
J Intell Manuf (2010) 21:133–144
DOI 10.1007/s10845-008-0165-6

A holonic architecture for the global road transportation system

Frédérique Versteegh · Miguel A. Salido ·
Adriana Giret

Received: 9 August 2008 / Accepted: 14 August 2008 / Published online: 12 November 2008
© Springer Science+Business Media, LLC 2008

Abstract In recent years the development of automated
traffic systems has been gaining increasing attention, and a
substantial amount of effort has been invested in trying to find
a solution to problems associated to road transport. Among
these problems are road accidents caused by human-related
factors, such as tiredness, loss of control, a slow reaction time,
limited field of view, etc. Another transport-related problem
is that of loss of time which may be caused by a slow driving
speed due to weather conditions, road conditions, visibility,
traffic congestion, etc. In this paper, we present a distrib-
uted architecture and the underline distributed algorithm for
solving the global road transportation system, which is being
developed by several European Universities.

Keywords Distributed models · Holonic systems · Route
planning

Introduction

In recent years, many automated traffic systems have been
developed to find a solution to problems such as those out-
lined above. The Global Automated Transport System
(GATS) (Zelinkovsky 2008) is a driver-less, integrated trans-
port system. It has the ability to simultaneously coordinate
the macro and micro needs of road transport networks.
Millions of vehicles can be optimally, simultaneously and

F. Versteegh
University of Twente, Enschede, The Netherlands
e-mail: f.c.versteegh@student.utwente.nl

M. A. Salido · A. Giret (B)
Universidad Politécnica de Valencia, Valencia, Spain
e-mail: agiret@dsic.upv.es

M. A. Salido
e-mail: msalido@dsic.upv.es

automatically “driven” over a virtually unlimited geographic
region, including whole continents, while at the same time
having the requirements of each individual vehicle and
its passengers attended to. It is an innovative concept, based
on simple, recognized principles and proven tech-
nologies.

The application of this system will revolutionize road
travel by dramatically increasing safety, reducing conges-
tion, and eliminating driving-associated stress and fatigue.
The consequence will be an overall improvement in the qual-
ity of everyday life.

Due to its decentralized, modular architecture it can be
implemented with the same ease and simplicity in small con-
tained areas, such as airports and theme parks, as in larger
areas such as local, national and international road systems.

GATS aims to provide an automated road-vehicle trans-
port system which do provides an answer to known traffic
problems. This driver-less automated transport system has
the following features:

– Fully automatic driving of vehicles on all kinds of roads
and all kinds of intersections

– Virtually unlimited volume of traffic, potential of system
growth and geographical expansion

– Decentralized, hierarchical modular architecture
– Integrated, real-time communications and control among

all system components
– Real-time personalized vehicle identification, localiza-

tion and control
– Real-time, automatic sensing of driving conditions any-

where and of the functioning and safety conditions of
each individual vehicle

– Real-time optimal navigation in accordance with the
dynamically changing requirements of passengers, vehi-
cles and road conditions

123

134 J Intell Manuf (2010) 21:133–144

– Management of an entire regional or continental traffic
system.

The main contribution of the paper is the definition of a
distributed architecture for modelling GATS and the under-
line distributed algorithm for solving it. In section “Termi-
nology and integrated functioning of GATS” we explain the
basic terminology and integrated functioning of GATS. Sec-
tion “Problem requirements” overviews the problem require-
ments. A holon-based distributed architecture for GATS is
detailed in section “Holonic systems”. Section “A distributed
architecture based on Holons for GATS” describes the dis-
tributed algorithm and its complexity. Section “The under-
line distributed algorithm” overviews some related works and
finally, we present some conclusions and further works in
section “Related works”.

Terminology and integrated functioning of GATS

In this section we briefly summarize the internal structure of
GATS. In the centre of a traffic lane, 10–15 cm under the road
surface lies an “intelligent cable”. This cable comprises tiny
Road-Units (RU’s) located at fixed distances (approximately
3 m) from each other. While driving, the vehicle sends short
radio transmissions down towards the RU’s at regular time
intervals. The RU receives a transmission, processes it and
responds with a radio transmission back to the vehicle. As
the vehicle moves along the road, it communicates with the
RU’s one after the other instantaneously, so the vehicle has
continuous radio communication with the RU’s. The RU’s
are connected to each other by two means: directly, by Serial
Buses (tiny lines in Fig. 1), and indirectly, by Parallel Buses
(bold lines in Fig. 1).

The memory of each RU stores the specifications of the
RU and individual driving instructions that it will transmit to
each vehicle above it. Several hundred consecutive RU’s con-
stitute a Segment, whose functions are administered by a Seg-
ment Controller. The Segment Controller is connected to its
RU’s through the Parallel Buses and is responsible for “driv-
ing” the vehicles passing through its domain, performing rou-
tine maintenance checks on the components in its Segment
and monitoring and regulating their mutual performance. At
level m, a group of adjacent Segment Controllers has a supe-
rior Controller: Level m-1 Controller, which coordinates and
controls their individual and mutual functions. A group of

Fig. 1 RU’s are connected by serial buses and parallel buses

adjacent Level m-1 Controllers has a superior Controller:
Level m-2 Controller. This goes on hierarchically (Fig. 2).
The Level 0 Controller coordinates and controls the functions
of the whole system. There is virtually no limit to the number
of levels or the size of the system’s geographic domain.

Let’s assume a vehicle is in a parking lot above a RU. The
passengers turn the vehicle on, which begins to send short
radio transmissions down towards the road. The RU detects
those transmissions and responds with radio transmissions
back to the vehicle. The RU initiates a communication session
with the Segment Controller, in order to inform it about the
new event. The passengers in the vehicle enter their require-
ments such as destination, priority, preferred routes etc. The
vehicle’s processor sends a message to the Segment Con-
troller which includes the requirements, the exact location of
the vehicle relative to the RU and its own specifications. The
Segment Controller processes the request while considering
additional inputs from other RU’s in the Segment and from
its superior Controller. Finally it prepares a driving instruc-
tion message for each RU in the Segment. The RU’s will send
these instructions to the vehicle when it passes above them.
Each message includes an addressee (RU1 etc.), a vehicle
ID, the expected arrival time of the vehicle at the RU, the
speed that the vehicle should travel at and the driving direc-
tion. When the vehicle is driving from one RU to another,
the active RU uses the Serial Bus to inform the next and the
previous RU’s in the sequence of the exact timing, the ID
number and other specifications of the moving vehicle. If the
RU’s detect intolerable deviation from the plan they can ini-
tiate a so-called Emergency Braking Procedure. The active
RU uses the Parallel Bus to inform the Segment Controller
of the same information as the moving vehicle.

Problem requirements

In this section we present the problem requirements for the
architecture we will develop later.

The GATS controller hierarchy (Fig. 2) can be viewed as a
network of processors whose computational tasks are accom-
plished in a distributed manner. The cars are “objects” that
have to be transferred from a source to a destination. In graph
theory terms, the planar graph on which the cars travel is par-
titioned into a set of sub-graphs, each managed by a subset
of the controllers. The partition is refined recursively as we
go down in the controllers’ hierarchy tree.

Our aim is to develop a general algorithm, which will
supervise the vehicles in any segment and at any level. Thus,
the algorithm is scalable and it can be applied to any level.
The origin and destination of a vehicle determine which con-
trollers are required to calculate the shortest path. The task of
every controller at any level is the same, namely, calculating
the journey between two controllers or segments at the level

123

J Intell Manuf (2010) 21:133–144 135

Fig. 2 Hierarchical structure of
the system

below, until the lowest level of segments is reached. As the
level of controllers is virtually unlimited and to reduce costs,
the algorithm should be the same for every controller at every
level. This requirement calls for the use of a distributed and
scalable algorithm.

To be able to approach the journey of each vehicle in real-
time as closely as possible, several other factors, along with
distance and maximum speed, need to be taken into account.
The choice of path and driving speed for a vehicle should
be adapted to its individual characteristics, including vehicle
and driver related factors such as driver experience and vehi-
cle condition. As well as these static factors, the algorithm
should be able to take into account dynamic factors such as
weather and traffic density. Upon the entry of a vehicle in a
segment, the Segment Controller will have to determine the
vehicle’s probable point and time of exit. It will then have
to set a plan accordingly. This plan is susceptible to changes
underway since it will be influenced by other vehicles using
the same segment. This means that the route has to be recal-
culated along the way to be sure that the best schedule is
chosen.

The hierarchical structure, as explained in section “Ter-
minology and integrated functioning of GATS”, implies that
every controller only has information about the segments it
controls on one level below. It does not have any information
about what happens in other segments or in other controllers.
A level of privacy between controllers and segments has to
be maintained by the algorithm.

Holonic systems

In this section we summarize the fundamental features of
holonic systems in order to detail the advantages of using

Fig. 3 A hierarchical structure

such a distributed architecture for solving complex and large-
scale problems.

A hierarchical structure is a horizontal structure in which
there is a central head or controller (Fig. 3). The only type of
communication allowed is between the controller and its con-
trolled entities. This yields a deterministic system in which
control is achieved by means of the use of global informa-
tion. Nevertheless, disturbances and changes cannot be coped
with.

A heterarchical structure is a flat structure composed of
independent entities (agents) where there is no central author-
ity (Fig. 4). The allocation of tasks to these agents is done
using dynamic market mechanisms. This yields a simple and
fault-tolerant system since none of the agents need a-pri-
ori information about the other agents. As a consequence,
several disturbances and changes can easily be coped with.
Nevertheless, the basic assumption of this architecture para-
digm gives rise to its principle drawbacks: the independence

123

136 J Intell Manuf (2010) 21:133–144

Fig. 4 A heterarchical structure

Fig. 5 A holarchy structure

of agents prohibits the use of global information. Therefore,
global system performance is very sensitive to the definition
of the market rules; the system cannot guarantee a minimum
performance level in case of unforseen circumstances.

A holarchy structure is a combination of the two previ-
ous ones. Within it, there are temporal and relaxed hierar-
chies that are dynamically created and deleted as and when
required (Fig. 5). Moreover, the participating entities, called
holons, are autonomous and cooperative entities that can be
seen as a whole and a part. Therefore, a holarchy is a group
of basic holons and/or recursive holons that are themselves
holarchies. The holonic concept was developed by the philos-
opher Arthur Koestler (Koestler 1971) in order to explain the
evolution of biological and social systems. The strength of a
holonic organization, or a holarchy, is that it enables the con-
struction of very complex systems which are efficient in the
use of resources, highly resilient to disturbance (both internal
and external), and adaptable to changes in the environment
in which they exist. Within a holarchy, holons may dynam-
ically create and change hierarchies. Moreover, holons can

participate in multiple hierarchies at the same time. Holar-
chies are recursive in the sense that a holon may itself be an
entire holarchy that acts as an autonomous and cooperative
unit in the first holarchy.

The stability of holons and holarchies stems from holons
being self-reliant units, which have a degree of independence
and can handle circumstances and problems on their partic-
ular level of existence without asking higher level holons for
assistance. Holons can also receive instruction from, and to
a certain extent be controlled by, higher level holons. This
self-reliant characteristic ensures that holons are stable and
able to survive disturbance. The subordination to higher level
holons ensures the effective operation of the larger whole.

Perhaps there is some misunderstanding about the rela-
tionship between a holonic system and a MAS (Multi-Agent
System) (Wooldridge and Jennings 1995). The main differ-
ence derives from the recursive definition of holon. A hol-
archy is composed of a set of holons, but a holon can also
be divided into a set of holons again. However, a MAS is
composed of a set of agents, but an agent is an atomic entity
and therefore indivisible. Thus, we consider a holonic sys-
tem that involves a MAS. The scalability of holonic systems
makes them very useful for managing large-scale problems.
Given a network, it can be part of a larger one, or it can be
divided into smaller ones.

In summary, a holonic architecture is committed to orga-
nizing entities—holon or agent (Giret and Botti 2004a)—
which are responsible for solving each subproblem. In order
to unify the concepts of holon and agent, we will use the
Abstract Agent notion (for short, A-Agent) (Giret and Botti
2004b) to refer to any of these entities indistinctly.

A holonic architecture seems appropriate for the problem
we are trying to solve, due to the modular nature of GATS
and the need for deterministic control over it. Holarchies
are temporal “relaxed” hierarchies, in which the hierarchi-
cal structures are created and destroyed on-demand, based
on the current system requirements. Communication among
the entities of the same levels is not forbidden. This struc-
ture will allow autonomous and cooperative behavior among
the segment controllers; the distributed solving of the road
assigning per segment (divide and conquer); the on-demand
composition of complex structures (recursive decomposition
into simpler or complex segments); and deterministic distrib-
uted management of the whole transport system.

A distributed architecture based on Holons for GATS

Traditional centralized techniques fail to model and imple-
ment problems of this type due to their large and complex
nature. Due to the decentralized and modular nature of the
architecture, the algorithms for calculating the scheduling of
each vehicle must be distributed.

123

J Intell Manuf (2010) 21:133–144 137

Fig. 6 Distributed model with a central authority

Briefly, the system is composed of a network, where nodes
are locations and arcs are roads. Depending on the granular-
ity, nodes are points in the road or regions in a country. At
the lower level of the system, each RU is represented by a
node and arcs are roads connecting RUs (see Fig. 6). The
system may be composed of millions of RUs. In the spe-
cialized literature, there are many works about distributed
CSPs (DisCSPs). In (Yokoo and Hirayama 2000), Yokoo
et al. present a formalization and algorithms for solving dis-
tributed CSPs. These algorithms can be classified as synchro-
nous backtracking or asynchronous backtracking. The work
of Yokoto on DisSCP, and many works by other researchers,
are based on the same principle: the problem is modelled
as a Multi-agent system (MAS) using the mapping vari-
able→agent (Wooldridge and Jennings 1995). However, to
solve our problem efficiently, we cannot maintain a variable
per agent (Salido 2007), due to the fact that it can be com-
posed of thousand of variables and constraints. By using these
approaches, the problem exploits into thousands of agents,
an exploitation of the number of messages passing in the
interaction scenarios. This makes the resulting DSCP model
and implementation almost unmanageable.

To overcome this weakness, we use the distributed model
presented in (Salido et al. 2007) in which the problem is parti-
tioned into subproblems which represent regions, countries,
etc (see Fig. 6). We use a Holonic architecture (HMS 1994;
Koestler 1971) to organize the entities (holon or agent (Giret
and Botti 2004a) responsible for solving each subproblem.
We can observe that a country can be seen as a whole and
a part: as a whole if the network is not increased and only
optimal paths are calculated into the country, but as a part
if it is connected to other countries to calculate international
paths. Hence, a country can be a holon (country-holon). A
set of country-holons compose a holarchy (continent-holon).
Furthermore, a country-holon is composed of a set of holons

(region-holon). Each region-holon represents its own net-
work with its own rules, traffic policies, etc. However, they do
not represent independent problems, since they must coop-
erate to achieve a global solution.

Each problem must be solved by a CSP solver in a distrib-
uted framework, where cooperation, flexibility, autonomy,
reactiveness and pro-activeness is necessary to achieve a
global and sub-optimal solution. The problem solver (CSP)
is encapsulated into a controller holon, and this holon is
responsible for the management of the traffic flow through-
out the segment under its control. The main benefit of the
distributed management of the problem is that the original
and constrained problem can be divided into a set of solvable
problems. Each controller can maintain its own privacy for
confidential data. Every subproblem can be solved concur-
rently to achieve a global solution in a reasonable time. In
order to do this, every controller holon: (i) has the intelligent
processing capabilities necessary for planning and assign-
ing roads to vehicles, in a cooperative way; (ii) participates
in negotiation scenarios in order to connect the traffic of its
segment to other segments by means of intersections; (iii)
participates in cooperation scenarios for ensuring security
levels based on the priorities and individual features of the
vehicles on the different roads, and; (iv) participates in coop-
eration scenarios for controlling and resuming from unfor-
seen circumstances.

The distributed model generated for this scheduling prob-
lem follows the following guidelines.

– The number of subproblems depends on the size of the
system. A holon can represent a track between two traffic
lights or a region or country. Figure 6 shows two holons
which represent two countries, Spain and Italy. Each of
them is composed of a set of sub-holons which represent
regions, and each sub-holon is composed of new sub-
holons which represent sub-regions and so on. The base
case is composed of individual variables that represent
RUs. Without loss of generality we will call every prob-
lem/sub-problem controller holon or agent indistinctly
(Giret and Botti 2004a).
In Fig. 7 we can see the different types of A-Agents that
make up the holonic architecture for GATS. The Vehicle
A-Agent represents the controlling entity of the vehicle
which interacts with the user. This holon stores infor-
mation (Beliefs) about the Vehicle and User Parameters,
Destination and Preferences for a journey. The Vehicle
A-Agent has the following goals: Follow the optimal path
and Go from origin to destination. On the other hand, the
RU A-Agent attempts to Control running vehicles above
its zone, Cooperate with adjacent RUs in order to connect
zones, and Follow SC orders to guide the vehicle running.
The RU A-Agent stores the following beliefs: the list of
the Running Vehicles above its zone, the SC which con-

123

138 J Intell Manuf (2010) 21:133–144

Fig. 7 Holons of the holonic
architecture for GATS

Vehicle

Vehicle Parameters,
User Parameters

Destination

Preferences

Go from origin to
destination

Follow the
optimal path

RU

RU Parameters

Next RU

Previous RU

SC

Running Vehicles

Control
Running
Vehicles

Cooperate with
adjacent RUs

Follow SC
orders

SC

Children

Next SC

Previous SC

Father

Path Plans

Plan optimal
path

Cooperate with
other SC

Mantain Safety
Conditions

Resume from
unfeasible path

Setup Scenario Planning Scenario

Running Scenario
Replanning
Scenario

User

Vehicle RU SC

Fig. 8 Cooperating Scenarios for the GATS problem

trols it, the RU Parameters, and its adjacent RUs (Next
RU and Previous RU). Finally, the SC A-Agent is the ho-
lon which implements a Segment Controller. This holon
has the following goals: Plan optimal path, Resume from
unfeasible path, Maintain Safety Conditions during the
running of the vehicle, and Cooperate with other SC to
plan a journey path in a distributed fashion.
These holons participate in four cooperation scenarios in
order to support the GATS problem. The scenarios are
depicted in Fig. 8. In the Setup Scenario the User speci-
fies its journey Preferences and Destination to the Vehicle
A-Agent. The Planning Scenario is committed to calcu-
lating the journey plan in a distributed fashion. The Run-
ning Scenario is executed when the vehicle is running
to its Destination. This scenario is committed to con-

trol and guide the vehicle throughout its journey path.
Finally, the Replanning Scenario is executed whenever
a journey path becomes unfeasible (due to heavy traffic
in a segment, RU or SC failures), and an alternative path
has to be calculated.

– The execution of the subproblems is carried out in two
steps. Firstly, given the requirements of the passenger,
(the destination is the most important requirement), the
central authority is the Level i Segment Controller which
involves both origin and destination. This Level i Segment
Controller is committed to solving the shortest path in a
high level problem (each node is a region). This path is
only a first approach that guides us to find the real shortest
path. Thus, Level i Controllers are executed first, then all
Level i+1 Controllers are executed concurrently, and so
on. Depending on the size of the journey, several hierar-
chical levels are necessary. Finally, the calculated route
is sent to the Segment Controllers involved.
Figure 9 depicts a sequence diagram1 for the Planning
Scenario. In this figure we can see the participating enti-
ties in the cooperation scenario and the message passing
among them. Firstly, the Vehicle A-Agent requests a jour-
ney plan from the RU’ holon. In order to do so, RU’ sends

1 A sequence diagram depicts the interacting entities, the message pass-
ing and the time. The time is as a vertical line that represents the life-
cycle of the interacting entity. A conditional sequence is represented as
a box with a condition label.

123

J Intell Manuf (2010) 21:133–144 139

Fig. 9 Planning scenario

Vehicle

Request
Path(Destination,

Driving Conditions)

RU’

Request Journey
Plan(Destination, Driving

Conditions)

Find Level I Controler
to reach Destination

Level I
SC

Query if destination is
in your segment

Level k
SC

Prepare Driving
Instruction for each

RU in SC

 Query if destination is in
your segment

Level n
SC

SC

Find SC

Calculate shortest Path

[Path is virtual]

Inform Path is
assigned

Prepare Driving
Instruction for each

RU in SC

Generate shortest Paths

Calculate shortest Path

[Path is virtual]

Inform Path is
assigned

Prepare Driving
Instruction for

each RU in SC

[Destination is in my
segment]

[Destination is not in my segment]

[Destination is in my segment]

Generate shortest
Paths

Inform Path is assigned
Inform Path is

assigned

the request to its SC. The SC holon finds out if the jour-
ney Destination falls into its controlled segment. If so,
SC prepares the driving parameters for each RU under its
control. If not, SC queries its superior SCs in order to find
a Level i SC which controls the segment the Destination is
in. When such a Level i SC is found the Level i SC calcu-
lates a shortest path to Destination. If this shortest path is
virtual (that is, it connects segments by meta-RUs) a new
Calculate Shortest Path (see Fig. 10) scenario is started.
This sequence is repeated until a real shortest path is found
(that is, every node in the path is a RU).
The Calculate Shortest Path cooperation scenario
depicted in Fig. 10 represents the interaction scenario
among a SC called Father SC and its sub-SCs (SCs of
lower level that are controlled by Father SC). Every sub-
SC is called Child i SC. This scenario is a recursive one
since, whenever the calculated path is virtual, a new Cal-
culate Shortest Path scenario is initiated. This recursive
process is executed until all of the calculated paths are real
(that is, every node in the path is a RU). When Father SC
receives all of the shortest sub-paths from its children,
it composes the final shortest path. Finally, Father SC
informs its children of the final shortest path, and asks
them to prepare the driving instructions for each RU in
their segment.
Figure 11 shows the cooperation scenario executed when
the vehicle runs along its journey path. The RU in charge

of the vehicle running zone is responsible for guiding it.
To this end the RU receives radio signals with the posi-
tion data of the vehicle. The RU continuously calculates
whether the vehicle is going to leave its control. When that
happens the RU informs its SC of the situation in order
to connect the vehicle to the next RU in the path. The SC
sends driving parameters to the Vehicle via the RU. Also,
SC checks when a new connecting SC’ has to be contacted
in order to pass it the Vehicle running control. When the
Vehicle is no longer in a given zone or segment it is deleted
from the list of running vehicles for that segment.

– Due to the dynamic structure of the problem, some parts
of the system may change and new schedules must be
calculated. The rescheduling is only calculated from the
incidence to the destination. At the same time, two
regions (say “A” and “E”, see Fig. 12) not connected pre-
viously, can be connected if a new road is available at
a given time. In this case, controller holon “A” and con-
troller holon “E” will be part of a higher level controller
holon (say “C”) to manage the new region which con-
nects “A” and “E”. Also, previously connected regions
(“C”) may be disconnected at a given time due to extreme
weather conditions, problems with the roads, etc. In these
cases, the controller holon which manages the connected
regions (“C”) will no longer exist until the regions (“A”
and “E”) are connected again.

123

140 J Intell Manuf (2010) 21:133–144

Fig. 10 Calculate shortest path
interaction

Father SC Child 1 SC Child x SC

Request Path(D1, D2,
Driving Conditions)

Request Path(Dz, Dx, Driving Conditions)

Calculate Path
(D1, D2, Driving

Conditions)

Calculate Path
(Dz, Dx, Driving

Conditions)

Inform Path

Inform Path
Compose

Optimal Path

Inform Path assigned

Inform Path assigned

Prepare Driving
Instruction for each

RU in SC

Prepare Driving
Instruction for each

RU in SC

[Path is virtual]

Calculate shortest Path

[Path is virtual]

Calculate shortest Path

– The nature of the system makes a central authority nec-
essary. However, due to the scalability of the system, the
central authority behaves similarly to a segment control-
ler. The central authority is the minimal level controller
which involves both origin and destination. This level
depends on the problem instance.

The underline distributed algorithm

An underline algorithm is needed to establish the controlling
holonic structure for each vehicle journey. This algorithm
is composed of two steps. In the first step, the algorithm
determines a high level path in which a set of regions are
selected to build up the holonic structure. In the second
step, the algorithm calculates the low level path correspond-
ing to the sup-optimal path. The detailed pseudocode of
the described procedures that compose the algorithm can be
found in (Versteegh and Salido 2007).

The complete distributed algorithm we propose (Fig. 13)
uses the procedures described below to calculate the shortest
path between the origin node and the destination node the user
wants to reach. Once the user inputs the desired destination,

the procedure DetermineHighLevelPath is executed. If a path
exists from the begin region to the end region, in other words
if the predecessor of the end region is unequal to −1 and the
number of iterations made in the procedure is smaller than or
equal to the number of nodes, the algorithm continues. If not,
the message “there is no possible route” will be shown. If
the algorithm continues the DetermineLowLevelPath proce-
dure is executed, followed by the procedure MakeFinalPath.
Finally, the total distance and the path through regions are
shown (see Fig. 14).

In the DetermineHighLevelPath procedure, the shortest
path from start region to end region at level 0 is determined.
This means that the path is only made up of regions; no
nodes inside regions are taken into consideration. The result
of this procedure is a list composed of the regions through
which the shortest path will be planned. In this procedure, the
file with data of level 0 is loaded first. For every two neigh-
bor regions the file concerning level 0 contains the distance
between them. If no direct path exists the distance is set to −1.

The procedure DetermineLowLevelPath determines the
shortest path for every region selected by DetermineHigh-
LevelPath. Holon 0 gives all involved holons at level 1 the
order to calculate the shortest path from all frontiers with the

123

J Intell Manuf (2010) 21:133–144 141

Fig. 11 Running scenario

Vehicle RU’ RU’’’ SC SC’’’

Inform Position

Inform Driving
Parameters

Is the vehicle
leaving my

zone?
Inform vehicle position

[the vehicle is in my zone]

[the vehicle is going to leave my zone]

Inform Driving
Parameters

Inform vehicle
Is approaching

Inform New RU

Inform Driving Parameters

Inform Driving
Parameters

[the vehicle is in my zone]

Is the vehicle
leaving my

zone?

Inform New RU

[the vehicle is going to leave my zone]

Inform vehicle
Is approaching

RUi

Inform Driving
Parameters

Inform New RU
Inform New RU

Inform New RU

[the vehicle is not in my zone]

Remove vehicle from list
of controlled vehicles

[the vehicle is not in my zone]
Remove vehicle from list

of controlled vehicles

precedent province to all frontiers with the next province. For
the beginning region the shortest path from the begin node to
all frontier nodes with the next province is calculated. For the
end region the shortest path from all frontier nodes with the
precedent region to the end node is calculated. The sequence
of provinces is given by the shortest path calculated by holon
0. This procedure is only executed if the predecessor of the
end province is unequal to −1, which means that a path to this
province is found. For every two adjacent provinces frontier
nodes are determined. In general we describe a frontier node
as an artificial point that is shared by two regions.

The MakeFinalPath procedure has two different parts. In
the first part the shortest path from begin node to end node
via frontier nodes is determined, using the paths from frontier
node to frontier node that are calculated in the Determine-
LowLevelPath procedure. In the second part of the Make-

FinalPath procedure the complete path through every region
is determined. We calculate this path using a modified form
of Dijkstra’s shortest path algorithm. In this procedure not
only the visited status, distance from start and predecessor of
a node are saved, but all of these data are saved for region-
node combinations.

Complexity

The worst case complexity of the algorithm is O(N 2 R2),
in which R is the number of regions in the system and N is
the number of nodes per region. The complexity depends on
the number of regions in the final path, p, and the maximum
number of frontier nodes per frontier, f. The MakeFinalPath
procedure accounts for the worst part of the complexity. The

123

142 J Intell Manuf (2010) 21:133–144

Fig. 12 Initial weighted graph
that represents locations (nodes)
and best time to go from one
location to another one (arcs)

C

K

L N

J
I

B

F

E

A

HG

D

M2
1

1

2

3

4

4

3

6
4

2

1

4

2

1

3
2

2

3

1

1

2

1

V

R

T
S

Q

PO

Y

Z

X
W

U

4 2
4

2

4

3
2

14

3

2

4

2

3

1

1

2

3

1

4

F3

F5 F1

F9

4

2

1

3

5

9

5

8

F7
F2

A3A1 2
4

2
4

8

8

9

Fig. 13 The complete distributed algorithm

complexity of this procedure is O(pN 2 R). The procedure
DetermineHighLevelPath depends on both f and p. Its com-
plexity is O(f pN 2).

Related works

Often in distributed shortest path algorithms the individual
nodes need to be able to locally compute shortest paths. In a
lot of cases this is done by a variation of Dijkstra’s Algorithm,
the most well-known and fastest basic algorithm for deter-
mining the shortest path from one location to all other possi-
ble locations in a network (Dijkstra 1959). The use of Dijk-
stra’s Algorithm alone is not sufficient for GATS as we need a
distributed algorithm and Dijkstra only provides a local short-
est path algorithm. In this section we discuss some of the

existing distributed shortest path algorithms and their possi-
ble usefulness for GATS.

The Link-State Algorithm, the Distance-Vector Algorithm
and other derived algorithms are distributed shortest path
algorithms in which each node is responsible for calculating
a shortest path to all other possible destinations (Hoffman
2004). Although these algorithms are called distributed algo-
rithms, they are distributed in a different way to those used
in this paper. No agents are used, therefore the privacy of the
controllers cannot be guaranteed in these algorithms.

The well-known commercial navigation systems use,
according to Sanders and Schultes (Sanders and Schultes
2005), heuristics to compute paths. The basic idea behind
these heuristics is the observation that shortest paths in gen-
eral use small roads only locally, more specifically, at the
beginning and at the end of a path. This heuristic algorithm
only performs a local search around start and destination and
then switches to search in a network that is much smaller
than the complete graph and which only consists of the most
important roads. This heuristic algorithm does not take into
account real-time and vehicle and driver specific data and so
is not useful for GATS.

The concept of highway hierarchies (Sanders and Schultes
2005) is a multi-level highway network in which iteratively
every path consisting of nodes with degree two are replaced
by a single edge. Although this approach has a lot in com-
mon with the system needed for GATS, it is not useful as
the privacy of regions is not guaranteed, nor is it possible to
involve real-time data.

None of the shortest path algorithms described above meet
all of the requirements for GATS as found earlier in this
section. This motivates us to propose a distributed shortest
path algorithm in which privacy is maintained, dynamic fac-

123

J Intell Manuf (2010) 21:133–144 143

Fig. 14 Result of calculating
the shortest path

tors are taken into account and in which the algorithm for
each controller is the same. In our approach we combine
multi-agent theory (Wooldridge and Ciancarini n.d) with Di-
jkstra’s Algorithm to come to an algorithm that is useful for
GATS.

Conclusions and further research

In this work, we present a distributed architecture for the
Global Automated Transport System (GATS) (Zelinkovsky
2008). This architecture is modeled as a holonic system. It is
appropriate due to the modular nature of GATS and the need
for deterministic control over it. The underline distributed
algorithm for solving the global road transportation system
has to satisfy some requirements as described in Sect. “Prob-
lem requirements”. We define an algorithm that guarantees
privacy for every holon. Every holon, which controls a region
or a segment of regions, only has information about what hap-
pens in the area it controls. The holon above can ask other
holons for information about distances, but will never know
directly what happens in other regions. The algorithm we pro-
pose is scalable due to the fact that the architecture uses the
same algorithm for each controller on every level, every con-
troller determines the shortest path in the region below, once
this path is determined the controller in the level below does
the same thing, using the information the controller above
gathered in its search.

In further work, we will study the dynamic part of the
algorithm. What happens when the travel time on a track
becomes longer? Will the whole route be recalculated or only

the region in which this track lies? Another possibility might
be to calculate in the first step not only the shortest route
at that moment, but also the best alternative. The difference
between the best case of the alternative and the current route
could be used as buffer time to determine whether a delay
in the current route is large enough to start recalculating the
shortest path.

Acknowledgements We appreciate the assistance of Reuven Zelin-
kovsky for his kind help in obtaining all the information regarding
GATS. GATS core concept was conceived, invented and patented by
Reuven Zelinkovsky. This work has been partially supported by the
research projects TIN2007-29666-E and TIN2007-67943-C02-01 (Min.
de Educacion y Ciencia, Spain-FEDER), CONSOLIDER-INGENIO
2010 under grant CSD2007-00022, FOM- 70022/T05 (Min. de Fomen-
to, Spain), GV/2007/274 (Generalidad Valenciana), PAID-06-07/3191
(Universidad Politecnica de Valencia) and by the Future and Emerging
Technologies Unit of EC (IST priority—6th FP), under contract no.
FP6-021235-2 (project ARRIVAL).

References

Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik, 1, 269–271.

Giret, A., & Botti, V. (2004a). Holons and agents. Journal of Intelligent
Manufacturing, 15, 645–659.

Giret, A., & Botti, V. (2004b). Towards an abstract recursive agent.
Integrated Computer-Aided Engineering, 11, (2), 165–177.

HMS. (1994). Press release. 1994. HMS requirements. http://hms.ifw.
uni-hannover.de/:HMSServer.

Hoffman, A. C. (2004). Multiple approaches for distributed routing
algorithms (Tech. rept).

Koestler, A. (1971). The ghost in the machine. Arkana Books.

123

http://hms.ifw.uni-hannover.de/:HMSServer
http://hms.ifw.uni-hannover.de/:HMSServer

144 J Intell Manuf (2010) 21:133–144

Salido, M. A. (2007). Distributed CSPs: Why it is assumed a Variable
per Agent? In Proceeding of the Seventh Symposium on Abstrac-
tion, Reformulation and Abstraction (SARA’07), LNAI (Vol. 4612,
pp. 407–408).

Salido, M. A., Abril, M., Barber, F., Ingolotti, L., Tormos, P., & Lova, A.
(2007). Domain-dependent distributed models for railway schedul-
ing. Knowledge Based Systems. Ed. Elsevier Science, 20, 186–194.

Sanders, P., & Schultes, D. (2005). Highway hierarchies hasten exact
shortest path queries. In Proceeding of ESA 2005, LNCS (Vol. 3669,
pp. 568–579).

Versteegh, F. C., & Salido, M. A. (2007). A Distributed shortest path
algorithm for global automated transport system (Tech. rept). Tech-
nical Report DSIC-II/17/07, Department of Information Systems and
Computation, Technical University of Valencia, Spain.

Wooldridge, M., & Ciancarini, P. Agent-Oriented Software Engineer-
ing: The state of the art (Tech. rept). Department of Computer
Science, University of Liverpool.

Wooldridge, M., & Jennings, R. (1995). Agent theories, arquitectures,
and lenguajes: A survey. Intelligent Agents, LNCS (Vol. 890, pp.
1–22).

Yokoo, M., & Hirayama, K. (2000). Algorithms for distributed con-
straint satisfaction: A review. Autonomous Agents and Multi-Agent
Systems, 3, 185–207.

Zelinkovsky, R. (2008). Global automated transport system. http://
www.global-transportation.com.

123

http://www.global-transportation.com
http://www.global-transportation.com

	A holonic architecture for the global road transportation system
	Abstract
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

