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Abstract Control chart patterns (CCPs) are widely used to
identify the potential process problems in modern manufac-
turing industries. The earliest statistical techniques, including
X̄ chart and R chart, are respectively used for monitoring
process mean and process variance. Recently, pattern recog-
nition techniques based on artificial neural network (ANN)
are very popular to be applied to recognize unnatural CCPs.
However, most of them are limited to recognize simple CCPs
arising from single type of unnatural variation. In other words,
they are incapable to handle the problem of concurrent CCPs
where two types of unnatural variation exist together within
the manufacturing process. To facilitate the research gap,
this paper presents a hybrid approach based on independent
component analysis (ICA) and decision tree (DT) to iden-
tify concurrent CCPs. Without loss of generality, six types of
concurrent CCPs are used to validate the proposed method.
Experimental results show that the proposed approach is very
successful to handle most of the concurrent CCPs. The pro-
posed method has two limitations in real application: it needs
at least two concurrent CCPs to reconstruct their source pat-
terns and it may be incapable to handle the concurrent pat-
tern incurred by two correlated process (“upward trend” and
“upward shift”).
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Introduction

SPC/EPC (statistical/ engineering process control) tech-
niques play an important role to monitor the process situ-
ation and to maintain consistent product quality in modern
manufacturing industry. Simply speaking, observed variation
of quality characteristics results from either natural variation
(common cause) or unnatural variation (assignable cause).
Natural variation always exists in the manufacturing process
regardless of the fact that how well the product is designed
and how adequately the process is maintained. On the con-
trary, unnatural variation are often associated with specific
assignable causes and lead to various types of anomaly pat-
terns. These anomaly patterns often contain valuable infor-
mation closely relevant to process parameters and process
changes. Two quantities are commonly monitored in prac-
tice, including the mean and the range of the sample. The
earliest techniques developed by Shewhart involve X̄ chart
(used for monitoring process mean) and R chart (used for
monitoring process variance). Once the sources of assign-
able causes are correctly identified, quality practitioners can
remove them and bring the abnormal process back to the nor-
mal condition (natural variation). Sometimes, control charts
are inappropriately used without sufficient prior knowledge
or historical data. Moreover, control charts also show poor
performance to recognize different types of unnatural pat-
terns (Guh and Tannock 1999a,b; Yang and Yang 2002; Wang
and Kuo 2007).

Similar to most researchers (Cheng 1997; Guh and Tan-
nock 1999a,b; Guh and Hsieh 1999; Guh and Shiue 2005;
Pham and Oztemel 1994; Pham and Wani 1997; Yang and
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Fig. 1 Simple CCPs ((a) cyclic pattern, (b) systematic pattern, (c)
upward shift, (d) downward shift, (e) upward trend, and (f) downward
trend)

Fig. 2 Concurrent CCPs ((a) cyclic+upward shift, (b) cyclic+upward
trend, (c) systematic+upward shift, (d) systematic+upward trend, (e)
cyclic+systematic, (f) upward trend+upward shift)

Yang 2002, 2005; Yousef 2004; Wang and Kuo 2007), six
common types of simple CCPs are illustrated in this research
(see Fig. 1) and their assignable causes are listed below. With-
out loss of generality, six concurrent CCPs are also generated
in Fig. 2.

(1) Trend patterns. A trend can be defined as a continuous
movement in either positive or negative direction. Pos-
sible causes are tool wear, operator fatigue, equipment
deterioration, and so on.

(2) Shift patterns. A shift can be defined as a sudden change
above or below the average of the process. This change
may be caused by an alternation in process setting,

replacement of raw materials, minor failure of machine
parts, or introduction of new workers, and so forth.

(3) Cyclic patterns. Cyclic behaviors can be observed by
a serial of peaks and troughs occurred in the process.
Typical causes are the periodic rotation of operators,
systematic environmental changes or fluctuation in the
production equipment.

(4) Systematic patterns. The characteristic of systematic
patterns is that a point-to-point fluctuation is systemati-
cally occurred. It means a low point is always
followed by a high point and vice versa. Possible causes
include difference between test sets and difference
between production lines where product is sampled in
rotation.

(5) Concurrent (mixture) patterns. A mixture is usually a
combination of observations from separate disturbance
or various types of anomalies. Possible causes include
items from different suppliers, machines, or workers.

The above-mentioned studies are only capable to handle
anomaly CCPs composed of single unnatural variation. Very
limited work (Guh and Tannock 1999b; Yang and Yang 2005;
Chen et al. 2007; Wang et al. 2007) has been reported on
the identification of concurrent process patterns or signals.
In practice, concurrent (mixture) process patterns composed
of composite unnatural variation may exist and usually result
in serious performance degradation for pattern classification.
For instance, when the concurrent pattern occurs within the
manufacturing process, most existing schemes will force the
input to be classified into one of those predefined prototypes
that is most similar to the input. Unfortunately, single anom-
aly type cannot represent the property of the mixture pattern
and further tracking of its composite assignable causes also
becomes impossible. Hence, the important clue to improve
complex process problems via the concurrent CCP is easily
missing or seriously biased.

Besides, all of above-mentioned papers do not consider
the separation of concurrent CCPs and further reconstruc-
tion of their source patterns. In these cases, two concurrent
CCPs composed of the same types of source patterns may be
categorized into different results. In other words, the perfor-
mance of pattern classifier is not robust with respect to dif-
ferent mixing coefficients of source patterns. To facilitate the
research gap, this paper presents a hybrid approach that incor-
porates independent component analysis (ICA) and decision
tree (DT) to solve the challenging problem. The remainder of
this paper is structured as follows. Section “Previous work on
CCP recognition” briefly reviews the previous work of CCP
recognition and Section “The Proposed techniques” presents
the proposed hybrid method. Computer synthetic results are
conducted in Section “Computer synthetic results” and con-
clusions are drawn in Section “Conclusions”.
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Previous work on CCP recognition

Traditionally, there are two basic approaches developed in
fault detection system: a model-based (so-called parametric)
approach and a feature-based approach (Jin and Shi 2001).
In the former approach, observations are assumed to follow
a specific process distribution and hence sufficient data sam-
ples need to check the distribution characteristics in advance.
Obviously, sufficient historical information of fault models
is usually unavailable at the beginning of the manufactur-
ing process. On the other hand, a feature-based approach
is more flexible to deal with a complex process problem,
especially when no prior information is available. Features
could be obtained in various forms, including principal com-
ponent analysis (Chen and Liu 2001; Yoon and MacGregor
2004), independent component analysis (Kano et al. 2003;
Lee et al. 2004), and Fourier or wavelet transformation (Jin
and Shi 2001; Yousef 2004; Chen et al. 2007). Transformed
features cannot only reduce the size of input dimension but
also decompose the complex functional relationship between
time-series data and the associated manufacturing process.
However, they are very difficult to be understood in practice
and also need long computation.

Recently, fast computational developments in artificial
intelligence or expert systems also motivate researchers to
adopt the artificial neural network (ANN) based CCP clas-
sifier. ANN can be simply classified into two categories,
including supervised ANN and unsupervised ANN. Most
researchers (Cheng 1997; Chiu et al. 2003; Cook and Chiu
1998; Guh and Tannock 1999a,b; Guh and Hsieh 1999; Pham
and Oztemel 1994; Yang and Yang 2002) use supervised par-
adigms, including multi-layer perceptron (MLP), radial basis
function (RBF), and learning vector quantization (LVQ), to
classify different types of CCPs. Other researchers (Guh and
Shiue 2005; Pacella et al. 2004; Wang et al. 2007; Wong et al.
2006) use unsupervised neural networks, involving self orga-
nized maps (SOM) and adaptive resonance theory (ART), to
fulfill the same objective. Due to its black-box property, the
main criticism of using ANN is that its topology and structure
cannot be systematically determined. In addition, the speed
of adjusting network configuration for supervised ANN is
quite slow and hence infeasible for on-line quality practitio-
ners. Recently, a decision tree (DT) based classifier is also
popular for the problem of CCP recognition (Pham and Wani
1997; Gauri and Chakraborty 2006, 2007; Guh 2005; Wang
et al. 2008).

Furthermore, some hybrid methods are proposed to solve
specific problems. Wong et al. (2006) use high-order statisti-
cal features with SOM network for the problem of
multi-sensor condition monitoring. Lu et al. (2008) discuss
the development of ANN with independent component anal-
ysis to identify the disturbance and recognize shifts in cor-
related process. Wang and Kuo (2007) incorporates wavelet
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Fig. 3 The proposed hybrid approach

filtering and robust fuzzy clustering to enhance the tolerance
capability of process variance deviation. Most of the above-
mentioned studies are capable to recognize single type of
unnatural CCP. By contrast, the studies of concurrent CCPs
incurred by two types of unnatural variation are relatively
limited (Guh and Tannock 1999a,b; Yang and Yang 2005;
Chen et al. 2007; Wang et al. 2007).

Guh and Tannock (1999b) uses a back-propagation ANN
to recognize concurrent CCPs. Chen et al. (2007) also presents
a hybrid approach by integrating wavelet method and back-
propagation ANN for on-line recognition of concurrent
CCPs. Wang et al. (2007) proposes a hybrid system that incor-
porates wavelet filtering and ART (adaptive resonance the-
ory) to discover concurrent process signals. Instead of using
ANN based classifier, Yang and Yang (2005) use a statistical
correlation approach to speed up the recognition of concur-
rent CCPs. In this study, a hybrid approach (see Fig. 3) is
proposed for the recognition of concurrent CCPs. For the
purpose of fast computation, simple CCP shape features (see
Section “Features of simple CCP”) are used in this study for
the input of DT.

The proposed techniques

The proposed approach consists of three main steps: (1) the
similarity measure between the input and the reference com-
posed of simple CCPs is used to determine that the input
belongs to “simple” anomaly or “concurrent” anomaly, (2)
if the input belongs to the concurrent type, an ICA based
separation will be applied and its source patterns can be
reconstructed, (3) use of DT classifier with appropriate CCP
features to identify its specific anomaly type. Based on the
inner product, AI-Ghanim and Ludeman (1997) evaluated the
correlation between the input and various reference vectors.
Similarly, Yang and Yang (2005) use the statistical correla-
tion coefficient (see Eq. 1) to determine the anomaly type of
the input pattern.

corr =
∑n

t=1(xt − x̄)(yt − ȳ)
√∑n

t=1(xt − x̄)2
√∑n

t=1(yt − ȳ)2
, (1)
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where xt , x̄(yt , ȳ) respectively denotes the input (reference)
vector and its mean and n is the total length of the observ-
ing window. This study also utilizes the statistical correlation
coefficient as the similarity measure between the input and
various reference prototypes.

Features of simple CCP

Some statistical features such as mean, standard deviation,
skewness, kurtosis, and autocorrelation, are adopted in
Hassan et al. (2003) to improve the performance of ANN
based classifier. Specifically, skewness provides the infor-
mation regarding to the degree of asymmetry and kurtosis
measures the relative peakness or flatness of its distribution.
Their mathematical forms are respectively shown below.

mean =
∑n

t=1 xt

n
, (2)

std =
√∑n

t=1(xt − mean)2

n
, (3)

skew =
∑n

t=1(xt − mean)3

n(std)3 , (4)

kurt =
∑n

t=1(xt − mean)4

n(std)4 , (5)

where n is and xt are similarly defined above.
Due to lack of intuitive meaning, statistical features are

difficult to be applied for the input of DT to identify anom-
aly CCPs (Pham and Wani 1997). By observing their shape
characteristics of CCPs, five CCP features are selected and
used as our discriminators in this paper, including LS-SLP

Fig. 4 The least-square regression of simple CCPs

Fig. 5 The mean regression of simple CCPs

(the slope of the least-square regression), LS-ERR (the sum of
the least-square error), MN-ERR (the sum of the mean error),
LS-CROS (the number of crossings between the original pat-
tern and its least-square regression), and MN-CROS (the
number of crossings between the original pattern and its mean
regression). Their mathematical forms are shown from Eq. 6
to 8 and detail explanation is supplied later. Figure 4 shows
the generation of six simple CCPs and their least-square
regression (see the solid lines) and Fig. 5 shows their mean
regression (see the dashed lines). For simplicity, the labels of
simple CCPs shown in two figures are denoted as: (a) system-
atic pattern, (b) cyclic pattern, (c) upward shift, (d) downward
shift, (e) upward trend, and (f) downward trend.

L S − SL P =
∑n

t=1(t − t̄)(xt − x̄)
∑n

t=1(t − t̄)2
, (6)

L S − E R R =
n∑

t=1

(xt − x̂L S), (7)

M N − E R R =
n∑

t=1

(xt − x̂M N ), (8)

where x̂LS and x̂MN respectively denote the estimated signal
based on least-square/mean regression.

(1) LS-SLP: the slope of the least-square line representing
the pattern. The magnitude of the slope for both natural
and cyclic patterns is approximately zero, while that for
trend or shift patterns is obviously greater than zero.
Therefore, LS-SLP may be a good candidate to differ-
entiate natural and cyclic patterns from trend and shift
patterns.
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(2) LS-CROS: the number of the least-square crossings. Not
surprisingly, LS-CROS is highest for natural and trend
patterns, intermediate for shift patterns and lowest for
cyclic patterns. Similarly, LS-CROS may be suitable to
separate natural and trend patterns from other patterns.

(3) MN-CROS: the number of the mean crossings.
MN-CROS is lowest for shift patterns, intermediate for
cyclic and trend patterns and highest for natural pat-
terns.

(4) LS-ERR: the sum of the least-square regression error.
Natural and trend patterns have lowest least-square
error, shift patterns have intermediate least-square error
while cyclic patterns have highest least-square error.

(5) MN-ERR: the sum of the mean regression error. Natural
patterns have lowest mean error; cyclic and trend pat-
terns have intermediate mean error while shift patterns
have highest mean error.

Very interestingly, the LS-SLP of both systematic pattern
and cyclic pattern is approximately zero and much smaller
than the absolute value of other four types of CCPs. Besides,
the LS-CROS is the largest for the systematic pattern but the
smallest for the cyclic pattern. The MN-CROS is the smallest
for the shift pattern. And both LS-ERR and MN-ERR are the
smallest for the trend pattern. Intuitively, these five selected
features have more or less discriminative power for CCP clas-
sification.

Overview of independent component analysis (ICA)

A long-standing problem in statistics is how to find a good
representation of multivariate data. Representation here
means that some data transformation may be needed to make
the dataset more visible. Principal component analysis (PCA)
and its closely related Karhunen–Loève (KL) transform are
two classic techniques in statistical data analysis, feature
extraction, and data compression. PCA is also used for dimen-
sion reduction since it can effectively extract linear structure
from high-dimensional data by projecting the data onto a
lower dimensional subspace which contains most of the var-
iance of the original data. However, PCA has serious draw-
backs when the inherent data structure is nonlinear. To solve
this problem, many methods have been developed for finding
hidden/ latent factors that underlie sets of random variables
or measurements, including nonlinear PCA or ICA. The con-
nection between PCA and ICA involve decorrelation, whit-
ening, and sphering (Hyvärinen et al. 2001).

ICA could be looked from a different viewpoint of find-
ing a good representation of the dataset and this was closely
related to the interesting “cocktail-party” problem or
so-called “blind source separation” in the field of signal pro-
cessing (Hyvärinen and Oja 2000). Its main idea is to utilize
some information or statistical properties of the concurrent

signals to estimate their mixing coefficients. The cock-tail
party problem can be simply described as follows. Imag-
ine that you are in a room where two people are speaking
simultaneously. Two microphones held in different locations
give you two recorded time signals denoted by x1(t) and
x2(t). Each of these recorded signals is a weighted sum of
the source signals emitted by two speakers, which can be
denoted by s1(t) and s2(t). For convenience, we can express
this scenario as the following linear equations:

x1(t) = a11s1(t) + a12s2(t), (9)

x2(t) = a21s1(t) + a22s2(t), (10)

where a11, a12, a21, a22 are mixing parameters that depend
on the distances of the microphones from the speakers. For a
realistic industry application, two microphones can be
replaced by two measuring sensors and different speakers
represent various types of anomaly process pattern. It would
be very nice if you could now estimate two original source
signals using only the recorded mixture signals. If you know
the mixing parameters, we can easily solve the problem.
However, the problem is considerably more difficult in prac-
tice since you do not know the mixing parameters in advance.

For convenience, it is assumed that p measured variables
x1, x2, . . . , x p can be expressed as a linear combination of
m unknown independent components s1, s2, . . . , sm (where
m ≤ p). The relationship between them can be simplified as
follows.

X = AS + E, (11)

where X = [x(1), x(2), . . . x(n)] ∈ R p×n is the data matrix,
A = [a1, a2, . . . , am] ∈ R p×m is the mixing matrix, S =
[s(1), s(2), . . . , s(n)] ∈ Rm×n the independent component
matrix, E ∈ R p×n is the residual or error matrix, and n is
the dimension of measured data samples. When the prop-
erty (p = m) holds, the mixing matrix will become a square
matrix. The basic idea of ICA is to estimate both the mixing
matrix A and the independent components S from only the
observed mixture data X . Alternatively, if we can find a
demixing matrix W ∈ Rm×p, the reconstructed source sig-

nals
�

S ∈ Rm×n can be represented as:

�

S = W X, (12)

However, to estimate the demixing matrix without any prior
knowledge of the mixing process will be quite difficult. One
approach to solve this problem is using some information on
the statistical independence of the source signals to estimate
the mixing parameters.

For simplicity, we assume p equals m from now on. The
initial step in ICA is whitening, or so called sphering, which
removes all cross-correlation between random variables.
Consider a p dimensional random vector x(t) at the kth
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sample, the eigen-decomposition of the covariance Rx could
be given by:

Rx = E(x(k)x(k)T ) = UDUT , (13)

where E represents the expectation operator, D is a diagonal
matrix composed of its eigenvalues, and U is an orthogonal
matrix composed of its eigenvectors .

And the whitening transformation is expressed as

z(k) = Qx(k), (14)

where Q = D−1/2U T . One can easily verify that Rz =
E(z(k)z(k)T ) becomes an identity matrix. After the whiten-
ing transformation, we have the following:

z(k) = Qx(k) = Q As(k) = Bs(k), (15)

where B is an orthogonal matrix verified by the following:

E(z(k)z(k)T ) = BE(s(k)s(k)T )BT = BIBT = I. (16)

Currently, the problem of finding an arbitrary full-rank
matrix A is successfully reduced to the simpler problem of
finding an orthogonal matrix B since B has fewer parameters
to estimate, which gives source signals as follows

ŝ(k) = BT z(k) = BT Qx(k), (17)

From Eqs. 12 and 17, the relation between the demixing
matrix W and the orthogonal matrix B can be expressed as:

W = BT Q, (18)

To calculate B matrix, it is initialized and gradually
updated so that the reconstructed ŝ(k) will have greater non-
Gaussianity than the mixture pattern. Based on the central
limit theorem, non-Gaussianity can also imply independence
by Hyvärinen and Oja (2000). Specifically, there are various
measures of non-Gaussianity, including the kurtosis, negen-
tropy, and mutual information. In particular, Gaussian ran-
dom variables will have zero kurtosis, largest entropy, and
maximum mutual information. Hence, searching for a good
W matrix can be alternatively achieved by maximizing kur-
tosis K (y), negentropy J (y) and mutual information I (y).

To sum up, there are two principles for ICA estimation:
nonlinear decorrelation and maximally non-Gaussian
components. The independence property used in ICA is stron-
ger than the uncorrelatedness used in PCA since “indepen-
dence” also implies “nonlinear uncorrelatedness”. Another
very intuitive point of finding independent components is
maximum non-Gaussianity. Now, ICA has been widely
applied in many areas, such as denoising, feature extraction
or data compression, signal or image separation, and time-
series prediction. In brain imaging, the sensors outside the
head can measure mixed signals that are emitted by different
brain areas and ICA can be applied to separate their source
signals. In econometrics or financial area, parallel time series
may reveal different components hidden in the dataset and

ICA can be used to obtain a good insight. For further details,
interested readers can refer to Hyvärinen et al. (2001).

Principle of the decision tree (DT)

DT is a simple yet powerful model since her hierarchical
structure is easy to be understood and incorporated with
human knowledge. Today, DT is widely used for supervised
classification in practice, ranging from medical diagnosis to
credit evaluation. Generally speaking, tree models are usu-
ally divided into regression trees (when the response vari-
able is quantitative continuous) and classification trees (when
the response variable is qualitative categorical or quantita-
tive discrete). When DT comes to classification trees, there
are three major algorithms used in practice, including CART
(“Classification and Regression Trees”), C4.5, and CHAID
(“Chi-square Automatic Interaction Detection”). The famous
CART algorithm was developed by the statistical commu-
nity (Breiman et al. 1984). Another famous CHAID algo-
rithm was also developed by the statistical community (Kass
1980). By contrast, C4.5 and its later version, C5.0 (Quinlan
1993), were very popular among computer scientists.

All three algorithms start from the root node, create
classification rules by constructing a tree-like structure in
a top-down and divide-and-conquer manner, and also restrict
the size of the resulting tree to avoid the problem of
over-fitting. The main difference can be shortly described as
follows. CHAID achieve its goal by testing a statistical stop-
ping rule that prevents tree growth. In contrast, both CART
and C4.5 first grow the full tree and then prune it back to
a reasonable size. Another difference between CART and
the other two algorithms is that CART only allows “binary”
splitting whereas the other two allow “multiple” splitting.
Moreover, CART decides the split by calculating the amount
of homogeneity within class but CHAID tests a hypothesis
regarding the dependence between the splitting variable and
the response variable. In brief, CART tends to be more suit-
able for prediction whereas CHAID seems to more powerful
for data segmentation. Owing to its fast computation, C4.5
is adopted in this study to classify the specific type of simple
CCP.

C4.5 is an extended form of Iterative Dichotomizer 3 (ID3)
with additional characteristics such as the ability to handle
continuous attribute, noisy data, and alternative measures
for selecting attributes and pruning decision trees (Quin-
lan 1983, 1986). Guh and Shiue (2005) indicated the three
phases to conduct classification rules for C4.5. For simplic-
ity, we assume that the dataset S consists of s data samples
to introduce the construction process of DT. Let the class
label Ci has m distinct values denoting m distinct classes
and let si denote the number of samples in class Ci . Using the
information theory, the expected information (so-called
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entropy) needed to classify a given sample can be defined
by

I (S) = −
m∑

i=1

pi log2 pi , (19)

where pi = si/s is the probability that an sample belongs to
class Ci . Suppose attribute A has n distinct values, {a1, . . . ,

an}, and it can be used to partition the dataset S into n sub-
sets, {S1, . . ., Sn}, where S j represents those samples in S
that have the attribute value a j of A. Let si j denote the num-
ber of samples from class Ci in subset S j . If attribute A is
selected as the best attribute for splitting the current node,
this attribute should have the largest information gain or the
greatest entropy reduction. The expected information based
on the partitioning into attribute A’s subsets is given by

I (A) =
n∑

j=1

s j

s
I (S j ), (20)

where the term s j/s calculated by the number of samples in
S j divided by the total number of samples in S acts as the
weight of the jth subset. For any given subset S j ,

I (S j ) = −
m∑

i=1

pi j log2 pi j , (21)

where pi j = si j/s j is the probability that a sample in S j

belongs to the class Ci . Therefore, the information gain due
to branching on attribute A can be described as: G(A) =
I (S) − I (A). In other words, G(A) is the expected entropy
reduction caused by selecting attribute A. Basically, the attri-
bute with the highest information gain will be selected as the
best discriminator for the current node and the recursive pro-
cess will be continued until all samples in each leaf node
belong to the same class.

Note, splitting at each internal node represents a test on an
attribute and this process will be terminated until all samples
in the leaf node belong to the same class. When DT is initially
built in this manner, many branches inside the tree also reflect
a lot of noisy data or outliers originated from the training
dataset. This phenomenon is so-called overfitting and hence
tree pruning approaches are needed to remove unnecessary
branches. There are two common methods proposed for tree
pruning: “pre-pruning” is achieved by halting the tree con-
struction early and “post-pruning” removes branches from a
fully grown tree. In this paper, pre-pruning is used to save the
computation time and its details will be described in Section
“DT based CCP identification”.

Computer synthetic results

Pattern generation

Six simple CCPs are generated in Fig. 1, including cyclic
pattern, systematic pattern, upward shift, downward shift,
upward trend and downward trend. Without loss of gener-
ality, six concurrent CCPs originated from simple CCPs are
also generated in Fig. 2. Specifically, the amplitude of cyclic
patterns, the magnitude of shift patterns and the slope of trend
patterns are randomly determined within a specific range.
The random setting in shift quantity of those anomaly CCPs
is for the purpose of testing the adaptive capability of the pro-
posed method. All details to generate simple and concurrent
CCPs are shown below.

(a) Natural pattern:

x(t) = n(t) ∼ N (0, 1), (22)

where x(t) is a sample at time t (from a standard Gauss-
ian distribution).

(b) Cyclic pattern:

x(t) = n(t) + a sin(2π t/T ), (23)

where 1.5 ≤ a ≤ 3 and T = 15 respectively denote the
amplitude and the period of cyclic patterns.

(c) Systematic pattern:

x(t) = n(t) + (−1)t s, (24)

where 1.5 ≤ s ≤ 3 denotes the magnitude of shift.
(d) Upward shift/downward shift:

x(t) = n(t) ± su(t − th), (25)

where u(t) stands for a unit step function shown below.

u(t − th) =
{

0, t < th
1, t ≥ th,

(26)

(e) Upward trend/downward trend:

x(t) = n(t) ± dt, (27)

where 0.05 ≤ d ≤ 0.1 stands for the slope of trend pat-
terns.

(f) Concurrent/Mixture patterns:

x(t) =
[

0.6 0.4
0.4 0.6

] [
S1(t)
S2(t)

]

, (28)
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Table 1 The kurtosis measure w.r.t. simple CCPs

Cyclic Systematic Upshift Downshift Uptrend Downtrend

Kurtosis 1.5943 1.0408 1.1877 1.1832 1.7479 1.8049

where S1(t), S2(t) represents two source patterns
composed of simple CCPs.

ICA based separation

PCA is based on second-order statistics but ICA uses
high-order statistical cumulants (i.e. kurtosis) to analyze the
dataset. Two zero-mean random variables are said to be
uncorrelated if their covariance is zero.

COV(X, Y ) = E[(X − µX )(Y − µY )T ] = 0, (29)

E[g(X)h(Y )] = E[g(X)]E[h(Y )], (30)

where COV(X, Y ) is the covariance and µX , µY , respec-
tively denote their expectation values. By taking the form of
g(X)= X and h(Y )= Y , “independence” will automatically
imply “uncorrelatedness”. According to the central limit the-
orem, non-Gaussianity is a good indicator of independence
for two mixed signals. Therefore, concurrent CCPs origi-
nated from mixing simple CCPs are closer to Gaussian than
their original simple patterns. In this study, a kurtosis based
fixed-point algorithm (Hyvärinen and Oja 1997) is used for
the reason of fast computation. Note, kurtosis is zero for a
Gaussian random variable but kurtosis is positive (superg-
aussian) or negative (subgaussian) for most non-Gaussian
random variables.

Based on Table 1, six simple CCPs have nonzero kurtosis
and this implies that they are nearly non-Gaussian by nature.
A further independence test of the concurrent CCPs is con-
ducted in Table 2. If we compare the 3rd row and the 4th row
of Table 2, the mixture kurtosis after mixing is less than the
sum of the original kurtosis before mixing. This phenome-
non meets the central limit theorem. By observing the second
row of Table 2, the covariance of the mixture composed of
“upshift” and “uptrend” is much larger than the other entries.
This also implies that both “upshift” and “uptrend” are two
correlated process and hence ICA based separation may be

Fig. 6 Separation of concurrent CCPs (upshift+cyclic, uptrend+
cyclic, upshift+ systematic)

ineffective on this case. Not surprisingly, except in the cat-
egory of “upward trend + upward shift”, other categories
of concurrent CCPs have been successfully separated and
reconstructed by ICA (see Figs. 6 and 7).

DT based CCP identification

Five CCP features involving LS-SLP, LS-CROS, MN-CROS,
LS-ERR and MN-ERR are selected for identification of CCPs
and their typical values are conducted in Table 3. Since each
feature has more or less discriminative power to separate
various types of CCPs, the optimal priority of five features
along the DT could be achieved by comparing their informa-
tion entropy. In simple words, the best feature at each node
of the DT for branch splitting is selected by searching for the
feature with the maximal information gain (see the underline
marked in each entry of Table 4). For convenience, the num-
ber denoted in the first column of Table 4 represents the level
of the decision tree (the root node is denoted by level 0).

Owing to its maximal information gain (1.59), LS-SLP is
first selected as the discriminative feature at the root node
(level 0) and then the DT is accordingly separated into three
subgroups: zero-slope (comprising systematic & cyclic pat-
terns), positive-slope (comprising positive trend & shift pat-
terns), and negative-slope (comprising negative trend & shift

Table 2 The independence test
w.r.t. concurrent CCPs

Cyclic+ Cyclic+ Systematic+ Systematic+ Cyclic+ Upshift+
Upshift Uptrend Upshift Uptrend Systematic Uptrend

Covariance 0.025954 0.067299 0.092926 0.075434 0.067299 0.42232
Mixture kurtosis 2.2921 2.4051 1.652 1.5398 1.9512 1.3064
Sum of original kurtosis 2.782 3.3422 2.2285 2.7887 2.635 2.9356
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Fig. 7 Separation of concurrent CCPs (uptrend+ systematic, cyclic+
systematic, uptrend+upshift)

Table 3 Typical values of five CCP features

LS-SLP LS-CROS MN-CROS LS-ERR MN-ERR

Cyclic −0.0111 18.82 19.32 116.94 120.24
Systematic 0.0004 62.59 63.25 583.65 584.78
Up shift 0.0708 23.63 9.38 90.627 181.94
Down shift −0.0711 24.03 9.095 88.404 180.43
Up trend 0.055 30.15 18.755 58.931 114.68
Down trend −0.055 30.15 19.185 58.931 115.26

Table 4 Information gain of five CCP features

LS-SLP LS-CROS MN-CROS LS-ERR MN-ERR

Level 0: Root
node

1.59 0.98 0.99 1.16 1.12

Level 1-1:
Zero-slope

N/A 1 1 1 1

Level 1-2:
Positive-slope

N/A 0.23 0.45 0.48 0.61

Level 1-3:
Negative-slope

N/A 0.38 0.53 0.42 0.7

patterns). Note, LS-SLP selected at level 0 could not be res-
elected at the next level (N/A denotes “not acceptable”).
Similarly, MN-ERR is selected to discriminate the shift pat-
tern from the trend pattern at both level 1–2 and level 1–3.
Because all features of the systematic pattern are much dif-
ferent from the cyclic pattern, four features have the same
discriminative power at level 1–1 except LS-SLP. For con-
venience, MN-ERR is also used within the zero-slope group
to distinguish the systematic pattern from the cyclic pattern.
Finally, the construction of the DT for CCP identification
can be conducted in Fig. 8. In fact, a couple of “If-Then”
rules embedded in the DT could be easily read. For instance,
if the negative LS-SLP and the low MN-ERR hold simulta-
neously, the input sample will be classified into the category
of “downward trend” (also see Fig. 8).

Conclusions

Concurrent (mixture) CCPs incurred by two types of unnat-
ural variation together usually exist within the manufactur-
ing process. However, most existing schemes will force the
concurrent pattern to be classified into one of those prede-
fined categories that represent single type of unnatural vari-
ation. This action will cause great difficulties in tracking the
assignable causes hidden in the observed mixtures. More-
over, they do not consider the separation of concurrent CCPs
or further reconstruct their corresponding source patterns. As
a consequence, the performance of pattern classifier is not
robust with respect to different mixing coefficients and the
results may be inconsistent. In other words, two concurrent
CCPs that comprise the same types of source patterns may be
categorized into different results. In this research, a hybrid
approach that incorporates ICA and DT is proposed to sep-
arate concurrent CCPs, to reconstruct their source patterns,
and to identify the specific anomaly types. The proposed
method has two limitations in real application: it needs at
least two mixed CCPs to reconstruct their source patterns
and it may be incapable to handle the concurrent patterns

Fig. 8 DT construction to
identify anomaly CCPs LS-SLP 

MN-ERR MN-ERR MN-ERR

Systematic 
pattern 

Cyclic
Pattern 

Upward 
trend  

Upward 
shift 

Downward 
trend 

Downward 
shift 

Negative Positive Zero

low lowlow high moderate moderate
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arising from two correlated process (i.e. “upward trend” and
“upward shift”). Experimental results show that the proposed
approach is very successful in most concurrent CCPs. More
importantly, the presented method is very promising to be
applied to other temporal data, such as the separation of com-
posite biomedical signals (Graupe et al. 2007) or composite
financial time-series (Kiviluoto and Oja 1998).
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