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Abstract In this work we consider a multiobjective job
shop problem with uncertain durations and crisp due dates.
Ill-known durations are modelled as fuzzy numbers. We take
a fuzzy goal programming approach to propose a generic
multiobjective model based on lexicographical minimisation
of expected values. To solve the resulting problem, we pro-
pose a genetic algorithm searching in the space of possibly
active schedules. Experimental results are presented for sev-
eral problem instances, solved by the GA according to the
proposed model, considering three objectives: makespan, tar-
diness and idleness. The results illustrate the potential of the
proposed multiobjective model and genetic algorithm.

Keywords Job shop Scheduling · Uncertain duration ·
Multiobjective optimisation

Introduction

Scheduling problems form an important body of research
since the late fifties, with multiple applications in industry,
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finance and science (Brucker and Knust 2006). Part of this
research is devoted to fuzzy scheduling, in an attempt to
model the uncertainty and vagueness pervading real-world
situations. The approaches are diverse, ranging from repre-
senting incomplete or vague states of information to using
fuzzy priority rules with linguistic qualifiers or preference
modelling (Dubois et al. 2003a; Słowiński and Hapke 2000).

The complexity of scheduling problems such as job shop
means that practical approaches to solving them usually
involve heuristic strategies (Brucker and Knust 2006). In
the literature, we find some extensions of these strategies
to job shop problems with uncertain durations represented as
fuzzy numbers. For instance, genetic algorithms are used in
Sakawa and Kubota (2000), Fayad and Petrovic (2005) and
González Rodríguez et al. (2008) for multiobjective prob-
lems while single-objective job shop is approached using
simulated annealing in Fortemps (1997) and a memetic algo-
rithm, combining a genetic algorithm with local search, in
González Rodríguez et al. (2007b). Far from being trivial,
extending heuristic strategies usually requires a significant
reformulation of both the problem and solving methods. For
example, defining and computing critical paths remains an
open question, only partially solved for simple problems
(Dubois et al. 2003b).

In the sequel, we describe a job shop problem with uncer-
tain durations and crisp due dates. We propose a generic
multiobjective model where the objective function is defined
in order to lexicographically minimise the expected values
of several fuzzy goals (makespan, tardiness and idleness).
In addition to the priority structure for the lexicographical
minimisation, target levels for each objective are introduced,
in order to balance possibly incompatible goals. The result-
ing problem is solved by means of a genetic algorithm (GA)
based on permutations with repetitions that searches in the
space of possibly active schedules. We analyse the perfor-
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mance of the multiobjective GA on a set of problem instances,
both based on the expected values of each objective and on
the quality measures obtained from a semantics for fuzzy
schedules presented in González Rodríguez et al. (2008).

Uncertain processing times

In real-life applications, it is often the case that the exact
duration of a task is not known in advance. However, based
on previous experience, an expert may have some knowledge
about the duration, thus being able to estimate, for instance,
an interval for the possible processing time or its most typical
value. In the literature, it is common to use fuzzy intervals to
represent such processing times, as an alternative to proba-
bility distributions, which require a deeper knowledge of the
problem and usually yield a complex calculus.

When there is little knowledge available, the crudest rep-
resentation for uncertain processing times would be a human-
originated confidence interval. If some values appear to be
more plausible than others, a natural extension is a fuzzy
interval or fuzzy number. The simplest model is a triangular
fuzzy number or TFN, using only an interval [a1, a3] of pos-
sible values and a single plausible value a2 in it. For a TFN
A, denoted A = (a1, a2, a3), the membership function takes
the following triangular shape:

µA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1

a2−a1 : a1 ≤ x ≤ a2

x−a3

a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

Operations on fuzzy processing times

Triangular fuzzy numbers and more generally fuzzy intervals
have been extensively studied in the literature (cf. Dubois and
Prade 1988). A fuzzy interval Q is a fuzzy quantity (a fuzzy
set on the reals) whose α-cuts Qα = {u ∈ R : µQ(u) ≥ α},
α ∈ (0, 1], are convex, i.e., they are intervals (bounded or
not). The core of Q contains the elements with full mem-
bership µQ(u) = 1, and any of its elements is called modal
value. The support of Q is Q0 = {u ∈ R : µQ(u) > 0}.
A fuzzy number is a fuzzy quantity whose α-cuts are closed
intervals, with compact (i.e. closed and bounded) support and
unique modal value.

In order to work with fuzzy numbers, it is necessary to
extend the usual arithmetic operations on real numbers. In
general, if f is a function f : R

2 → R and Q1, Q2 are two
fuzzy quantities, the fuzzy quantity f (Q1, Q2) is calculated
according to the Extension Principle as follows:

∀u ∈ R, µ f (Q1,Q2)(u) = sup{min(µQ1(w1),

µQ2(w2)) : f (w1, w2) = u} (2)

if f −1(u) �= ∅, being equal to 0 otherwise. Computing the
above equation is cumbersome, if not intractable. It can be
somewhat simplified if M and N are two fuzzy numbers, so
the α-cuts Mα and Nα are closed bounded intervals of the
form [mα, mα] and [nα, nα], and if f is a continuous iso-
tonic mapping from R

2 into R, that is, if u ≥ u′ and v ≥ v′,
then f (u, v) ≥ f (u′, v′). In this case, the α-cuts of the fuzzy
quantity f (M, N ), obtained by applying the Extension Prin-
ciple, are the images under f of the α-cuts of M and N :

∀α > 0, [ f (M, N )]α = [ f (mα, nα), f (mα, nα)] (3)

which is a closed interval. Any fuzzy set can be expressed
as the union of its α-cuts according to the First Decompo-
sition Theorem, so the above property provides us with an
alternative formula for f (M, N ):

f (M, N ) = ∪α∈(0,1][ f (mα, nα), f (mα, nα)] (4)

In the job shop, we essentially need two operations on
fuzzy durations: the sum and maximum. Additionally, we
may need the substraction.

In the case of TFNs, both the addition and substraction
are fairly easy to compute, as they are reduced to operating
on the three defining points, so for any pair of TFNs M and
N , we have the following:

M + N = (m1 + n1, m2 + n2, m3 + n3) (5)

M − N = (m1 − n3, m2 − n2, m3 − n1). (6)

Unfortunately, for the maximum of TFNs there is no such
simplified expresion. Being an isotonic function, we can use
Eq. (4) above to compute the maximum of two fuzzy num-
bers. However, in general this still requires an infinite number
of computations, because we have to evaluate two maxima
for each value α ∈ (0, 1]. For the sake of simplicity and trac-
tability of numerical calculations, we follow Fortemps (1997)
and approximate all results of isotonic algebraic operations
on TFNs by a TFN. Instead of evaluating the intervals cor-
responding to all α-cuts, we evaluate only those intervals
corresponding to the support and α = 1, which is equivalent
to working only with the three defining points of each TFN.

Notice that if we approximate the sum (an isotonic func-
tion), the approximation coincides with the sum of TFNs
given in (5). The same is not always true for the maximum
∨, which would be approximated as follows:

M ∨ N ∼ M � N = (m1 ∨ n1, m2 ∨ n2, m3 ∨ n3). (7)

However, it is possible to prove the following relationship
between the maximum and its approximation: let M, N be
two TFNs and let F = N ∨ M their maximum and G =
N � M its approximated value; it holds that:

∀α ∈ [0, 1], f
α

≤ g
α
, f α ≤ gα. (8)
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In particular, F and G have identical support and modal
value: F0 = G0 and F1 = G1. The approximated maximum
can be trivially extended to n > 2 TFNs.

Expected value of fuzzy processing times

Possibility theory provides a framework to mathematically
model scheduling problems with uncertainty (Dubois et al.
1996). For a fuzzy quantity Q, its membership function µQ

can be interpreted as a possibility distribution on the real
numbers, so the possibility and necessity measure that Q ≤ r ,
where r is a real number, are given by:

�(ξ ≤ r) = sup
x≤r

µ(x) N(ξ ≤ r) = 1 − sup
x>r

µ(x) (9)

Related to the dual measures of possibility and necessity is
the credibility measure that Q ≤ r (Liu 2006):

Cr(Q ≤ r) = 1

2
(�(Q ≤ r) + N(Q ≤ r)) (10)

In this case, we have a self-dual measure, i.e. Cr(Q ≤ r) =
1 − Cr(Q > r).

The expected value of a fuzzy quantity Q is defined on
the basis of the credibility measure in (Liu and Liu 2002):

E[Q] =
∫ ∞

0
Cr(Q ≥ r)dr −

∫ 0

−∞
Cr(Q ≤ r)dr (11)

provided that at least one of the above two integrals is finite.
It is easy to prove that the expected value of a TFN A is given
by E[A] = 1

4 (a1 + 2a2 + a3).
The expected value induces a total ordering ≤E in the

set of fuzzy intervals (Fortemps and Roubens 1996), where
for any two fuzzy intervals M, N M ≤E N if and only
if E[M] ≤ E[N ]. Indeed, ranking fuzzy intervals is usu-
ally done via defuzzification methods, obtaining a scalar
value from a given fuzzy quantity, so ranking fuzzy inter-
vals becomes a matter of ranking their scalar substitutes. The
expected value E[M] coincides with the neutral scalar sub-
stitute s(M) of a fuzzy interval M (Yager 1981):

s(M) = 1

2

∫ 1

0
(mα + mα)dα. (12)

The neutral scalar substitute is cited in Dubois et al. (2003a)
as the most natural defuzzification procedure among those
proposed in the literature. This definition can also be obtained
using the area compensation method proposed in Fortemps
and Roubens (1996). Considering the set of all probability
functions dominated by the possibility function induced by
the membership functionµM , E[M] is also the expectation of
the probability distribution which lies at the centre of gravity
of that set. An interesting property is its linearity. Trivially,
for any two TFNs A = (a1, a2, a3) and B = (b1, b2, b3), if
∀i, ai ≤ bi , then A ≤E B, but the reverse does not hold.

The expected value of a fuzzy interval will allow us to
give an interpretation or model for the fuzzy job shop and it
will provide a means of ranking objective values represented
by fuzzy intervals, something necessary to select the best
solution to the job shop with ill-known durations.

The job shop scheduling problem

The job shop scheduling problem, also denoted JSP, consists
in scheduling a set of jobs {J1, . . . , Jn} on a set of physi-
cal resources or machines {M1, . . . , Mm}, subject to a set of
constraints. There are precedence constraints, so each job
Ji , i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be
sequentially scheduled. Also, there are capacity constraints,
whereby each task θi j requires the uninterrupted and exclu-
sive use of one of the machines for its whole processing time.
In addition, there may be due-date constraints, where each
job Ji , i = 1, . . . , n, has a maximum completion time Di

and all its tasks must be scheduled to finish before this time.
A solution to this problem is a schedule (an allocation of
starting times for all tasks) which, besides being feasible,
in the sense that precedence and capacity constraints hold,
is optimal according to some criteria, for instance, that the
makespan or the non-fulfillment of due dates are minimal.

Fuzzy schedules from crisp task orderings

A schedule s for a job shop problem of size n×m (n jobs and
m machines) may be determined by a decision variable x =
(x1, . . . , xnm) representing a task processing order, where
1 ≤ xl ≤ n for l = 1, . . . , nm and |{xl : xl = i}| = m for
i = 1, . . . , n. This is a permutation with repetition as pro-
posed by Bierwirth (1995); a permutation of the set of tasks,
where each task is represented by the number of its job. A
job number appears in such decision variable as many times
as different tasks it has and the order of precedence among
tasks requiring the same machine is given by the order in
which they appear in the decision variable x. Thus, the deci-
sion variable represents a task processing order that uniquely
determines a feasible schedule. This permutation should be
understood as expressing partial orderings for every set of
tasks requiring the same machine.

Let us assume that the processing time pi j of each task θi j ,
i = 1, . . . , n, j = 1, . . . , m is a fuzzy variable (a particular
case of which are TFNs). The problem may be represented by
a matrix of fuzzy processing times ξ such that ξi j = pi j and a
machine matrix ν such that νi j is the machine required by task
θi j . For a given task processing order x, let Ci (x, ξ , ν) denote
the completion time of job Ji and let Ci j (x, ξ , ν) denote the
completion time of task θi j , i = 1, . . . , n, j = 1, . . . , m.
The completion time of a job is the completion time of its
last task, that is, Ci (x, ξ , ν) = Cim(x, ξ , ν), i = 1, . . . , n.
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Fig. 1 Gantt chart of the schedule represented by the decision variable
(1 2 3 2 3 1)

The starting time Si j (x, ξ , ν) for task θi j , i = 1, . . . , n, j =
1, . . . , m will be the maximum between the completion times
of the tasks preceding θi j in its job and its machine. Hence,
the starting and completion times of task θi j are given by:

Si j (x, ξ , ν) = Ci( j−1)(x, ξ , ν) � Crs(x, ξ , ν) (13)

Ci j (x, ξ , ν) = Si j (x, ξ , ν) + pi j (14)

where θrs is the task preceding θi j in the machine according
to the processing order given by x. Ci0(x, ξ , ν) is assumed
to be zero and, analogously, Crs(x, ξ , ν) is taken to be zero
if θi j is the first task to be processed in the corresponding
machine.

For this fuzzy schedule, we may define the fuzzy makespan
Cmax (x, ξ , ν), the fuzzy maximum tardiness (fuzzy
tardiness for short) Tmax (x, ξ , ν) and the fuzzy maximum
idleness (fuzzy idleness for short) Imax (x, ξ , ν) as follows:

Cmax (x, ξ , ν) = �1≤i≤n (Ci (x, ξ , ν)) (15)

Tmax (x, ξ , ν) = �1≤i≤n (Ci (x, ξ , ν) − Di ) ∨ 0 (16)

Imax (x, ξ , ν) = �1≤i≤n
(
Cmax (x, ξ , ν) − Cik jk (x, ξ , ν)

)

(17)

where Cik jk (x, ξ , ν) is the completion time of the last task
to be processed on machine Mk , k = 1, . . . , m, according to
the ordering provided by the decision variable x.

Let us illustrate the previous definitions with an example.
Consider a problem of three jobs and two machines with the
following matrices for fuzzy processing times and machine
allocation:

ξ =
⎛

⎝
(3, 4, 7) (1, 2, 3)

(4, 5, 6) (2, 3, 4)

(1, 2, 6) (1, 2, 4)

⎞

⎠ ν =
⎛

⎝
1 2
2 1
2 1

⎞

⎠

For instance, ξ22 = (2, 3, 4) is the processing time of task 2
of job 2 θ22 and, given that ν22 = 1, this task must be pro-
cessed on machine 1. Figure 1 shows the Gantt chart (adapted
to TFNs) of the schedule given by the decision variable x =
(1 2 3 2 3 1). It represents the partial schedules obtained
from the decision variable for each machine. For machine 1,
tasks are processed in the following order: θ11, θ22, θ32, and
for machine 2, tasks are processed in the order θ21, θ31, θ12.

Given these orderings and precedence constraints, the starting
time for task θ22 will be the maximum of the completion
times of θ21 and θ11, the preceding tasks in the job and in the
machine: S22 = C21 �C11 = (4, 5, 6)� (3, 4, 7) = (4, 5, 7).
Consequently, its completion time will be C22 = S22 +ξ22 =
(4, 5, 7) + (2, 3, 4) = (6, 8, 11).

Notice that if uncertain durations are given as fuzzy inter-
vals the schedule s will be a fuzzy schedule, in the sense that
the starting and completion times of all tasks and the make-
span are fuzzy intervals. These fuzzy intervals may be seen
as possibility distributions on the values that these times may
take. However, the task processing ordering represented by
x that determines such schedule is crisp; there is no uncer-
tainty regarding the order in which tasks are to be processed.
In other words, we obtain a fuzzy schedule from a crisp
task ordering. These ideas are essential for the semantics
of fuzzy schedules proposed in González Rodríguez et al.
(2008) and described in the section “A posteriori semantics
of fuzzy schedules”.

Multiobjective models

It is not trivial to optimise a schedule in terms of a fuzzy quan-
tity, since neither the maximum ∨ nor its approximation �
define a total ordering. In the literature, this problem is tack-
led using some ranking method for fuzzy numbers, compar-
isons based on λ-cuts or defuzzification methods. Here the
modelling philosophy is similar to that of stochastic sched-
uling and is inspired in the work on expected value models
from Liu and Liu (2002).

If we only consider the makespan, the expected value
E[Cmax (x, ξ , ν)] should be minimised, thus providing an
expected makespan model for fuzzy job shop
(González Rodríguez et al. 2007b). Similarly, we may define
the expected tardiness and the expected idleness models or,
in general, an expected model for any single fuzzy goal.

Alternatively, we may consider several objectives and for-
mulate a multiobjective problem. Now, with multiple goals it
is often the case that some are achievable only at the expense
of others, hence the need of a hierarchy of importance among
these possibly incompatible goals so as to satisfy as many as
possible in the specified order. In general, for k objectives
f1, . . . , fk such priority structure should be established by
the decision maker (DM) and may be represented by a one-to-
one mapping ρ from { f1, . . . , fk} onto {1, . . . , k}, such that
ρ( fi ) is the priority level of fi , i = 1, . . . , k, where 1 repre-
sents the highest priority. For instance, if f1 = Cmax , f2 =
Tmax and f3 = Imax and the DM considers that the most pri-
oritary objective is minimising the expected tardiness, then
ρ( f2) = 1. Without loss of generality, let us assume that the
objective functions fi i = 1, . . . , k are ordered according to
their priority, that is, ρ( fi ) = i . Then, we may formulate the
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following expected multiobjective model for the fuzzy job
shop problem (FJSP):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lexmin (E[ f1(x, ξ , ν)], . . . , E[ fk(x, ξ , ν)])
subject to: 1 ≤ xl ≤ n, l = 1, . . . , nm,

|{xl : xl = i}| = m, i = 1, . . . , n,

xl ∈ Z
+, l = 1, . . . , nm.

(18)

where lexmin denotes lexicographically minimising the
objective vector.

Additionally, a goal programming model may be used to
balance the multiple conflicting objectives, considering tar-
get levels established by the DM, so E[ fi (x, ξ , ν)] should
not exceed a given target value bi , i = 1, . . . , k. This trans-
lates into the following goal constraints:

E[ fi (x, ξ , ν)] + d−
i − d+

i = bi , i = 1, . . . , k (19)

where d+
i , the positive deviation from the target, should be

minimised. We thus obtain the following expected fuzzy goal
multiobjective model for the FJSP:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin (d+
1 , . . . , d+

k )

subject to: E[ fi (x, ξ , ν)]+d−
i − d+

i = bi , i = 1, . . . , k,

bi , d−
i , d+

i ≥ 0, i = 1, . . . , k,

1 ≤ xl ≤ n, l = 1, . . . , nm,

|{xl : xl = i}| = m, i = 1, . . . , n,

xl ∈ Z
+, l = 1, . . . , nm.

(20)

Notice that (18) is a particular case of (20). Indeed, this last
formulation is general enough to comprise all possible fuzzy
goals, priority structures and target levels established by the
DM. Similar ideas for the fuzzy parallel machine scheduling
problem with a fixed priority structure and three objectives
can be found in Peng and Liu (2004).

A posteriori semantics of fuzzy schedules

In González Rodríguez et al. (2008), a semantics for the fuzzy
schedules was proposed and used to measure the performance
of such schedules. According to this semantics, solutions to
the FJSP are interpreted as apriori solutions, found when
the duration of tasks is not exactly known. In this setting,
it is impossible to predict what the exact time-schedule will
be, because it depends on the realisation of the task’s dura-
tions, which is not known yet. Each schedule corresponds to
a crisp ordering of tasks and, it is not until tasks are executed
according to this ordering that we know their real duration
and, hence, obtain a real schedule, the aposteriori solution
with crisp job completion times and makespan.

Given this, the main interest of a solution to the FJSP
lies in the ordering of tasks that it provides a priori, when
information about the problem is incomplete. Ideally, this
ordering should yield good schedules in the moment of its

practical use, when tasks do have real durations. Hence, its
behaviour should be evaluated on a family of N crisp job
shop problems, generated from the fuzzy problem so that
they can be interpreted as its realisations. Such possible real-
isations are simulated by generating exact durations for each
task at random according to a probability distribution which
is coherent with the possibility distribution given by the fuzzy
duration.

Given a solution to the FJSP, we consider the ordering
of tasks it provides, represented by the decision variable x.
For a crisp version of the FJSP, let η be the matrix of crisp
durations, such that ηi j , the a-posteriori duration of task θi j

is coherent with the possibility distribution defined by the
fuzzy duration ξi j . Then, the ordering x can be used by an
algorithm of semiactive schedule building to obtain a crisp
time-schedule, as presented in the section “Fuzzy schedules
from crisp task orderings” but using real durations instead of
fuzzy ones. For such crisp schedule, the Relative Makespan
Error, M E , is defined as the relative difference in time units
between the obtained crisp makespan Cmax (x, η, ν) and a
given lower bound for the makespan L B(η, ν), that is:

M E(x, η, ν) = Cmax (x, η, ν) − L B(η, ν)

L B(η, ν)
(21)

This lower bound may be obtained with some of the existing
methods from the literature. We also define the Feasibility
Error, F(x, η, ν), as the proportion of due-date constraints
that do not hold for a given ordering x for a given a-posteriori
realisation η of task durations.

If instead of a single crisp instance we consider the whole
family of N crisp problems, each with a duration matrix ηl ,
we obtain N values of M E , denoted M El = M E(x, ηl , ν),
and N values of F , denoted Fl = F(x, ηl , ν), l = 1, . . . , N .
The overall performance of the fuzzy solution across the fam-
ily of N crisp problems is then measured by the following
average values:

M E(x) =
∑N

l=1 M El

N
, F(x) =

∑N
l=1 Fl

N
(22)

We may now compare different solutions to the FJSP
based on due-date satisfaction (using F(x)), based on make-
span (using M E(x)) or even based on the overall achieve-
ment of both objectives (using some combination of F(x) and
M E(x)). In any case, we should bear in mind the quality of a
given ordering x is measured on a family of problems which
may be quite diverse. In fact, the greater the uncertainty in
the FJSP, the greater the variety of possible crisp realisations
and hence, the diversity within the family of associated crisp
JSSPs.
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Fig. 2 Genetic algorithm

Using genetic algorithms to solve FJSP

The crisp job shop problem is a paradigm of constraint
satisfaction problem and has been approached using many
heuristic techniques. In particular, genetic algorithms (GAs)
have proved to be a promising solving method (Bierwirth
1995; Mattfeld 1995; Varela et al. 2003).

The structure of a GA for the FJSP is described in Fig. 2.
First, the initial population is generated and evaluated. Then
the GA iterates for a number of generations. In each iteration,
a new population is built from the previous one by applying
the genetic operators of selection, recombination and accep-
tation.

To codify chromosomes we use the decision variable x,
a permutation with repetition, which presents a number of
interesting characteristics (Varela et al. 2005). The quality
of a chromosome is evaluated by the fitness function, which
is taken to be the objective function lexmin(d+

1 , . . . , d+
k ) as

defined in (20).
In the selection phase, chromosomes are grouped into

pairs at random. Each of these pairs is mated to obtain two
offsprings and acceptance consists in selecting the best indi-
viduals from the set formed by the pair of parents and their
offsprings. For chromosome mating we consider the Job
Order Crossover (JOX) (Bierwirth 1995). Given two parents,
JOX selects a random subset of jobs, copies their genes to
the offspring in the same positions as they appear in the first
parent, and the remaining genes are taken from the second
parent so as to maintain their relative ordering. This oper-
ator has an implicit mutation effect. Therefore, no explicit
mutation operator is actually necessary and parameter set-
ting is considerably simplified, as crossover probability is 1
and mutation probability need not be specified.

From a given decision variable x as explained in the sec-
tion “The job shop scheduling problem” we may obtain a
semi-active schedule, meaning that for any operation to start
earlier, the relative ordering of at least two tasks must be
swapped. However, other possibilities may be considered.
For the crisp job shop, it is common to use the G&T algorithm
(Giffler and Thomson 1960), which is an active schedule
builder. A schedule is active if one task must be delayed for
any other one to start earlier. Active schedules are good in

Fig. 3 Extended G&T for triangular fuzzy times

average and, most importantly, the space of active schedules
contains at least an optimal one, that is, the set of active
schedules is dominant (cf. Brucker and Knust 2006). For
these reasons it is worth to restrict the search to this space.
Moreover, the G&T algorithm is complete for the job shop
problem.

In Fig. 3 we propose an extension of G&T to the case
of fuzzy processing times. It should be noted nonetheless
that with uncertain durations we cannot guarantee that the
produced schedule will indeed be active when it is actually
performed (and tasks have exact durations). We may only say
that the obtained fuzzy schedule is possibly active.

It often happens that a sequence of tasks is not compatible
in order to obtain an active schedule, so the decoding algo-
rithm in Fig. 3 has to exchange the order of some tasks. This
new order is translated to the chromosome, for it to be passed
onto subsequent offsprings, thus GA exploiting the so-called
lamarckian evolution. Again, an implicit mutation effect is
obtained.

The GA described above has been successfully used in
González Rodríguez et al. (2007b) for a single objective job
shop to minimise the expected makespan using semi-active
schedules, comparing favourably to a simulated annealing
algorithm from the literature (Fortemps 1997). Also the GA
combined with the extended G&T improves the expected
makespan results obtained by a niche-based GA that fol-
lows the scheme proposed in Sakawa and Kubota (2000) with
matrices of completion times as chromosomes and recombi-
nation operators based on fuzzy G&T.

Experimental results

For the experimental results, we follow Fortemps (1997) and
generate a set of fuzzy problem instances from well-known
benchmark problems: FT06 of size 6 × 6 and LA11, LA12,
LA13 and LA14 of size 20 × 5. This will allow for compar-
isons with the simulated annealing (SA) algorithm proposed
in that paper. From a given crisp processing time x , a sym-
metric fuzzy processing time p(x) is generated as follows:
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Table 1 Results obtained by the GA

Problem Fitness E[ f1] E[ f2] E[ f3]
Best Avg Worst Best Avg Worst Best Avg Worst

E[ f1] 55.05 55.05 55.05 3.60 4.02 4.33 24.60 25.51 25.85

FT06 E[ f2] 58.73 62.40 67.55 0 0 0 17.08 27.52 35.33

(55) E[ f3] 63.18 64.80 70.55 5.83 9.48 15.68 7.05 7.30 10.70

l123 55.05 55.39 56.28 0.55 1.69 3 22.78 24.66 25.43

l213 56.90 58.03 58.90 0 0 0 18.10 20.30 27.15

E[ f1] 1222 1222 1222 165.05 261.10 342.18 62.83 111.74 148.08

LA11 E[ f2] 1257.08 1314.69 1366.08 3.95 5.23 12 109.68 177.53 248.38

(1222) E[ f3] 1223.30 1244.71 1294.98 208.78 308.99 408.85 3.98 7.95 13.85

l123 1222 1222 1222 66.73 72.15 92.78 23.13 50.02 79.33

l213 1260.40 1300.45 1344.80 5.60 7.94 16.55 82.15 119.22 172.80

E[ f1] 1040.13 1040.13 1040.13 140.55 240.54 316.23 41.95 82.80 129.95

LA12 E[ f2] 1080.08 1140.30 1192.80 1.98 6.97 17.43 79.85 155.52 216.88

(1039) E[ f3] 1041.23 1068.73 1149.08 141.23 286.85 441.30 3.10 7.09 10.70

l123 1040.13 1040.13 1040.13 31.38 41.51 56.73 16.95 31.94 61

l213 1081.55 1117.50 1183.80 4.80 12.89 28.40 55.35 98.80 176.35

E[ f1] 1150 1150 1150 183.15 252.10 325.50 40.70 84.05 119.45

LA13 E[ f2] 1189.55 1240.74 1303.83 0 1.35 2.58 101.40 179.02 253.48

(1150) E[ f3] 1153.55 1181.28 1225.05 236.15 321.04 400.65 3.50 5.75 7.40

l123 1150 1150 1150 57.78 83.48 137.18 28.05 50.12 92.35

l213 1183 1191.63 1204.65 0 2.42 5.20 73.70 96.03 143.65

E[ f1] 1292 1292 1292 230.95 328.89 404.20 81.55 150.73 235.90

LA14 E[ f2] 1295.80 1339.04 1402.30 7.25 17.67 31.95 95.60 194.73 273

(1292) E[ f3] 1292.65 1310.67 1350.75 249.35 365.62 446.15 4.30 8.35 14.55

l123 1292 1292 1292 39.4 49.55 78.35 45.96 77.09 126.75

l213 1297.80 1308.28 1360.20 3.65 10.17 29.2 51.05 86.51 170.10

the modal value is p2 = x and p1, p3 are random values,
symmetric w.r.t. p2 and generated so the TFN’s maximum
range of fuzziness is 30% of p2. To generate due dates, we
use a method proposed in González Rodríguez et al. (2006).
For job Ji , let ιi = ∑m

j=1 p2
i j be the sum of most typical

durations across all its tasks, for a given task θi j , let ρi j =
∑

r �=i,s �= j :νrs=νi j
p2

r,s be the sum of most typical durations
of all other tasks requiring the same machine as θi j , and let
ρi = max j=1,...,m ρi j be the maximum of such values across
all tasks in job Ji . Then, the due date Di is a random value
from [ιi + 0.5ρi , ιi + ρi ]. In total, ten instances of fuzzy job
shop are generated from each original benchmark problem.

Given the three fuzzy goals f1 = Cmax , f2 = Tmax and
f3 = Imax , we consider five objective functions: three sin-
gle-objective functions given by the expected values E[ f1],
E[ f2] and E[ f3] and two multiobjective functions that result
from incorporating two different priority structures in expres-
sion (20). The first multiobjective function l123 corresponds
to the priority structure defined by ρ(i) = i , that is, the most

prioritary goal is the makespan f1, then the tardiness f2 and,
finally, the idleness f3. The second objective function l213

corresponds to ρ( f1) = 2, ρ( f2) = 1, ρ( f3) = 3, i.e. the
most prioritary goal is to minimise tardiness, and the make-
span becomes the second goal. These hierarchies correspond
to probably the most common objectives in the job shop lit-
erature, namely minimise makespan or maximise due-date
satisfaction.

For each problem instance and objective function, the GA
is run 30 times with population size 100 for 200 generations.
To fix the target value b1 for the expected makespan, we use
the experience gained using E[ f1] as single objective and
set b1 equal to the average value of E[ f1] across 30 runs of
the GA. Target values for expected tardiness and idleness are
in all cases b2 = b3 = 0. Table 1 shows a summary of the
results: for each fitness function we measure E[ f1], E[ f2]
and E[ f3] for the obtained schedule and compute the best,
average and worst of these values across the 30 executions
of the GA and the 10 problem instances generated from the
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same original problem. The optimal makespan value for the
original crisp problem is also shown between brackets, as
it provides a lower bound for the expected makespan of the
fuzzified version (Fortemps 1997).

From the results in Table 1, it is clear that the multiobjec-
tive versions with l123 and l213 behave similarly to the corre-
sponding single-objective ones, E[ f1] and E[ f2], regarding
their most prioritary goal. Besides, they improve consider-
ably on the remaining goals. Indeed, l123 and E[ f1] obtain
identical makespan values in all problem instances except
those stemming from FT06, where the relative difference
with respect to the expected makespan lower bound (55)
is less than 1% in average. The expected tardiness values
with l123 are better than with E[ f1] in all cases. Clearly,
minimising the makespan does not always imply minimis-
ing tardiness. If we consider the relative values of E[ f2]
with respect to the lower bound of the expected makespan
(as a means of comparing tardiness values across different
problem instances) we see that l123 obtains an average reduc-
tion of 4.24% in FT06 instances and of 17.73% in LA prob-
lem instances. Regarding expected idleness, l123 improves
in average 1.55% for FT06 instances and 4.65% for LA
instances (again, relative to the lower bound for the expected
makespan). If we compare l213 to E[ f2], expected tardiness
is equal for FT06 instances and only 0.8% worse in average
for LA instances, while expected makespan improves in aver-
age 7.94 and 2.5% for FT06 and LA instances, respectively.
Expected idleness also improves in both families, with val-
ues 13.13 and 6.46% better in average. This illustrates that,
despite being the last goal, Imax is indeed taken into con-
sideration in the optimisation process when l123 and l213 are
used. Of course, being the last prioritary goal in both cases,
it is natural that the expected idleness values for l123 and l213

are not as good as those obtained with E[ f3].
Notice that the expected tardiness improvement for l123

is greater in LA problems than in FT06 instances. This is
not surprising since tardiness values obtained with E[ f1] for
FT06 are already close to target values. This is not the case
for LA instances, where there is greater room for improve-
ment. The same explanation holds for makespan improve-
ment when using l213 instead of E[ f2], which is greater for
FT06 instances than for LA ones. Notice as well that com-
parisons between different multiobjective functions do not
make sense, as they model different priority requirements.

Let us now compare the GA using l123 with the single-
objective SA algorithm from Fortemps (1997). In that work,
ten problem instances were also generated from the same
original benchmark problems with the same method but using
6-point fuzzy intervals, a particular case of which are TFNs.
Table 2 contains expected makespan results for both meth-
ods. It shows the best, average and worst solutions obtained
by the GA with l123 across the ten instances generated from
the same crisp problem, together with the results reported in

Table 2 Comparison of results for E[Cmax ]
Problem E[ f1] and SA l123 and GA

Best Avg Worst Best Avg Worst

FT06 55.02 55.2 56.01 55 55.05 55.25

LA11 1222 1222 1222 1222 1222 1222

LA12 1041 1046.81 1056.35 1039 1040.13 1043.25

LA13 1150 1155.07 1181.76 1150 1150 1150

LA14 1292 1292 1292 1292 1292 1292

Table 3 Results for the a priori semantics

Problem % E[ f1] l123 E[ f2] l213

FT06 M E 0.95 1.53 15.29 5.68

F 0.00 0.00 0.00 0.00

LA11 M E 0.03 0.12 6.28 5.16

F 4.62 0.00 0.41 0.00

LA12 M E 0.07 0.23 9.72 6.18

F 3.48 0.00 0.78 0.00

LA13 M E 0.07 0.15 7.40 3.61

F 2.68 0.30 0.85 0.00

LA14 M E 0.02 0.10 3.14 1.97

F 3.40 0.00 1.37 0.00

Fortemps (1997). In the section “Using genetic algorithms to
solve FJSP” we already mentioned that the GA optimising
only E[Cmax ] compared favourably with the SA algorithm.
Table 2 shows that this is also the case for the multiobjective
function l123 with makespan as its most prioritary goal.

Finally, Table 3 presents the obtained values of the perfor-
mance measures M E and F based on the a posteriori seman-
tics presented in the section “A posteriori semantics of fuzzy
schedules”. They are average values across the ten problems
of a same family, rescaled as percentage values, obtained
with different objective functions: two single-objective func-
tions corresponding to makespan and tardiness and the two
multiobjective functions l123 and l213 where the most prior-
itary goal is, respectively, the makespan and the tardiness.
The results for the a posteriori semantics, i.e., the behaviour
of the task processing order on possible realisations of task
durations, coincide with the results for the expected objec-
tive values in Table 1 and further support the correspond-
ing analysis: the multiobjective versions with l123 and l213

behave similarly to the corresponding single-objective ones,
E[ f1] and E[ f2], regarding their most prioritary goal, whilst
improving on the secondary goal. If we compare the multiob-
jective function l123 to E[ f1], we see that the M E increases
in average less than 0.2%, whilst F is considerably reduced.
In fact, F becomes null in all cases except LA13, where it
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goes from 2.68 to 0.3%. Comparing l213 to E[ f2], the mul-
tiobjective version clearly outperforms the single objective
one: not only do relative makespan errors M E improve con-
siderably (up to 10%), but due-date fulfilment is also better
or equal in all cases. In fact, in all cases but one the a-pos-
teriori schedules obtained with multiobjective optimisation
fully satisfy the due dates. There seems to be a clear synergy
effect among different goals in the multiobjective approach.

Conclusions and future work

We have considered a job shop problem with uncertain dura-
tions. Such uncertainty is modelled using TFNs and the goal
is to find a task processing order that yields a feasible sched-
ule optimising several objectives, for instance, fuzzy make-
span, fuzzy tardiness and fuzzy idleness. We have proposed
to formulate the multiobjective problem as a fuzzy goal pro-
gramming model according to a generic priority structure
and target levels established by the decision maker, using the
expected value of the fuzzy quantities. As solving method, a
GA with codification based on permutations with repetitions
has been described. Experimental results on fuzzy versions
of well-known crisp problem instances illustrate the poten-
tial of both the proposed multiobjective formulation and the
GA. This is further illustrated with experimental results that
incorporate the semantics of fuzzy schedules proposed in
González Rodríguez et al. (2008).

In the future, the multiobjective approach will be further
analysed using a more varied set of problem instances. This
wider set of problems should also enable a thorough paramet-
ric analysis of the target values established by the decision
maker. Finally, the GA may be hybridised with other heuris-
tic techniques, such as local search, to increase its potential.
This leads to further studying task criticality for fuzzy dura-
tions.
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