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Abstract This paper addresses a vehicle routing and
scheduling problem arising in Flight Ticket Sales Compa-
nies for the service of free pickup and delivery of airline pas-
sengers to the airport. The problem is formulated under the
framework of Vehicle Routing Problem with Time Windows
(VRPTW), with the objective of minimizing the total oper-
ational costs, i.e. fixed start-up costs and variable traveling
costs. A 0–1 mixed integer programming model is presented,
in which service quality is factored in constraints by intro-
ducing passenger satisfaction degree functions that limit time
deviations between actual and desired delivery times. The
problem addressed in this paper has two distinctive char-
acteristics—small vehicle capacities and tight delivery time
windows. An exact algorithm based on the set-partitioning
model, concerning both characteristics, is developed. In the
first phase of the algorithm the entire candidate set of best
feasible routes is generated, and then the optimal solution
is obtained by solving the set-partitioning model in the sec-
ond phase. Finally, we use four actual instances to illustrate
application of the proposed algorithm. Moreover, the pro-
posed algorithm is applied to a random instance containing
more orders to verify the general effectiveness of the pro-
posed algorithm even if the number of passengers increases
in future.
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Introduction

High economic growth has resulted in greater attention being
paid to the services industry, particularly transportation ser-
vices. Success of a transportation service provider depends
on many factors, such as operational costs and service qual-
ity. Optimization of operational costs is always a major
concern of service providers when dealing with transpor-
tation problems. However, service quality, which is often
neglected, is equally critical to success in earning market
share and enhancing competitiveness. Unfortunately, high
service quality is incompatible with low operational costs
more often than not. Therefore, operating a transportation
service with both low operational costs and high service qual-
ity has become an important issue for most decision makers,
especially those who have to make daily decisions.

Flight Ticket Sales Companies (FTSCs) operate as typical
service companies in China’s aviation industry. Their major
functions include ticket sales, flight line designs, and free
delivery of tickets to passengers. There is fierce competi-
tion among airline companies (China Southern Airlines Co.,
Ltd., China Eastern Airlines Co., Ltd. and others), as well as
among flight ticket sales agencies, i.e. FTSCs, in mainland
China. To compete successfully in the market, some value-
added services are provided by FTSCs to passengers, such
as Free Pickup and Delivery of Passengers to the Airport
Service (FPDS hereinafter), which is a relatively new phe-
nomenon. Under FPDS, passengers reserving tickets from
FTSCs are picked up at conveniently designated points and
are delivered at the airport at the desired time.
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Fig. 1 Basic operation of FPDS

The basic operation of FPDS is illustrated in Fig. 1. First,
passengers make ticket reservations from FTSCs through
the Internet, phone or at their counters. If the passenger
needs FPDS, his/her flight information, including flight num-
ber, date, departure time, required pickup point and desired
delivery time are recorded. Normally, the pickup points are
determined by negotiation between FTSCs and passengers.
However, a compromise is needed sometimes because pas-
sengers may indicate a pickup point where car parking is
forbidden, or finding the point will be too time-consuming
for the vehicle. The desired delivery time could be stipulated
by passengers; it could be any time of the day. However, in
general cases, the delivery time is fixed according to the flight
departure time, unless a passenger has some special request.
Passengers of domestic flights would be delivered at the air-
port about 1 h before flight departure time, while passengers
of international flights would be delivered about one-and-a-
half hours before departure. According to the above informa-
tion, FTSCs make routing and scheduling plans to transport
all the passengers who need FPDS, for each day. Passengers
are informed of their pickup time a couple of hours before

their flight departure time by phone. Finally, passengers are
picked up and delivered at the airport as scheduled.

Obviously, making the routing and scheduling plan is the
most difficult part of the process. Generally, there would be
about 80 FPDS orders in a mid-size FTSC on each service
day. The passengers are located in different areas and expect
different pickup and delivery times. Passengers with the same
expected pickup point and the same desired delivery time are
regarded as one single order. It is not difficult for FTSCs to
make routing and scheduling plans to serve all the orders but
making a plan with both low operational cost and high level of
passenger satisfaction is the issue. Since the FPDS is totally
free to passengers, low operational costs are imperative for
its successful operation by FTSCs. Operational costs con-
sidered in this paper are composed of fixed vehicle start-up
costs and variable vehicle traveling costs. Passenger satisfac-
tion degree is used as the only criterion for evaluating service
quality; it is measured by the deviation between actual and
desired delivery time at the airport. High degree of passen-
ger satisfaction generally implies high operational costs. For
example, serving each order with a single car could ensure
total satisfaction for all passengers but it will also be the
most expensive way. On the other hand, one vehicle serv-
ing too many passengers may result in some being picked
up (and delivered) too early may result in many passengers
being dissatisfied with the service. Therefore, FTSCs have
to strive for the least cost FPDS plans that can provide a
satisfactory level of passenger satisfaction degree, instead of
pursuing very low operational costs or very high passenger
satisfaction degree. In order to achieve this goal, FTSCs need
to solve the following three problems:

(1) Which orders would be transported together?
(2) What is the sequence of orders in each route?
(3) What is the starting time of each vehicle?

After taking into consideration the composition of desired
delivery times at the airport, these three problems can be
viewed as a typical operations problem—Vehicle Routing
Problem with Time Windows (VRPTW).

VRPTW is generalization of the Vehicle Routing Prob-
lem (VRP), with the added complexity of time windows.
Besides time windows, VRP can be added with other com-
plexities such as backhauls and inventory which can be found
in Liu and Chung (2009). In addition, VRPTW is a special
case of Pickup and Delivery Problem with Time Windows
(PDPTW), with all origins or all destinations located at the
same depot. In general PDPTW, the origins and destinations
of different transportation requests served by one vehicle are
always different. Dial-a-Ride Problem (DARP) is another
special case of PDPTW in which the loads to be transported
are people. More details about PDPTW and DARP are avail-
able in Savelsbergh and Sol (1995). In FPDS, all destinations
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are the same (the airport). Therefore, we can easily model
FPDS under the framework of VRPTW.

In VRPTW, one has to design a set of minimum cost routes
that start and end at a central depot. A fleet of vehicles serves
a set of customers with known demands. Each customer must
be assigned exactly once to the vehicles and vehicle capac-
ities can not be exceeded. Service to a customer must begin
within the time window, defined by the earliest and the latest
time specified by the customer.

In VRPTW, time windows can be hard or soft. In case of
a hard time window, if a vehicle arrives too early to pickup a
customer, it is permitted to wait until the customer is ready
to board the vehicle. However, the service is not permitted to
begin after the latest time. In contrast, in case of a soft time
window, the time window can be violated at a cost. Time win-
dows are always used to constrain the vehicle arrival time for
picking up a customer.

A relatively early survey of heuristic solutions for VRPTW
can be found in Solomon (1986) where he proposes a route-
first cluster-second scheme using a giant tour heuristic.
Solomon (1987) further describes several heuristics for
VRPTW, including an extension of the savings algorithm
of Clarke and Wright (1964), a time-oriented nearest-neigh-
bor heuristic, insertion heuristic, and a time-oriented sweep
heuristic. Potvin and Rousseau (1993) introduce a parallel
version of Solomon’s insertion heuristic. An asymptotically
optimal heuristic is proposed by Bramel and Simchi-Levi
(1996). Heuristics used to improve the constructed routes
focus mainly on local search algorithm and they can be
found in Koskosidis et al. (1992), Potvin and Rousseau
(1995); Taillard et al. (1997), and Cordone and Wolfler-Calvo
(2001), etc.

Metaheuristics are also widely used to solve VRPTW,
including tabu search, genetic algorithm, simulated anneal-
ing, etc. Garcia et al. 1994 first applied tabu search for
VRPTW. Other applications of tabu search algorithm for
VRPTW can be found in Chiang and Russell (1997), Cordeau
et al. (2001), Landrieu et al. (2001), and Lau et al. (2003)
etc. Thangiah et al. (1991) first attempted to apply genetic
algorithm to VRPTW. During the past few years, genetic
algorithm applications to VRPTW have been the subject
of intensive research. More details about genetic algorithm
for VRPTW can be found in Bräysy et al. (2004). Chiang
and Russell (1996) developed a simulated annealing algo-
rithm and Li et al. (2003) proposed tabu-embedded simulated
annealing for VRPTW. For a detailed survey of heuristics and
metaheuristics for VRPTW, we refer to Bräysy and Gendreau
(2005a) and Bräysy and Gendreau (2005b).

An optimal approach, using dynamic programming, col-
umn generation and Lagrangian relaxation methods, is pro-
posed for VRPTW. These methods are, in many aspects,
inherited from work done on the Traveling Salesman Problem
(TSP). There are two main lines of development in relation

to exact algorithms. One concerns the general decomposition
approach and the solution to a certain dual problem associ-
ated with the primal VRPTW. The other concerns analysis of
the polyhedral structure of the VRPTW. In 1987, Kolen et al.
introduced the first method for finding the exact solution for
the VRPTW. There is rich literature available on exact algo-
rithms for VRPTW, e.g. Fisher et al. (1997) and Bard et al.
(2002). The latest survey of exact algorithms for VRPTW
can be found in Kallehauge (2008).

Although there is a large body of literature on VRPTW,
the problem addressed in this paper is slightly different from
the standard VRPTW. First, in FPDS, all vehicles would pass
a common point, the airport, before returning to the vehicle
base. Second, passengers’ time demands focus on the time
of delivery at the airport, rather than the time of picking up
the passengers. These two distinctions make the VRPTW of
FPDS slightly different from the standard VRPTW, for mod-
eling. Furthermore, the VRPTW of FPDS has two distinctive
characteristics:

a. Small vehicle capacity is the first characteristic because
the most common vehicles used to transport passengers
in FPDS are always cars.

b. The other characteristic of the VRPTW of FPDS is
the demand for more exact delivery time at the airport
because delivering either too early or too late is unac-
ceptable to passengers.

Due to the above two distinctions, and the passenger satis-
faction degrees considered in FPDS, a new 0–1 mixed integer
programming model is proposed for VRPTW of FPDS. Tak-
ing into consideration the characteristics of the problem, dur-
ing the algorithm development process, we propose an exact
algorithm based on the set-partitioning model for VRPTW
of FPDS. Computational results indicate that this algorithm
is particularly suitable for VRPTW of FPDS.

Analysis and formulation of VRPTW of FPDS

Analysis of current operational practices of FPDS

Currently, FTSCs in most large and middle size cities of
mainland China (e.g. Beijing and Shenyang, etc.), are pro-
viding FPDS to passengers who reserve tickets through them.
But in all FTSCs, routing and scheduling plans are made in
the morning of the service day only. The whole process of
planning is manual. The planners first put together a list of
passengers who will depart on the service day. Then pas-
sengers with the same expected pickup point and the same
desired delivery time are grouped into one order. If the num-
ber of passengers in an order exceeds the vehicle capacity,
the order would be further divided into more than one order,
such that each has fewer passengers than a car’s capacity.
Next, these orders are divided into different geographical
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areas, according to the locations of expected pickup points.
One or more cars are allotted and scheduled to serve orders
in each area. The planners determine a tentative picking up
sequence for orders in each area. Then more cars are allotted
and scheduled to serve the remaining orders in the same or
other areas. Passengers in different areas are generally not
transported together, unless there are some emergencies like
traffic jams, or if there are several single passenger to be
pickedup in different areas. In the latter case, in order to save
operational costs, planners always transport these single pas-
sengers together, even though their desired delivery times are
not close to each other.

Apparently, a service operated in such a manner would
probably lead to high operational costs and low passenger
satisfaction degrees. It is necessary to develop an effective
method that can optimize the routing and scheduling plans of
FPDS in terms of both total operational costs and passenger
satisfaction degrees.

Mathematical formulation of VRPTW of FPDS

In this section, VRPTW of FPDS is formulated mathemati-
cally, which could help us to understand the problem better
and work out a better solution to solve it. The problem is
considered in planning horizon H , which is generally one
day. First we assume there are N orders that need to be trans-
ported. These orders are indexed by i . Since FTSCs could
rent cars from taxi companies, we assume the number of
available cars is unlimited. The total number of available
cars is represented by K and the cars are indexed by k. The
number of cars actually used is determined while firming up
the best set of routes and schedules. The main objective we
pursue is to obtain the least operational costs at a satisfactory
level of passenger satisfaction degree. As discussed above,
operational costs are composed of vehicle start-up costs and
vehicle traveling costs. Single vehicle start-up cost and unit
vehicle traveling cost are denoted by f and c respectively.
The objective of minimizing total operational costs can be
written as:

Min c
K∑

k=1

N∑

i=0

N+1∑

j=1

di, j xk,i, j + f
K∑

k=1

zk, (1)

where di, j denotes the direct traveling distance between order
i and j, xk,i, j is a binary variable which equals to 1 when
order j is picked up directly after order i by vehicle k and
0 otherwise, zk is also a binary variable which equals to 1
when vehicle k is used and 0 otherwise, and “0” and “N +1”
denote the vehicle base and the airport, respectively. It is
worth mentioning that for each vehicle the cost of returning
to vehicle base is included in the start-up cost as the return
to the vehicle base is always from the airport only.

iE ie il iLiD

1

Fig. 2 Passenger satisfaction degree function

As mentioned above, the passenger satisfaction degree is
measured by the deviation between actual and desired deliv-
ery time. A simple piecewise linear function is introduced to
compute passenger satisfaction degree. We assume passen-
gers would feel totally satisfied with the service if the time
deviation (both early and late delivery) does not exceed a
given value U1. However, if the time deviation is larger than
U1 but smaller than U2, which is also a given value, the ser-
vice is not satisfactory but acceptable. When time deviation
exceeds U2, the service becomes unacceptable. As discussed
above, the desired delivery times are generally fixed, based
on flight departure times, which are definite time points. The
desired delivery time of each order i , that is a time point, is
denoted by Di . To express the passenger satisfaction degree
function more clearly, ei is used to denote the value of expres-
sion Di −U1 and li is used to denote the value of expression
Di + U1. Accordingly, Ei is used to denote the value of
expression Di − U2 and Li is used to denote the value of
expression Di + U2. From the above discussion, we use a
simple piecewise linear function S(·) to represent passenger
satisfaction degree as follows:

S(τi ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 ei ≤ τi ≤ li
τi −Ei
ei −Ei

Ei ≤ τi ≤ ei

Li −τi
Li −li

li ≤ τi ≤ Li

0 otherwise,

(2)

where τi represents the actual delivery time of order i . The
piecewise linear function is shown in Fig. 2.

By introducing the passenger satisfaction degree function,
passenger satisfaction degree can be measured quantitatively,
and treated as a constraint in the mathematical model, which
could guarantee a satisfactory level of the passenger satisfac-
tion degree. Passenger satisfaction degree constraint can be
written as follows:

S(τi ) ≥ α i = 1, 2, . . . , N , (3)

where α is the satisfactory level of passenger satisfaction
degree.

When the value of α is given, the passenger satisfaction
degree constraints could in fact be converted to hard time
window constraints:
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Ei ≤ τi ≤ Li i = 1, 2, . . . , N , (4)

where Ei and Li are lower and upper bounds of the hard time
window of order i . In this paper, the hard time windows are
called delivery time windows, and Ei and Li can be easily
obtained by the equation S(τi ) = α. For modeling conve-
nience, constraint (4) is expressed in another way. Let yk,i be
a binary variable which equals to 1 when the passengers of
order i are transported by vehicle k, otherwise it equals to 0.
If yk,i equals to 1, the actual delivery time of order i could
be represented by the arrival time of vehicle k at the airport.
Therefore, constraint (4) can be transformed into constraints
(5) and (6):

(Ei − T N+1
k )yk,i ≤ 0 i = 1, 2, . . . , N k = 1, 2, . . . , K

(5)

(T N+1
k − Li )yk,i ≤ 0 i = 1, 2, . . . , N k = 1, 2, . . . , K ,

(6)

where T N+1
k is the arrival time of vehicle k at the airport.

0–1 mixed integer programming model of VRPTW of
FPDS

Assumptions

1) There is only one airport.
2) Passengers of one order share the same satisfaction

degree function.
3) Unloading and loading times are negligible.
4) Both traveling distance and time between two points are

symmetric.
5) The number of available vehicles is unlimited.

Model parameters

N = total number of orders
K = total number of vehicles
i = index of orders
k = index of vehicles
0 = vehicle base
N+1 = airport
c = vehicle traveling cost per unit distance
f = start-up cost of a single vehicle
Q = vehicle capacity
qi = number of passengers of order i
di, j = direct traveling distance between point of pickup of
order i and order j
ti, j = direct traveling time between point of pickup of order
i and order j
α = satisfactory passenger satisfaction degree

Decision variables

zk = 1 if vehicle k is used, 0 otherwise (k = 1, 2, . . . , K )

yk,i = 1 if order i is transported by vehicle k, 0 otherwise
(k = 1, 2, . . . , K , i = 1, 2, . . . , N )
xk,i, j = 1 if vehicle k travels directly from order i to
order j , 0 otherwise (k = 1, 2, . . . , K , i = 0, 1, . . . , N ,

j = 1, 2, . . . , N + 1)

T i
k = arrival time of vehicle k at point i (k = 1, 2, . . . , K ,

i = 0, 2, . . . , N + 1)

Model

Min c
K∑

k=1

N∑

i=0

N+1∑

j=1

di, j xk,i, j + f
K∑

k=1

zk (1)

(Ei − T N+1
k )yk,i ≤ 0 i = 1, 2, . . . , N k = 1, 2, . . . , K

(5)

(T N+1
k − Li )yk,i ≤ 0 i = 1, 2, . . . , N k = 1, 2, . . . , K

(6)
K∑

k=1

yk,i = 1 i = 1, 2, . . . , N (7)

K∑

k=1

N+1∑

j=1

xk,i, j = 1 i = 1, 2, . . . , N (8)

K∑

k=1

N∑

j=0

xk, j,i = 1 i = 1, 2, . . . , N (9)

N∑

i=1

qi yk,i ≤ Q k = 1, 2, . . . , K (10)

(T j
k − T i

k − ti, j )xk,i, j = 0 k = 1, 2, . . . , K

i = 0, 1, . . . , N j = 1, 2, . . . , N + 1 (11)

0 ≤ T i
k ≤ Hk = 1, 2, . . . , K i = 0, 1, . . . , N + 1 (12)

xk,i, j ≤ yk,i ≤ zk i = 0, 2, . . . , N

j = 1, 2, . . . , N + 1 k = 1, 2, . . . , K (13)

xk,i, j ≤ yk, j ≤ zk i = 0, 2, . . . , N

j = 1, 2, . . . , N + 1 k = 1, 2, . . . , K (14)

xk,i, j , yk,i , zk ∈ {0, 1} (15)

Objective Function (1) minimizes the total operational
cost, including vehicle start-up cost and vehicle traveling
cost. Constraints (5) and (6) guarantee a satisfactory level
of passenger satisfaction degree. Constraint (7) ensures that
each order is served exactly once. Constraints (8) and (9)
ensure that whether before or after a pickup point, there is
only one point which the vehicle has to travel from or to,
and this point could be a pickup point, the vehicle house, or
the airport. Constraint (10) ensures that the total number of
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passengers transported by a vehicle does not exceed its capac-
ity. For each vehicle, constraint (11) ensures correctness of
the vehicle arrival time at pickup points of the orders that
the vehicle serves. Constraint (12) guarantees all the arrival
times are within the planning horizon. Constraints (13) and
(14) are the relation constraints of 0–1 decision variables.
Constraint (15) is a binary constraint.

Exact algorithm based on set-partitioning model

The set-partitioning approach was originally proposed by
Balinski and Quandt (1964). It is widely applied in a variety
of routing and scheduling problems. The basic procedures of
the set-partitioning approach for VRP are that the candidate
set of feasible routes is generated in the first phase. Then the
set-partition model is solved to obtain the final solution in
the second phase. The quality of the final solution obtained
by this algorithm depends, to a great extent, on the complete-
ness of the candidate set of feasible routes. A totally com-
plete candidate set always contains an exponential number
of feasible routes, which leads to unacceptable computing
time. Without exception, for general VRPTW, the size of the
entire candidate set of feasible routes is also exponentially
large for almost all instances. Solving the set-partitioning
formulation of VRPTW, even of a moderate size, directly,
is extremely time consuming and even impractical. How-
ever, relaxation of set-partitioning formulation can always
be used to generate excellent lower bounds for Capacitated
Vehicle Routing Problem (CVRP). Such examples can be
found in Christofides et al. (1981), Fukasawa et al. (2006) and
Baldacci et al. (2008). Moreover, based on the resource-con-
strained path formulation of the VRPTW, Desrochers et al.
(1992) proposed a method using column generation to solve
the linear programming relaxation of the master set-parti-
tioning problem.

Fortunately, the set-partitioning model in this paper can
be directly solved by optimization software such as CPLEX
because of the small size of the entire candidate set and
because of small vehicle capacities and tight time windows.
The core of the proposed algorithm is that, in the first phase,
the entire candidate set of best feasible routes is generated.
The entire candidate set is composed of N route subsets, i.e.
each order corresponds to a route subset. The route subset of
order i is constructed by all the best feasible routes gener-
ated, for the orders in the corresponding order subset of order
i . The order subset of order i is constructed by order i and
all other orders whose delivery time windows overlap with
that of order i . For each order, the orders in its order subset
would be combined with it to generate all the feasible order
combinations. A feasible order combination is defined to be
the one where the total number of passengers of combined
orders does not exceed the car capacity. Each feasible order

combination could generate several order sequences. For
each order combination, traveling costs of all order sequences
are computed, and the least cost sequence is selected as the
best feasible route. Hence, each feasible order combination
would correspond to several order sequences but there will be
only one best feasible route. In the second phase, the set-par-
titioning model is directly solved using the CPLEX optimi-
zation software package. Each solution obtained by solving
the set-partitioning model is a set of some of the best feasible
routes and the optimal solution is the set associated with the
lowest total operational cost, including fixed vehicle start-up
and variable vehicle traveling costs. In each solution, each
order is served exactly once.

An obvious drawback of the set-partitioning approach is
that the time used to solve the set-partitioning model largely
depends on the size of the candidate set of feasible routes,
whereas the proposed set-partitioning model based algorithm
is particularly suitable for VRPTW of FPDS because small
vehicle capacities and tight time windows imply that the num-
ber of ways the orders could be combined to form vehicle
routes would be small.

Phase I: Generating all best feasible routes

This section focuses mainly on procedures of generating the
entire candidate set of best feasible routes. The basic idea
of the first phase goes as follows. First, an order subset is
constructed for each order, which is called the seed order in
the subset. Second, all feasible routes containing the seed
order within each route are enumerated for each order sub-
set. Finally, the enumerated routes for each seed order are put
together in a route subset. Before proceeding to the details of
Phase I, a useful property can be derived for time windows
placed on delivery times.

Property 1 Delivery time windows of the orders to be
transported by one vehicle overlap

This property holds just because the time windows are
placed on the delivery times. Suppose there are two orders
i and j whose delivery time windows do not overlap, and the
desired delivery time of order i is earlier than that of order
j . That means the following inequality holds:

Ei < Li < E j < L j (16)

Because the actual delivery time at the airport is a time
point, it is obvious that we can never find a common feasi-
ble route for order i and j , to transport both by one vehicle.
Property 1, however, does not hold if the time windows are
placed on pickup times.

The above property can guarantee that for each order i ,
order subset Pi can be constructed using order i , and all
other orders whose delivery time windows overlap with that
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of order i . Furthermore, to reduce computation time, fewer
orders are used to construct the order subset, without affect-
ing the final solution, which is shown in Corollary 1.

Corollary 1 For each order i , orders used to generate set
Pi can be selected only from orders after i in sequence S.

Let us take order i as an example to explain Corollary 1.
Suppose order subset Pi of order i is constructed by i − 2,

i − 1, i, i + 1 and i + 2. Among them, we select i − 2,

i and i + 2 to construct a route, assuming the total number
of passengers of these three orders does not exceed vehicle
capacity. Based on Property 1, delivery time windows of the
three selected orders overlap. That is, routes constructed by
these orders are feasible. However, these feasible routes must
have been included in route set Ri−2 of i −2. Above analysis
shows that order i − 2 can be deleted from set Pi . The same
conclusion can be derived for order i −1. Based on the above
analysis, we can easily get Corollary 1.

Next, methods of enumerating all feasible routes contain-
ing seed orders within each route are demonstrated, and route
subset is constructed for each seed order. Based on Property 1,
no combination of orders in one order subset violates con-
straints (5) and (6). Thus, any combination of orders within
each order subset can be used to construct feasible routes, if
the total number of passengers of the combined orders does
not exceed the vehicle capacity. As mentioned above, in each
order subset Pi , order i is called the seed order. For each order
i , all orders in set Pi , except the seed order, are selected and
combined with the seed order to generate order combina-
tions. If the number of passengers of orders of the generated
combination does not exceed vehicle capacity, the combina-
tion is then used to construct feasible routes. Each feasible
route is a permutation of the combination, and the route with
the least traveling cost is selected as the best feasible route
corresponding to the combination. In this manner, the best
feasible route of each combination generated by orders of set
Pi is constructed and put in the route subset Ri .

In FPDS, vehicles used to transport passengers are cars,
and each single car can carry at the most four passengers in
one trip. The number of passengers in one order does not
exceed four because an order containing more than four pas-
sengers would be split into several orders with maximum of
four passengers each. Hence, there would be four cases when
constructing route subset Ri of order i , using the orders in
order subset Pi , as follows:

Case 1: The seed order contains four passengers;
Case 2: The seed order contains three passengers;
Case 3: The seed order contains two passengers;
Case 4: The seed order contains only one passenger.

Let us take order i as an example to illustrate how route
subset Ri is constructed using the orders in order subset Pi .

In case 1, the number of passengers of order i equals to the
maximum capacity of a car. Passengers in other orders can
not be transported together with those of order i by one car.
Therefore, in this case, there is only one best feasible route
in set Ri . In this route, the car starts from the vehicle base,
and then picks up four passengers of the order and delivers
them to the airport.

In case 2, the number of passengers of order i is one less
than the car capacity. Another order in set Pi , containing
only one passenger, can be transported together with order
i . However, a problem arises—of the two orders, which one
should be picked up first? This combination corresponds to
two transporting sequences. Traveling costs of the two dif-
ferent sequences are computed and compared. The one with
less traveling cost is selected as the best feasible route and
put in set Ri . Moreover, it is feasible that the three passengers
of order i are transported exclusively. Thus the route trans-
porting only the seed order is constructed and put in set Ri . In
case 2, the number of feasible routes in set Ri totally depends
on the number of orders containing only one passenger in set
Pi .

In case 3, there are two vacant seats in the car transporting
passengers of order i . The two vacant seats could be taken by
passengers of two different orders containing only one pas-
senger each, or they could be taken by passengers of a single
order containing two passengers. In the former instance, all
pairs of orders containing only one passenger are selected
and combined with seed order i . For each combination, the
sequence with the least traveling cost is selected as the best
feasible route and put in set Ri . In the latter instance, every
order containing two passengers in set Pi is selected and
combined with seed order i . For each combination, the least
cost sequence is selected as the best feasible route and put in
set Ri . Finally, the route transporting only the seed order is
constructed and put in set Ri .

In case 4, the combination and sequencing problems
become more complicated because there is only one pas-
senger in the seed order, such that more orders could be
combined with the seed order. There are seven possible com-
binations of the seed order.

(1) Three different orders separately containing only one
passenger each are combined with the seed order;

(2) Two different orders separately containing only one
passenger each are combined with the seed order;

(3) One order containing only one passenger is combined
with the seed order;

(4) One order containing two passengers and one order
containing only one passenger are combined with the
seed order;

(5) One order containing two passengers is combined with
the seed order;
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(6) One order containing three passengers is combined
with the seed order;

(7) No other orders are combined with the seed order.

For each of the above combinations, all feasible order
combinations are enumerated, and for each order combina-
tion, the least cost sequence is selected as the best feasible
route and put in set Ri , as in three previous cases.

Phase II: Assembling routes by solving set-partitioning
model

In this section, by solving the set-partitioning model, the min-
imal cost set of best feasible routes is achieved as the optimal
solution. By far, the entire candidate set of best feasible routes
has been generated. Let R be the entire candidate set; then it
could be written as:

R = R1 ∪ R2 · · · RN−1 ∪ RN (17)

Routes in the entire candidate set are indexed by r, r ∈ R.
Define cr to be the cost of candidate route r . Candidate route
cost cr consists of vehicle start-up cost f and vehicle trav-
eling cost in route r . All routes start from the vehicle base
and end at the airport. The total traveling cost of route r is
defined as the sum of the cost of arcs of the route. Let ai,r

be a binary variable equaling to 1 if passenger i is included
on route r . yr is used as a binary variable equaling to 1 if
candidate route r is used, 0 otherwise. VRPTW of FPDS can
be formulated as the following set-partitioning model.

min
R∑

r=1

cr yr (18)

R∑

r=1

ai,r yr = 1 i = 1, 2, . . . , N (19)

yr = 0 or 1 r = 1, 2, . . . , R (20)

The above model is quite simple and it can easily be solved
by the CPLEX optimization software package.

Computational results

Computational results are reported in this section. First, the
proposed algorithm is illustrated by solving four actual FPDS
instances provided by Zhongshan Flight Ticket Sales Com-
pany (Zhongshan here in after). Then, the algorithm is tested
on a set of 200 orders generated randomly, which would ver-
ify the general effectiveness of the proposed algorithm for
VRPTW of FPDS, even if the number of passengers increases
in future. The whole algorithm is calculated on a Pentium
IV PC computer running at 3.06 GHz with 1 Gbyte of RAM

Table 1 Parameters of model and algorithm

H f c U1 U2

10 h 10 RMB 1.2 RMB 10 min 30 min

memory. The first phase of the algorithm is coded with the
programming language of Visual C++ 6.0.

Moreover, it is worth mentioning that prior to using the
proposed algorithm, we have solved the proposed model
directly, using the CPLEX software package, whereas the
computing time is disappointingly long. For a random
instance containing 10 orders, it would take at least 2 h to
obtain the optimal solution, which is unacceptable to FTSCs
in practical situations.

Zhongshan is one of the largest FTSCs in mainland China
and it is also the first one that began to provide FPDS for
passengers reserving flight tickets through it. The set of the
actual instances is provided by its branch located in the city
of Shenyang. According to statistics covering the past three
years, on each service day, the number of FPDS orders in
Shenyang branch varies from 75 to 110, and the number
of FPDS passengers ranges between 100 and 145. In our
experiment, we select four instances containing 80 orders,
90 orders, 100 orders and 110 orders, with 103 passengers,
116 passengers, 127 passengers and 142 passengers, respec-
tively. For every instance, passengers are located within a
territory of about 14 × 8 km2. The airport is on the edge
of this area. Service cars start from the vehicle base of the
company, located at the centre of the area. Distances between
different points are computed by an electronic map, and trav-
eling times are computed by multiplying traveling distances
with a coefficient varying from 1.7 to 2.0, according to traffic
conditions. The planning horizon is 10 h, from 8:00 a.m. to
18:00 p.m. Due to space limitations, some detailed informa-
tion such as passenger locations and flight departure times
are not provided. Parameters of the model and the algorithm
are presented in Table 1. Computational results obtained by
applying the proposed algorithm, showing the cost of achiev-
ing passenger satisfaction degrees varying from 10% to
100%, are presented in Tables 2, 3, 4, and 5.

By observing the results in Tables 2, 3, 4, and 5, we can eas-
ily draw some apparent conclusions. First, with the levels of
passenger satisfaction degree increasing, the number of best
feasible routes decreases, while both total operational costs
and average costs increase. Second, at any level of passenger
satisfaction degree, optimal solutions can be obtained within
a few seconds. Moreover, both ANP and ACP are very impor-
tant criteria for evaluating the quality of routing and sched-
uling plans in FTSCs because either low ANP or high ACP
means high operational costs. For plans made by Zhongshan,
ANP generally falls between 3.2 and 3.4 and ACP equals to
10 on average, but there are always some complaints about
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Table 2 Computational results of 80-orders instance

PSD (%) BFR TOC AUV ANP ACC ACP CT1 (s) CT2 (s)

10 2963 911.7 27 3.8 33.8 8.9 1 2

20 2721 918.0 27 3.8 34.0 8.9 1 3

30 2057 931.4 27 3.8 34.5 9.0 1 1

40 2029 931.4 27 3.8 34.5 9.0 1 1

50 1261 951.6 27 3.8 35.2 9.2 1 1

60 1261 951.6 27 3.8 35.2 9.2 1 1

70 1090 971.3 27 3.8 36.0 9.4 1 1

80 649 1001.3 30 3.4 33.4 9.7 1 1

90 649 1001.3 30 3.4 33.4 9.7 1 1

100 297 1193.7 33 3.1 36.2 11.6 1 1

Meanings of abbreviations in Tables 2, 3, 4 and 5 are as follows:
PSD passenger satisfaction degree, BFR the number of all the best fea-
sible routes, TOC total operational costs, AUV total number of actually
used vehicles, ANP average number of passengers per car, ACC average
cost per car, ACP average cost per passenger, CT1 computing time of
Phase I, CT2 computing time of Phase II

Table 3 Computational results of 90-orders instance

PSD (%) BFR TOC AUV ANP ACC ACP CT1 (s) CT2 (s)

10 6684 1048.1 30 3.9 34.9 9.0 2 2

20 6473 1063.8 31 3.7 34.3 9.2 2 2

30 4287 1083.6 31 3.7 35.0 9.3 2 2

40 4204 1089.0 31 3.7 35.1 9.4 2 5

50 2575 1112.4 31 3.7 35.9 9.6 1 1

60 2575 1112.4 31 3.7 35.9 9.6 1 1

70 2510 1136.1 32 3.6 35.5 9.8 1 1

80 1076 1183.4 33 3.5 35.9 10.2 1 1

90 1076 1183.4 33 3.5 35.9 10.2 1 1

100 525 1321.1 37 3.1 35.7 11.4 1 1

for footnote see Table 2

Table 4 Computational results of 100-orders instance

PSD (%) BFR TOC AUV ANP ACC ACP CT1 (s) CT2 (s)

10 8751 1054.1 32 4.0 32.9 8.3 2 3

20 8258 1060.5 32 4.0 33.1 8.4 2 3

30 5736 1099.6 33 3.8 33.3 8.7 2 11

40 5592 1101.6 33 3.8 33.4 8.7 2 5

50 3305 1127.2 34 3.7 33.2 8.9 1 7

60 3305 1127.2 34 3.7 33.2 8.9 1 7

70 3044 1141.0 34 3.7 33.6 9.0 1 2

80 1375 1183.2 34 3.7 34.8 9.3 1 1

90 1375 1183.2 34 3.7 34.8 9.3 1 1

100 706 1321.4 39 3.3 33.9 10.4 1 1

for footnote see Table 2

Table 5 Computational results of 110-orders instance

PSD (%) BFR TOC AUV ANP ACC ACP CT1 (s) CT2 (s)

10 11693 1203.5 36 3.9 33.4 8.5 2 4

20 11400 1212.4 36 3.9 33.7 8.5 2 7

30 7639 1230.9 36 3.9 34.2 8.7 2 2

40 7505 1244.4 36 3.9 34.6 8.8 2 3

50 4262 1279.3 37 3.8 34.6 9.0 1 3

60 4262 1279.3 37 3.8 34.6 9.0 1 3

70 4205 1291.4 37 3.8 34.9 9.1 1 1

80 1719 1333.1 38 3.7 35.1 9.4 1 1

90 1719 1333.1 38 3.7 35.1 9.4 1 1

100 880 1510.4 44 3.2 34.3 10.6 1 1

for footnote see Table 2

Table 6 Computational results of 200-orders instance

PSD (%) BFR TOC AUV ANP ACC ACP CT1 (s) CT2 (s)

10 72062 2244.6 67 4.0 33.5 8.4 4 555

20 66659 2247.1 67 4.0 33.5 8.4 4 1349

30 45139 2268.2 67 4.0 33.9 8.5 3 989

40 43954 2270.2 67 4.0 33.9 8.5 3 906

50 21550 2329.4 68 3.9 34.3 8.7 2 16

60 21550 2329.4 68 3.9 34.3 8.7 2 16

70 19786 2335.1 68 3.9 34.3 8.7 2 95

80 13300 2379.4 68 3.9 35.0 8.9 2 252

90 9365 2427.4 69 3.9 35.2 9.1 2 38

100 3978 2598.3 74 3.6 35.1 9.7 1 6

too early or too late delivery. In some extreme situations,
passengers are delivered more than 2 h before boarding at
the airport. Under the satisfaction degree function (2) pro-
posed in this paper, actual satisfaction degrees can vary from
100 to 0%. That means high satisfaction degrees of some
passengers are obtained by sacrificing other passengers’ sat-
isfaction degrees. Our computational results show that all the
passenger satisfaction degrees can be guaranteed at the level
of at least 90% when ANP reaches 3.2 or ACP reaches 10.

As operations of FTSCs grow, the number of FPDS orders
would probably increase in future. To verify the general effec-
tiveness of our proposed algorithm for VRPTW of FPDS,
the algorithm is applied to a 200 orders instance generated
randomly. This random instance contains 200 orders and 268
passengers. Other information and parameters are the same as
those of the previous actual instances. Computational results
of the random instance are presented in Table 6.

From Table 6, it is observed that the first conclusion drawn
from Tables 2, 3, 4, and 5 is also applicable to the 200 orders
instance. But the 200 orders instance would need much more
computation time, and in an extreme case, the time could
be nearly half an hour. However, it is acceptable to daily
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operations. In addition, from Table 2, 3, 4, 5, and 6 we can
easily find ANP increases with the increase of the number of
orders, while ACP decreases with the increase of the num-
ber of orders. Actually, this conclusion is intuitive. When the
number of orders increases, the passenger density increases,
and the vehicle can serve more passengers each time.

Conclusions

In this paper, we have addressed a new routing and scheduling
problem faced by Flight Ticket Sales Companies (FTSCs).
The problem is formulated under the framework of Vehi-
cle Routing Problem with Time Windows (VRPTW). A 0–1
mixed integer programming model is proposed for VRPTW
of Free Pickup and Delivery of Passengers to the Airport
Service (FPDS). However, VRPTW of FPDS has two dis-
tinctions that make the problem slightly different from the
standard VRPTW. The problem is modeled under costs and
service quality criteria. Minimizing total operational costs
serves as the objective of the model. Service quality, evalu-
ated by passenger satisfaction degree, is addressed through
constraints incorporated in the model. Passenger satisfaction
degrees are computed through passenger satisfaction degree
function, which is a stepwise linear function. After the sat-
isfactory level is set by decision makers, lower bound and
upper bound of the hard time window of each order can be
obtained from this function.

Moreover, the new routing and scheduling problem has
two characteristics—small vehicle capacity and tight deliv-
ery time windows. A set-partitioning model based exact algo-
rithm is developed and the two characteristics are taken into
consideration during the algorithm development process. The
two characteristics make the set-partitioning model based
algorithm particularly suitable for our problem because both
characteristics imply the entire candidate set of best feasi-
ble routes is small. Finally, we test the proposed algorithm
on four actual instances and a larger instance generated ran-
domly. For the four actual instances, the optimal solutions,
under different satisfaction degrees, are obtained within a
few seconds.

To further improve both the operational costs and service
quality of FPDS, we are also considering some extensions
to the routing and scheduling problem of FPDS. First, in
practical situations, there might be two or more airports in a
big city. In such a case, both the proposed model and algo-
rithm shall have to be modified or extended. Second, FTSCs
are using single transportation mode, i.e. all vehicles that are
used to transport passengers are cars. However, FTSCs would
probably save more operational costs if they use a mixed
transportation mode. For example, a mixed transportation
mode of cars and a larger capacity vehicle like a minibus can
be adopted. Third, city size and population density should

be considered when we choose the transportation mode. For
example, use of a minibus is more appropriate for big cit-
ies with high population densities as the main transportation
vehicle. On the contrary, it is more appropriate for smaller
cities with low population densities to use cars as the main
transportation vehicle.

In conclusion, our proposed algorithm can solve the basic
routing and scheduling problem of FPDS for FTSCs effec-
tively and fast. However, there are still some more issues that
need to be considered.
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