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Abstract Flow time of semiconductor manufacturing
factory is highly related to the shop floor status; however,
the processes are highly complicated and involve more than
100 production steps. Therefore, a simulation model with the
production process of a real wafer fab located in Hsin-Chu
Science-based Park of Taiwan is built for further studying of
the relationship between the flow time and the various input
variables. In this research, a hybrid approach by combin-
ing Self-Organizing Map (SOM) and Case-Based Reasoning
(CBR) for flow time prediction in semiconductor manufac-
turing factory is developed. And Genetic Algorithm (GA) is
applied to fine-tune the weights of features in the CBR model.
The flow time and related shop floor status are collected and
fed into the SOM for clustering. Then, a corresponding SGA-
CBR method is selected and applied for flow time prediction.
Finally, using the simulated data, the effectiveness of the pro-
posed method (SGA-CBR) is shown by comparing with other
approaches.
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Introduction

The flow time of a wafer lot is the total processing time that
the wafer lot is processed through the whole production cycle,
and is equal to the sum of the production lead-time. Predict-
ing the flow time for every lot in a wafer fab is a critical task
not only to the fab itself, but also to its customers. That is
only after the flow time of each lot in a wafer fab is accu-
rately predicted; several managerial goals including internal
due-date assignment, customer due-date confirmation, order
release to each manufacturing process, and ordering decision
support then can be simultaneously achieved.

Traditionally, assigning due date for each order is accom-
plished by the production planning and control staffs based
on their knowledge of the manufacturing processes and shop
floor status. The production planning and scheduling staffs
usually estimate the flow time of each order based on products
manufactured before and schedule its release to the shop floor
for production. Even if the product specification is exactly
the same, the status of the shop floor such as jobs in the sys-
tem, shop loading and jobs in the bottleneck machine may
not be identical to the previous production. As a result, due
date estimated by the production planning and scheduling
staffs might be subject to errors.

As the advance in artificial intelligence (AI), tools in soft
computing have been widely applied in manufacturing plan-
ning and scheduling problems. Chang and Hsieh (2003)
reported that back-propagation neural networks (BPN) could
be more effective than some traditional direct procedures
for due date assignment since neural network can obtain a
probable result even if the input data are incomplete or noisy.
Using a k-nearest-neighbors (KNN) based case-based
reasoning (CBR) approach with dynamic feature weights
and non-linear similarity functions; Chiu et al. (2003) found
that further performance improvement could be made.
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As Sfetsos and Siriopoulos (2004) mentioned, the kind of
industrial applied forecasting researches can be classified in
two categories: the hybrid schemes and combinatorial syn-
thesis of multiple models. Hybrid methodologies are usually
formed by adding a clustering scheme with general forecast-
ing model. The clustering algorithm distinguishes smaller
groups of data that have similar characteristics, and then
the forecasting schemes are developed within each group.
Successful applications of hybrid forecasting schemes can
be found by Chang et al. (2001); Cao (2003), Lin and Xu
(2006). Combinatorial schemes are constructed by the means
of combining individual models to find the better forecast-
ing models. Generally, neural network models, fuzzy logic,
time-series functions, and various evolving algorithms were
widely applied while the combinatorial scheme is developed
(Chiang et al. 2006; Kodogiannis and Lolis 2002; Carpinteiro
et al. 2007; Koutroumanidis et al. 2006; Kalaitzakis et al.
2002; Milidiú et al. 1999; Chen and Burrell 2001; Watson
and Gardingen 1999).

This paper constructs a case-based prediction system with
the aid of a Self-Organizing Map (SOM), Genetic Algorithm
(GA) and CBR, and we call it SGA-CBR in the rest of the
article. The SOM is first used to classify the data, and after the
classification GA is applied to construct the CBR prediction
method by searching for the best weight combination.

The rest of the paper is organized as follows: Sect. “Litera-
ture survey” reviews some related literatures. Section
“Problem statements” briefly describes the case that will be
discussed in this research. Section “A hybrid system
combining SOM and GA-CBR” presents the framework of
the methodology applied in the flow time prediction method.
Section “Experimental results” presents some experimental
results of various models including other compared
methods. Section “Conclusions” discusses the simulated
results from these different models and then the conclusion
is made.

Literature survey

Background of due-date assignment

Song et al. (2002) have mentioned two principles in due-date
assignment problem are based upon analytical and empirical
methods. Analytic methods include queuing networks and
linear or non-linear programming. The due date is assigned
by minimizing a cost function. Bookbinder and Noor (1985)
consider a single machine due date assignment problem with
a customer service level constraint. Job processing times are
modeled as independent exponentially distributed random
variables. Philipoom et al. (1997) use linear programming
and neural networks for setting due dates by minimizing an
asymmetric earliness and tardiness cost function. The ana-
lytic methods above are applied to job shops with stochastic

processing times. However, these do not include assembly
processes.

Network methods such as the critical path method (CPM)
and the program evaluation and review technique (PERT)
have been widely used for planning projects in the design
and manufacturing of capital goods. The effect of interac-
tions of different paths on the completion time is studies by
Sculli (1983); Anklesaria and Drezner (1986); Pontrandolfo
(2000) and Elmaghraby et al. (2000). Yano (1987) consid-
ers stochastic lead-time in a simple two level assembly sys-
tem, with different processing time distributions including
Poisson and Negative binomial. Song et al. (2002) apply a
two-stage network to estimate the assembly activity at each
assembly stage to assign product due dates for complex prod-
ucts with stochastic manufacturing and assembly processing
times.

The second type of due date assignment problem is empir-
ical methods which are based on production planning and
scheduling staffs’ intuitions or working experiences to esti-
mate the flow-time. If the product specification is exactly the
same, a flow time can be derived and the due-date of the
product is assigned. Understandably, the status of the shop
floor such as jobs in the system, shop loading and jobs in
the bottleneck machine may not be all the same. As a result,
the due date estimated could be subject to errors. Cheng and
Gupta (1985) propose several different due-date assignment
approaches: the TWK (total processing time), NOP (number
of operations), CON (constant allowance), and RDM (ran-
dom allowance) rules. As soon as the processing times are
estimated by these rules, the due date is set equal to the
order release time plus the estimated processing time, i.e.,
di = ri + pi where di is the due-date of the i-th order, ri

and pi are the release time and processing time of order i
respectively.

Many other discussions focus on the relationships between
the shop status information and due-dates. Several signifi-
cant effective factors, for example, jobs-in-queue (JIQ), jobs-
in-system (JIS), delay-in-queue (DIQ), and processing plus
waiting times (PPW) were explored. Conway et al. (1967)
revealed that due-date rules incorporating job characteristics
performed better than those ignoring job characteristics.

Approaches in due-date assignment

In recent years, many artificial intelligent and soft computing
methods have been used for decision support and forecast-
ing. Three data mining algorithms including clustering, KNN
and Regression Tree are used to develop nonlinear predictors
applicable to the majority of process lots Backus et al. (2006)
and they are compared with respect to performance in actual
manufacturing data (to predict times for both final and inter-
mediate steps) and for the feasibility to maintain and rebuild
the model.
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As mentioned and Chen (2007a), predicting the output
time of a wafer lot is equivalent to estimating the cycle time
of the wafer lot. There are six major approaches commonly
applied to predicting the output/cycle time of a wafer lot:
(1) MFLC (Multiple Factor Linear Combination): the cycle

time of a lot is estimated with the weighted sum of param-
eters including the following:

(a) Job properties: the total processing time, the number
of re-entrances, and the number of operations of the
lot.

(b) Cycle time and waiting time series: the actual cycle
times, the waiting times, the total processing times,
the numbers of re-entrances, and the numbers of
operations of some (usually three) most recently
completed lots.

(c) Workload information: the number of jobs (work-
in-progress, WIP) in the fab or waiting for the most
bottleneck machines or on the processing route of
the lot, the average fab utilization.

Among the six approaches, MFLC is the easiest, quick-
est, and most prevalent in practical applications. The
major disadvantage of MFLC is the lack of forecasting
accuracy.

(2) PS (Production Simulation): a fab production simula-
tion system continuingly updating the related databases
to maintain enough validity can also be applied to pre-
dicting/simulating the output time of a wafer lot (e.g.
Ragatz and Mabert 1984; Weeks 1979). Theoretically, a
number of replicates of a probabilistic simulation need to
be run to sufficiently consider all uncertain or stochastic
properties and events (e.g. inconsistent human-assisted
operations, unexpected machine downs, etc.), so as to
obtain a more reliable forecast. There are two shortages
of PS: (i) huge amount of data need to be maintained;
(ii) simulation time is often lengthy. Nevertheless, PS
is the most accurate output time prediction approach (if
the related databases are continuing updated to maintain
enough validity), and often serves as a benchmark for
evaluating the effectiveness of another method. PS also
tends to be preferred because it allows for computational
experiments and subsequent analyses without any actual
execution Chang and Lai (2005).

(3) BPN (Back Propagation Networks): many studies have
shown that artificial neural networks (ANN) outperform
traditional methods in time series forecasting by
Foster et al. (1992). The advantages of a BPN include the
tolerance of noises Piramuthu (1991), the speed of appli-
cation, and the capability of simulating complex sys-
tems (such as a wafer fab). Chang et al. (2005) and
Chang and Hsieh (2003) both forecast the output/cycle
time of a wafer lot with a BPN having a single hidden
layer. Compared with MFLC approaches, the average

prediction accuracy measured with the root mean square
errors (RMSE) is considerably improved with these
BPNs. On the other hand, much less time and fewer data
are required to generate an output time forecast with a
BPN than with PS.

(4) CBR (Case-Based Reasoning): Chang et al. (2001) and
Chang and Lai (2005) propose a KNN based CBR
approach with dynamic factor weights and a nonlinear
similarity function for due-date assignment in a wafer
fab, in which the weights of factors (the cycle times of
the previous cases/lots) are proportional to the similar-
ities of the new lot with the previous cases. The CBR
approach outperforms the BPN approach in forecasting
accuracy.

(5) Fuzzy modeling methods: Chang et al. (2005) and Chang
and Liao (2006) modify the first step (i.e. partitioning
the range of each input variable into several fuzzy inter-
vals) of the WM method with a simple GA and propose
the Evolving Fuzzy Rule (EFR) approach to predict the
cycle time of a wafer lot. Their EFR approach outper-
forms CBR and BPN in prediction accuracy. Genetic
techniques have shown to be capable of carrying out a
comprehensive optimization of the parameters. Chang
et al. (2008) present a Neural-Fuzzy model for the flow
time estimation using simulated data generated from a
Foundry Service company. This Neural-Fuzzy model
applies influential factors identified from the shop floor
to estimate the flow time of a new order. The fuzzy neu-
ral network is trained using a back-propagation algo-
rithm to adjust the weight coefficients of the network and
the parameters of the fuzzy membership functions. The
trained network performs better than the CBR method
and a Multi-Layer Perceptrons Neural Network.

(6) Hybrid approaches: Chen (2006, 2007b,c) construct a
FBPN that incorporated expert opinions in forming
inputs to the FBPN. Chen’s FBPN is a hybrid approach
(fuzzy modeling and BPN) and surpassed the crisp BPN
in the efficiency respect. In the respect of prediction accu-
racy measured with the minimal RMSE, the performance
of the FBPN is slightly better than that of the BPN.

To the best of our knowledge, none of the above studies con-
sidered the non-linear feature value distance between an old
case and a new case. Therefore, this paper aims to investi-
gate the effect of GA-based feature weighting together with
a number of non-linear similarity functions.

Problem statements

The basic configuration of the wafer fabrication factory is
the same as a real-world one located in the Science-Based
Park in Hsin-Chu, Taiwan, R.O.C. There are 66 single-server
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Fig. 3 Time series plot of flow time

or multiple-server workstations in the shop floor. The major
wafer manufacturing processes are divided into two sections,
i.e., the front-end process and the back-end process. A flow-
chart of the basic front-end processes is described in Fig. 1.
The production steps are just a step-by-step process. Real
floor shop manufacturing processes are more complicated
with many detailed processing procedures. After the front-
end processes, wafers are fed into the back-end processes. A
simple flowchart of the back-end processes is also shown in

Fig. 2.The time series plot of 300 flow time data is depicted
in Fig. 3 and the pattern of the flow time is not stable in this
plot as the data fluctuates up and down abruptly. The tra-
ditional approach by human decision is very inaccurate and
very prone to fail when the shop status is totally different even
for the same product. This is the motive for this research to
develop an approach to reduce the forecasting error based on
such a non-stationary situation.

A hybrid system combining SOM and GA-CBR

This research first uses a self-organization map (SOM) to
cluster past cases into different groups, and the training cases
in each sub-group are used to train the best weight of each
feature by GA. During the testing process, the most similar
sub-group to the new case will be retrieved by CBR from
case base. A new case is compared to each case within the
selected group in order to find the most similar case to derive
the forecasting flow time of the new case. The framework
of SGA-CBR is described in Fig. 4. Three soft computing
techniques are applied in this research and they include a
SOM, a GA and a CBR tool. SOM is applied to cluster the
historic data; GA is employed to evolve the feature’s weight
of a CBR system. The system is tested on a simulated data
from a fab located in Taiwan and there are totally 300 records
of data that are randomly divided into 240 records of train-
ing data and 60 records of testing data using a 4-fold testing
procedure.

Basically, there are three major processes in SGA-CBR
model: a data pre-processing by SOM, system training and
system testing.

Data pre-processing by SOM

Step 1: Classify the training data by SOM

Fig. 4 The framework of
SGA-CBR model
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In the historic orders, each data collected from the shop
floor will include a flow time which has occurred, i.e., Y , and a
set of features including order quantities (X1), existing order
qualities (X2), average shop workload (X3), average queue
length (X4), the queue length of bottleneck workstation (X5),
and utilization rate of work station (X6), when a new order
arrives. These six features of a new order will be the input
variables to SOM, and SOM will produce output processing
elements similar to neighboring elements. The cases in the
same group would have similar connection weight. Detailed
procedures of the SOM model are described in Appendix A.

After the set of data has been processed by SOM, a new
case (a new order) can be categorized into a pre-defined
group.

System training

Step 2: Initial weights generation
Randomly generate the initial weights W i

j of the j-th fea-
ture in sub-group i .
Step 3: Case retrieving

The system will retrieve the most similar cases from case
base using similarity rule in order to predict the flow time
for a new case. There are two cases in group i , i.e., Ci

m and
Ci

n . The similarity coefficient of these two cases, i.e., Smn , is
calculated as follows:

Smn = Dis
(

Ci
m, Ci

n

)
, ∀n �= m (1)

Dis() is the distance between two cases and Dis() is computed
as follows:

Dis
(

Ci
m, Ci

n

)
=

√√√√
∑

f

W i
j

(
Fm

f − Fn
f

)2
(2)

where Fm
f means the value of the f -th feature of case m.

Thus, Dis(Ci
m, Ci

n) computes the summarized weighted dis-
tance between case m and n.
Step 4: Case reusing

For the set of similar cases retried from the last step, a
KNN procedure is employed to gain more matching cases to
forecast the flow time of the new case. For example, when
k = 5 in the sub-group, the forecasted flow time of new case
is determined by the average flow time of these 5 best match-
ing cases. The parameter k of each sub-group is determined
by trail-and-error. Normally, 5 neighbors will give the best
forecasting results.
Step 5: Error computing

Root of mean square error (RMSE) is adopted to be the
performance measure in this research.

RMSE =
√∑N

l=1 (forecasted value − real value)2

N
(3)

where, N is the total number of cases in the sub-group.
Step 6: Weights adjusting by GA

CBR emphasizes on how to describe and retrieve cases,
and one of the crucial points is the combination of the weight
for each characteristic factor. In this research, GA is applied
to evolve the weight of each feature and a near optimal fea-
ture weight will be generated for each sub-group. To properly
setup the parameters in GA, Taguchi experiment design is
applied in fine-tuning the parameters such as the number of
populations, crossover rate, mutation rate, selection method,
crossover method, mutation method etc. Parameters setting
of GA are listed in following:

In addition, detailed procedures of GA approaches are
listed in Appendix B.
Step 7: Cases and weight of each feature retaining

The best weight combination of each sub-group is retained
for a later testing process.

System Testing
Step 8: New test case retrieving

The same as process above, similarity rule is used to com-
pute the similarity of cases.
Step 9: New testing case reusing

Find the most k similar cases of new case.
Step 10: Forecasted flow time generating

Forecast the flow time of new case from k similar cases.

Experimental results

Data clustered by SOM

The main purpose of data clustering is to reduce the effect
of data noise therefore a more homogenous data set can be
found within each cluster. SOM is applied in this research to
cluster the historic data. The final clustering results by SOM
can be found in Fig. 5, which shows the results of two and
three clusters for these 240 historic simulated data.

It is interesting to observe that the data within each clus-
ter may be different. As the number of clusters increase, the
number of data within each cluster will decrease. It should
be avoided when the number of clusters is too large, e.g. 10,
and then there are too small numbers of data within each
cluster. The SGA-CBR model may not be able to come out
with good forecasting results since the model is not gen-
eral enough to cover all different cases. It is expected that
the number of clusters might influence the forecasting result.
Therefore, the number of clusters will be further discussed
in the next sub-section.

SGA-CBR in different clusters

The forecasted results of SGA-CBR model under different
number of clusters are shown in Fig. 6 and the parameters
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Fig. 5 The two and three clustered results by using SOM

setting in GA are shown in Table 1. According to Fig. 6,
when the number of clusters is increasing, the forecasted
data will be more fitted into the real data. Part of the reasons
is because the data are more homogeneous within these clus-
ters and the predicator generated using these data in the clus-
ter are more representative. Thus the overall performance
of the SGA-CBR is greatly improved. This phenomenon is
also observed in Fig. 7, i.e., Mean Absolute Percentage Error
(MAPE) and RMSE performances of SGA-CBR model in
different number of clusters. The errors of the forecasted
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Fig. 7 MAPE and RMSE performances of SGA-CBR in different
number of clusters

Table 1 Parameters settings in GA

Parameters Setting

Selection method Binary tournament
Crossover method Single point crossover
Crossover rate 0.85
Mutation method Swap mutation
Mutation rate 0.1
Reproduction Elitism strategy
Population size 30
Stopping criteria 1,000

results quickly decreased and converged when the number
of clusters increased from 2 to 5. It shows that the data
segmentation does take effect and the forecasting power of
the clustered data is increasing. However the optimal deci-
sion of the number of clusters is still open to the academics
since there are no exact theorems proved in explaining this
phenomenon.

According to Fig. 7, the data segmented in 5 clusters pro-
vides the best forecasting accuracy and it is selected as the
best number of sub-groups for SGA-CBR in the research.
As shown in Table 2, i.e., the performances of SGA-CBR
in MAPE and RMSE under different number of clusters are
listed. Once again, it is observed that when the number of
clusters is larger than 3, the accuracy of the proposed model
will converge. There is no obvious improvement when the
number of clusters is further increased. Actually, when the

Fig. 6 SGA-CBR with
different number of cluster
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Table 2 The performances of SGA-CBR in MAPE and RMSE under
different number of clusters

Number of cluster 2 3 4 5

MAPE (%) 7.44 5.18 5.01 4.73
RMSE 312.5231 218.3532 218.6860 208.2776

number of clusters reaches certain limit, e.g. 7, the accuracy
will drop instead. The reason is that the data sample in each
cluster is too small therefore the generality of the forecasting
model generated from each cluster is decreasing. Therefore,
the number of clusters will be 5 after experimental tests.

Comparison with other methodology

Other forecasting methodologies are compared with SGA-
CBR in this research, such as general CBR, BPN, GA and
fuzzy rule based method (GA&WM), GA and CBR hybrid
method (GA-CBR), and Fuzzy rule based SOM method
(SOM&WM). The detail of these methods please refers to
the previous researches (Chang et al. 2001; Chang and Hsieh
2003; Chang and Lai 2005; Chang et al. 2005; Chang and
Liao 2006).

By observing Table 3, SGA-CBR proposed in this research
performs superior to other methods that performed well in
previous research. The reason why SGA-CBR of this research
outperforms others is because GA can fine-tune the weights.
CBR is one of the famous forecasting methods while resolv-
ing this kind of forecasting problem with multiple features
considering. By adopting the Euclidean distance to retrieve
the similar cases, CBR is an effective and efficient method.
Otherwise, in the real world, each feature may play a differ-
ent important role. It means we should take different impor-
tance of each feature into consideration; thus, we use GA to
search the best weights combination of features in our CBR
process.

In the comparative study, the overall average RMSE of
SGA-CBR is 208, the overall average RMSE of other meth-
ods can be found in Table 3. Hence the results of our lim-
ited comparative studies show that the proposed SGA-CBR
method produces the lowest RMSE value.

Table 3 Performance comparisons of different forecasting models

Methodology RMSE Improving rate (%)

CBR 538 −
BPN 480 10.78
GA&WM 479 10.97
GA-CBR 391 27.32
SOM&WM 320 40.52
SGA-CBR 208 61.34

Conclusions

In this paper, a novel SGA-CBR model is presented to help
semiconductor manufacturing companies in forecasting the
due date of a new coming order. Semiconductor manufactur-
ing companies can follow this due date to make plans and to
coordinate related production activities thereafter.

The contributions of this research include the following:

1. An SOM neural network is employed to cluster the his-
toric data into sub-clusters. Then a new case, i.e., a new
coming order, can be categorized into a pre-defined clus-
ter.

2. A SGA-CBR model is then generated using data within
the selected cluster with a more homogeneous data set.
The experimental results demonstrate the effectiveness
of the SGA-CBR model that is superior to other earlier
approaches.

This proposed approach in flow time prediction might be
interested to other academic researchers and industrial engi-
neers and managers:

Data noise and high dimensionality are two notorious
problems in flow time prediction or time series data pro-
cessing. These two problems will influence the forecasting
accuracy significantly however there seems to be no effective
methods in handling these issues in traditional approaches.
As observed in recent researches, data preprocessing seems
to be very important in selecting significant variables and
clustering the data into more homogeneous classes. It is a
very interesting subject to be further investigated since there
is no exact theorem explaining the effect of number of clus-
ters to the forecasting accuracy. In addition, a novel hybrid
model by combining different soft-computing tools such as
fuzzy sets, neural networks, and evolutionary algorithms can
be further studied in the near future.

Appendix A: Detailed procedures of SOM model

The detailed procedures of SOM model are described as fol-
lows:
Step 1: Initialize each neuron’s weight wi = [wi1, wi2,

. . . , wi j ]T ∈ � j . In this research, neuron weights are ini-
tialized by drawing random samples from input dataset.
Step 2: Present an input pattern x = [x1, x2, . . . , x j ]T ∈ � j .
In this case, input pattern is a series of variables represent-
ing current shop floor status. Calculate the distance between
pattern x, and each neuron weight wi , and therefore, identify
the winning neuron or best matching unit c such as

‖x − wc‖ = min
i

{‖x − wi‖} (4)

Euclidian distance is employed as the distance metric.
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Step 3: Adjust the weights of winning neuron c and all neigh-
bor units

wi (t + 1) = wi (t) + hci (t)[x(t) − wi (t)] (5)

where i is the index of the neighbor neuron and t is an inte-
ger, the discrete time coordinate. The neighborhood kernel
hci (t) is a function of time and the distance between neigh-
bor neuron i and winning neuron c. hci (t) defines the region
of influence that the input pattern has on the SOM and con-
sists of two parts: the neighborhood function h (‖‖ , t) and
the learning rate function α (t), in Eq. 6.

hci (t) = h(‖rc − ri‖ , t)α(t) (6)

where r is the location of the neuron on two-dimensional map
grids. In this research we used Gaussian Neighborhood Func-
tion. The learning rate function α(t) is a decreasing func-
tion of time. The final form of the neighborhood kernel with
Gaussian function is as follows:

hci (t) = exp

(‖rc − ri‖
2σ 2(t)

)
α(t) (7)

where α(t) defines the width of the kernel.
Step 4: Repeat steps 2 and 3 until the convergence criterion
is satisfied.

Appendix B: Detailed procedures of GA

Detailed procedures of GA in finding the best combination
of feature’s weight are described as below:
Step 1: Encoding

The most common encoding method for gene is binary
number used as the original calculating system by computer.
Each factor influencing flow time is assigned a weight with
the combination of eight binary numbers shown as in Fig. 8.
Step 2: Generate the initial population

Initial weights are randomly generated between 0 and 1
and these initial solutions form the first population. Operators
of GA will be applied on these chromosomes later.
Step 3: Compute the fitness value

The original concept of fitness is “the larger the better”,
because solutions with larger fitness tend to propagate to
the next generation. The objective function for the flow time
prediction problem is to find RMSE of these testing data

Fig. 8 Weights with combination of binary numbers

which is “the smaller the better.” Therefore, the fitness func-
tion for a set of training cases, i.e., k, is calculated as follows:

fit =
√∑k

i=1 (forecasted value − real value)2

k
(8)

Step 4: Reproduction/selection
The roulette wheel selection method is applied in this

research and the selection probability of each chromosome
represents the area proportion of each string on the roulette
wheel. Therefore, a chromosome with larger fitness function
value will have a greater probability to be selected for cross-
over. The probability p(x) of each chromosome x will be
defined below:

p (x) = fit(x)∑
fit(x)

. (9)

Step 5: Crossover
After the parameter design, single point crossover method

is applied in the research.
Step 6: Mutation

After the parameter design, swap mutation method is
applied in the research.
Step 7: Elite strategy

Elite strategy is applied in this research in order to have
greater probability for retaining good chromosomes into the
next generation. 30 % of parent chromosomes and 70% off-
spring chromosomes are used in this research.
Step 8: Replacement

The new population generated by the previous steps
updates the old population.
Step 9: Stopping criteria

If the number of generations equals to the maximum gen-
eration number, i.e., 1,000, then stop, otherwise go to step 3.
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