possible RRC codes may exist.

3. Time-to-Removal (TTR): This is the amount of time
(i.e. number flight hours) the component spent in ser-
vice before it was removed. This is measured as the time
between installation and removal. This number is some-
times multiplied by a constant d between 0.5 and 1 that is
chosen based on some known utilisation characteristics
of the aircraft the component was used in Leung et al.
(2007).

Classification within the maintenance process

The ability to use the indicators mentioned above depends
on where, in the maintenance process, rogue component
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detection occurs. Implementation of the LAD algorithm can
take place at one of two points in the process: before or after
the component enters the repair shop.

By performing the detection before the repair stage, any
unnecessary resources that may be expended on a rogue com-
ponent can be saved. However, the disadvantage of detecting
rogue components at this point is that FCC cannot be used
as indicators. Consequently, the LAD algorithm would have
to rely on the two remaining indicators to come up with a
decision about the rogueness of a certain component.

Performing classification after the component undergoes
repairs allows for the utilization of the FCC codes as inputs
to the LAD algorithm. The presence of additional evidence
leads to a more educated judgment of the components’ main-
tenance status. The disadvantage, however, is that these codes
are hard to procure given the current structure of the air-
craft maintenance process. In many cases aircraft compo-
nent maintenance is administered by the OEMs themselves.
Communication between the aircraft operator and the OEMs
on maintenance matters is usually minimal. Consequently,
obtaining information regarding what occurs in the repair
shop may not always be possible.

It is worth mentioning that the extraction of maintenance
data from an aircraft operator’s logs is in many cases a tedious
task. This is largely due to the fact that most maintenance
data is generated for the goal of record keeping and not for
utilization as an asset for the purpose of CBM.

LAD training table

To our knowledge, previous uses of LAD did not require
taking into account historical values of the same indicator in
generating the patterns and decision functions. However, in
this situation, the nature of the observations from which a
classification decision is obtained necessitates the incorpo-
ration of historical data into the set of LAD attributes.

Values for the three indicators mentioned above are
recorded for every single removal instance of a single com-
ponent. In the case of rogue detection, each component in
the population has exhibited many removals in its life time.
Therefore, the removal records of a certain component con-
tain values for these indicators for every removal instance.
Additionally, some components are older than others, and
some have exhibited more failures than others. Therefore
not all removal records contain the same amount of data.

In view of the above, it is difficult to obtain input obser-
vation vectors having a unique form if all the available infor-
mation for each component is used. As such, the observation
vector used to train the LAD algorithm is limited to nine non-
binary indicators representing the three most recent FCC,
RRC, and TTR values of a component. Example: we are
given a training set of four rogue components and four non-
rogue components, where each component has a recorded

number of removals ranging between 3 and 9. We choose to
limit the removal data we are going to look at to the three
most recent removal incidents.

The reasoning behind this is that whatever pattern we
would find will be clear to us by looking at the most recent
removal data. This reasoning is deduced from Leung et al.
(2007) where, in the visual graph obtained through the CH-
method, the most relevant and pertinent data are the ones
found in the top right corner, which actually represent the
data obtained from the three most recent removals of the
components.

The number 3 (i.e. the last three removals) is used in many
cases in Leung et al. (2007) and Carroll (2008) when calcu-
lating factors or triggering rogue flags. While we will use
this for illustration purposes throughout this paper, this num-
ber can be modified within the algorithm without any major
structural change. Ultimately, the goal is to be able to consider
the entire history of a certain component in the classification
process.

The LAD methodology explained above has been adapted
into a software program called CBM-LAD written in C++ at
École Polytechnique de Montréal. This software is capable
of treating the rogue detection problem explained above.

Results

The CBM-LAD software was used on real component
data obtained from the maintenance department of NetJets
Inc. The data was extracted from the maintenance records
of 61 airplanes during a period stretching from March
28, 1999 to June 20, 2009. These records consist of 576
removal instances belonging to 150 turbo compressors. From
the records of each component an observation vector was
obtained as explained in the sections above. Of the avail-
able 150, 68 were used to train the LAD decision model and
74 to test the resulting model; the rest were discarded as
incomplete records. The data shown in Table 1 show a por-
tion of the training data. Two of the components shown in
the table were judged as rogue by maintenance profession-
als. There are, in all, 13 negative observations representing
normal components (grey) and two positive observations rep-
resenting rogue components (white). Each observation rep-
resents information obtained from the removal records of one
component with a unique serial number S/Ni. It is assumed
here that the LAD algorithm is implemented before the com-
ponent enters the repair shop. FCC codes are consequently
absent from the table.

The 150 components did not enter into service at the same
time, thus not all components exhibited 3 removals within
their lifespan as most components exhibit one or two remo-
vals per 3 years for this type of part. This phenomenon is dealt
with in Table 3 by placing close to infinity Time-to-removal
values (99,999 days) and the 0 code for reason-for-removal
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Table 1 Non-binarized training data

Reason-for-removal code Time-to-removal codes

Last 2nd Last 3rd Last Last removal 2nd Last 3rd Last

removal removal

1 2 0 0 413.73 99,999 99,999 Negative (non-rogue)

2 2 0 0 21.99 99,999 99,999

3 2 0 0 366.81 99,999 99,999

4 3 2 0 194.72 477.67 99,999

5 2 3 2 1288.99 196.70 125.15

6 2 0 0 266.76 99,999 99,999

7 2 0 0 1503.23 99,999 99,999

8 2 0 0 0 99,999 99,999

9 5 2 2 1045.42 1451.63 133.41

10 2 0 0 212.47 99,999 99,999

11 3 0 0 616 99,999 99,999

12 2 3 0 284.08 539.97 99,999

13 3 0 0 304 99,999 99,999

14 2 2 2 144.08 57.6 132.7 Positive (rogue)
15 2 2 2 204 281.20 83.7

to illustrate the absence of such events. The LAD table is
then used for training the algorithm and producing a deci-
sion function.

The decision model was trained three times, each time
with a different maximum allowable pattern degree. The
degrees used were 2, 3, and 4. The resulting 3 decision mod-
els were tested in each case using the data set composed of
74 observations reserved for that purpose. The value τ was
randomly set to 0.2 for all three decision models. The number
of binary attributes obtained and the number of positive and
negative patterns found for each decision model are shown
in Table 2.

The values of the discriminant function � for the 15 obser-
vations shown in the previous table are presented in Table 3
for the three decision models obtained. The table shows that
the score of the discriminant function is positive for the pos-
itive observations and negative for negative observations.

The results, part of which is shown in Table 2, reveal that
the detection has been done successfully. The scores of the
discriminant function for all the observations of the testing
set give a negative value for the normal (non-rogue) compo-
nents and a positive value for rogue components. However,
since the threshold for considering an observation unclassi-
fied is ±0.2, the result was not 100% successful for all pattern
decision models.

In order to evaluate the performance of the resulting
decision models, a number of performance measures are cal-
culated using the proportions shown in Table 4. Each obser-
vation classified by the LAD decision model can be in one of

the 6 situations shown in the table. The letters a, b, c, d, e,
and f represent the proportions of classified observations
found in each of these six situations.

The values a and d represent the proportion of positive and
negative observations that are correctly classified, respec-
tively. The values c and b are the proportion of positive and
negative observations that are falsely classified, respectively.
The values e and f represent the proportion of positive and
negative observations that remain unclassified, respectively.
The performance measures obtained from these values are:

Quality of classification: Q = a + d

2
+ e + f

4
(10)

The true positive rate: T P = a

a + c + e
(11)

The false positive rate: F P = b

b + d + f
(12)

The true negative rate: T N = d

b + d + f
(13)

The false negative rate:F N = c

a + c + e
(14)

The results for the three decision models obtained are
shown in Table 5.

The results in Table 5 show that the 3 decision models
obtained have a high classification quality Q. The classifica-
tion quality increases significantly with the increase in max-
imum pattern size from 2 to 3 bits. Degree 3 and degree 4
show an equal performance. Additionally, all three models
resulted in zero false alarms; i.e. no rogue components were
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Table 2 Pattern numbers found
for each decision model Max. degree 1 Max. degree 2 Max. degree 3

No. binary attributes 49

No. negative patterns 25 125 125

No. positive patterns 7 274 330

Table 3 The value of
discriminant function � for all
three decision models

Observation Max. degree 2 Max. degree 3 Max. degree 4

1 −0.7617 −0.8542 −0.8542

2 −0.6191 −0.6093 −0.6093

3 −0.6925 −0.6194 −0.6194

4 −0.8513 −0.8664 −0.8664

5 −0.5479 −0.7999 −0.7575

6 −0.6130 −0.6793 −0.6793

7 −0.7617 −0.8542 −0.8542

8 −0.6925 −0.6194 −0.6194

9 −0.6864 −0.6893 −0.6893

10 −0.6486 −0.4982 −0.4918

11 −0.6864 −0.6893 −0.6893

12 −0.6884 −0.8441 −0.8441

13 −0.6864 −0.6893 −0.6893

14 0.3794 0.5035 0.4137

15 0.1978 0.4535 0.3958

Table 4 Calculating the quality
of classification True class Classification result

Positive Negative Unclassified

Positive a c (Type II error) e

Negative b (Type I error) d f

Table 5 Performance measures
of the three decision models Max. degree 2 Max. degree 3 Max. degree 4

Q 0.8263 0.9965 0.9965

TP 0.3333 1 1

FP 0 0 0

TN 0.9718 0.9859 0.9859

FN 0 0 0

misclassified as non-rogue and vice versa. The true positive
and true negative values also increased with the increase in
maximum patterns size from 2 to 3. However, these values
will change if the threshold τ is changed from the set value
of ±0.2. If τ is decreased, for example, the number of false
alarms will increase and the quality of classification measure
will change.

In comparing the discriminant function values obtained
from the models with maximum pattern degrees 2, 3, and

4, we notice that the scores for the positive observations
increase in the degree 3 model and then decrease slightly
for the degree 4 model. The rise in the values of � can be
explained by the fact that a much higher number of positive
patterns was found in the degree 3 model (274) compared
to the degree 2 model (7). The scores, however, decrease
slightly again in the degree 4 model even though the number
of positive patterns found increases to 330. This decrease can
be attributed to the fact that the third model generated degree
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4 positive and negative patterns which are too specific, thus
leading to a decrease in the discriminatory power of �, as
a higher degree pattern has a lower chance of covering an
observation than a lower degree one. In addition, judging
from the rogue component characteristics discovered manu-
ally by experts and discussed in the sections above, any pat-
tern we expect to find must relate three consecutive events
to each other, as explained in the sections above. Degree 3
patterns therefore are more meaningful than patterns of the
other degrees.

The advantage of the decision models obtained through
LAD, besides their accuracy, is the interpretability of the
decisions obtained from it. For example, one negative pattern
found in the second decision model (degree 3) is: b14b18b22.
This pattern translates verbally to the statement:

“The three last reason-for-removal codes are all of
value 2”

Such a pattern is exactly what we would expect to have given
the characteristics for rogue components explained above.
The ability to translate the patterns leading to the decision to
logical statements that could be understood by any mainte-
nance technician is unique to the LAD technique.

Conclusion

In this paper, we studied rogue components, which plague
the asset management programs in the aviation industry.
We explained how these rogues develop and discussed their
impact on the entire asset management program. We then
described how to control such components and proposed the
use of LAD as a decision model to solve the problem of
detecting them.

Testing results showed that the LAD technique is capable
of detecting rogue components automatically through feed-
ing the components‘ performance history into the LAD algo-
rithm. The automatic detection of rogue components solves
the problem of having to sift through thousands of removal
records in order to evaluate each component visually. A major
advantage of its utilization in rogue component detection is,
therefore, the huge amount of time and resources that it can
potentially save. LAD is capable of accomplishing in seconds
something which takes days currently in the industry.

The financial benefits are also evident. By a 1995 estimate,
the maintenance burden to an airline of one rogue component
is $50,000 (US). If 100 rogue components are detected using
the LAD decision model, an aircraft operator’s asset manage-
ment system saves $5 million in maintenance costs alone.

In addition to saved costs, early detection of such compo-
nents also increases the safety and overall performance of the
operator.

In applying LAD to rogue component detection, we were
capable of generating the patterns that maintenance experts
expected to see. As such, the ability of LAD to reduce depen-
dence on their subjective opinions was demonstrated. The
advantage of LAD, though, is that it is capable of detecting
new patterns without previous knowledge or any aid from
maintenance experts.

The automation of the evaluation of records for rogue com-
ponent detection is a big step towards achieving CBM in
aviation. It is however apparent that for achieving full CBM
implementation in the industry, maintenance records must be
regarded as assets and not as mere tracking logs.

Further work is going on in developing the LAD algorithm
to include more sophisticated pattern recognition techniques.
Further investigation of more effective measures to deal with
incomplete data is also underway.
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