
J Intell Manuf (2009) 20:389–400
DOI 10.1007/s10845-008-0113-5

Bi-objective optimization algorithms for joint production and
maintenance scheduling: application to the parallel machine problem

A. Berrichi · L. Amodeo · F. Yalaoui · E. Châtelet ·
M. Mezghiche

Received: 14 July 2007 / Accepted: 8 May 2008 / Published online: 7 June 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper deals with the joint production and
maintenance scheduling problem according to a new
bi-objective approach. This method allows the decision maker
to find compromise solutions between the production objec-
tives and maintenance ones. Reliability models are used to
take into account the maintenance aspect of the problem.
The aim is to simultaneously optimize two criteria: the min-
imization of the makespan for the production part and the
minimization of the system unavailability for the mainte-
nance side. Two decisions are taken at the same time: find-
ing the best assignment of n jobs to m machines in order
to minimize the makespan and deciding when to carry out
the preventive maintenance actions in order to minimize the
system unavailability. The maintenance actions numbers as
well as the maintenance intervals are not fixed in advance.
Two evolutionary genetic algorithms are compared to find
an approximation of the Pareto-optimal front in the parallel
machine case. On a large number of test instances (more than
5000), the obtained results are promising.

Keywords Production scheduling · Preventive mainte-
nance (PM) · Reliability · Multi-objective optimization ·
Genetic algorithms

A. Berrichi (B) · M. Mezghiche
Université M’hamed Bouguerra de Boumerdès, LIFAB, Avenue de
l’indépendance, 35000 Boumerdès, Algèrie
e-mail: aberrichi@umbb.dz

L. Amodeo · F. Yalaoui · E. Châtelet
Université de Technologie de Troyes, ICD (FRE CNRS 2848),
Rue Marie Curie, BP 2060, 10010 Troyes, France

Introduction

In the manufacturing industry, the machines are considered
as main resources among others to carry out the production
plan. The production and maintenance are the two services
which directly act on the machines. Production scheduling
is concerned with allocating limited resources to a set of
jobs and certain objective functions have to be optimized,
for example to meet at best deadlines fixed with customers
by minimizing the sum of tardiness or makespan. Numerous
studies have been devoted to solve this problem, according
to the configuration of the workshop (single machine, par-
allel machines, flow shop, job shop, open shop and hybrid
systems), the objectives to optimize and the constraints to
take into account (preemption, setups, etc). Most production
scheduling problems are NP-hard (Garey and Johnson 1979).
In research literature related to production scheduling, it is
assumed that the machines are always available. However,
in real manufacturing systems, machines may be subject to
some unavailability periods such as maintenance activities.
For the maintenance consideration, the most important tasks
of the service is to establish an appropriate preventive main-
tenance planning optimizing a certain objective function, like
maintenance costs or keeping the machines in a good work-
ing order at every moment. Several studies in this area have
been also conducted to solve this problem in the past decades.
However, most of these studies do not take into account the
production requirements.

Despite the interdependent relationship between the pro-
duction scheduling and the maintenance planning, the two
activities are generally planned and executed separately in
real manufacturing systems. For many years the relationship
between production and maintenance has been considered
as a conflict in management decision. This situation stills
the same because of the lack of communication regarding

123

390 J Intell Manuf (2009) 20:389–400

the scheduling requirements of each function (Weinstein and
Chung 1999). The conflicts may result in an unsatisfied
demand in production due to the interruptions coming from
the preventive maintenance (PM) interventions or machine
breakdowns if the production service does not respect the
expected periods of PM. To avoid these conflicts, we pro-
pose in this paper an integrated multi-objective model taking
into account the machines reliability for the PM aspect. This
model allows the decision maker to have compromise solu-
tions meeting at best two criteria, one related to production
and another to PM. The paper is organized as follows: section
“Literature review” gives a survey of scheduling problems
taking into account preventive maintenance. Section “Model-
ing of the integrated problem” describes the integrated model
of the joint production and maintenance scheduling proposed
and the method to evaluate system unavailability. The solu-
tion methods proposed are presented in section “Solving
method”. Section “Test and results” experiments with the
two meta-heuristics presented in section “Solving method”.
Finally, section “conclusions” concludes the paper and gives
future research.

Literature review

The machine scheduling literature taking into account the
maintenance can be classified into two categories: the deter-
ministic (or sequential) approach and the stochastic (or inte-
grated) approach. In scheduling literature, a job processing
is called non preemptive if a job must be reprocessed fully
after the maintenance if its processing is interrupted by the
maintenance activity on a machine.

In deterministic (or sequential) approach, the time inter-
vals of PM actions as well as their number are known and
fixed in advance. The majority of the research literature with
maintenance adopts this approach commonly called “sched-
uling with machine availability constraints”. All the con-
figurations of known workshops were approached by the
researchers: single machine, parallel machines, flow shop,
job shop, open shop and hybrid systems. Considering the
significant number of works carried out in this category, we
only reviewed the parallel machine case. For the makespan
criterion, (Lee 1991) has proved that the problem of minimiz-
ing the makespan with availability constraints in the non pre-
emptive case is NP-hard. He studied the problem when some
machines may not be available at time zero. (Schmidt 1984)
has examined the problem on m parallel machines where each
machine can be only used during several availability periods.
(Liao et al. 2005) considered a two parallel machine prob-
lem where one machine is not available during a time period.
They proposed several algorithms for the preemptive and the
non preemptive cases. In (Liao et al. 2007), instead of fixing
the maintenance periods, the maintenance actions are carried
out after processing a fixed number of production jobs. Two

different scheduling horizons have been investigated for this
problem.

Another criterion commonly studied by researchers is the
total completion time. In the case of machines which are not
available at time zero, (Kaspi et al. 1988) and (Liman 1991)
showed that scheduling jobs according to SPT (Shortest Pro-
cessing Time) rule is optimal for minimizing total comple-
tion time. (Mosheiv 1994) has treated the problem supposing
each machine is available within a specific interval. (Lee and
Chen 2000) studied the problem of processing a set of n jobs
on m parallel machines where each machine must be main-
tained once during the planning horizon. The same problem
is considered by (Mellouli et al. 2006). They have proposed
three exact methods to minimize the total completion time.
(Schmidt 2000) and (Lee 1996) investigated and analyzed
the scheduling problem with limited machine availability in
greater detail for different constraints and machine environ-
ments.

We note that most studies in deterministic approach
consider the maintenance periods as constraints to sched-
ule production. In other words, the production scheduling is
optimized according to an established maintenance planning.
That is, in this approach the maintenance is always privileged
compared to production. In certain cases, it is the production
which has priority as in (Liao et al. 2007).

In stochastic (or integrated) approach, the beginning times
of PM tasks are considered as decision variables as well
as production jobs. Production jobs and maintenance tasks
are jointly (but not sequentially) scheduled. There are few
papers in the literature related to this approach. (Kaabi et al.
2002) and (Kaabi et al. 2003) have respectively studied the
single machine and permutation flow shop case where the
maintenance periods must be carried out within a predefined
interval. (Xu et al. 2008) have used the same idea as (Kaabi
et al. 2002) for the parallel machine case to minimize the
makesapn. These studies have the advantage of decreasing
the conflicts between the two services, but they still favor
the maintenance to the detriment of the production. (Cas-
sady and Kutanoglu 2003) have formulated an integrated
mathematical model for single machine problem to mini-
mize the total weighted tardiness of production. However,
a total enumeration approach is used. Indeed, the authors
observed that the computational time becomes unbearable
when the number of jobs exceeds eight which is not prac-
tical. (Ruiz et al. 2007) propose an integrated method for
permutation flow shop problem to minimize the makespan.
The authors have used reliability models to determine the
maintenance periods keeping a minimum level of reliability
during the scheduling horizon. However, the maintenance
periods are established without taking into account the pro-
duction requirements. They are fixed in advance for each
machine separately, once and for all. Then, machines reliabil-
ity is considered as constraint to optimize only one criteria

123

J Intell Manuf (2009) 20:389–400 391

related to production. To schedule maintenance actions in a
sequence of production, the authors used a strategy known as
preserving strategy since the maintenance tasks are always
advanced when there is overlapping with production jobs. In
the long term, this criterion will certainly increase the main-
tenance costs. At present, we can note that all these studies
are only interested in one criterion always related to produc-
tion aspect. In (Kaabi et al. 2003), the objective function is
a weighted sum of two criteria: total tardiness for produc-
tion aspect and lateness and tardiness sum for maintenance
aspect. The authors have not used reliability models in their
study but it is the only one having tried to jointly consider a
criterion related to a production aspect and another related to
a maintenance aspect. They have adopted the scalar function
as fitness function to select solutions. This method is easy to
implement by transforming the problem into a single opti-
mization problem. However, in this paper, the weights of the
two objective functions are fixed during the execution of the
algorithm, driving with only one solution. In this study, no
precaution was taken to avoid certain known disadvantages
of this method. Moreover, if the Pareto front is not convex
then the concave areas of the front remain inaccessible even
if the weight values are changed.

The maintenance and production services must collabo-
rate to achieve a common goal, that of maximizing system
productivity. To do that, both objectives of maintenance and
production must be regarded with the same level of impor-
tance. However, criteria related to production are generally
antagonist with those of maintenance: the decrease of one
raises the other one and conversely. Hence a solution of
the joint production and maintenance problem must be a
trade-off between the objectives of the two services. Multi-
objective evolutionary methods are the most appropriate to
find these trade-offs. In addition, the ultimate goal of the
manager is generally to have a system which is the most
available (or the least unavailable) possible enabling him to
execute the production jobs as soon as possible.

In this paper, we propose an integrated bi-objective model
for parallel machine problem using reliability models to take
into consideration the maintenance aspect. Pareto evolution-
ary algorithms will be applied to generate several compro-
mise solutions minimizing simultaneously two important
criteria in the manufacturing systems: the makespan and the
unavailability of the system. The intervals of the mainte-
nance periods as their numbers for every machine are opti-
mized during the global optimization process as well as the
sequence of production. Moreover, reliability has used as
performance criteria in the model. In other words, it is the
unavailability of the entire system that is optimized instead of
separately fixing a threshold of reliability for every machine
as in (Ruiz et al. 2007). In addition, we proposed a criterion to
insert PM actions that we called rational strategy (in oppo-
sition to the strategy proposed in (Ruiz et al. 2007) called

conservative strategy) which makes it possible to delay or
to advance a maintenance task. This criterion allows finding
a certain balance between the unavailability of the system
and the maintenance costs. To our knowledge, there are no
works related to the integrated approach dedicated to parallel
machine case, dealing with the problem according to a Pareto
evolutionary approach and taking into account the machines
unavailability as a performance criterion of the production
system.

Modeling of the integrated problem

This section describes separately the definition of the pro-
duction scheduling problem and PM planning problem, then
the bi-objective integrated model proposed.

From production point of view, we will consider the iden-
tical parallel machine scheduling problem and the makespan
as performance measure. We suppose in our investigations
that jobs are available at the beginning of the production
period and preemption is not allowed. In parallel-machine
problem, there are generally two decisions to be made. One
is to assign jobs to the machines and the other is to determine
the sequence of the jobs on each machine. This problem is
known to be NP-hard (Garey and Johnson 1979). Numerous
studies have been conducted to solve this problem either by
exact methods for problems of moderate sizes or by devel-
oping heuristics.

From maintenance point of view, we will focus our study
on the systematic preventive maintenance. The PM actions
help to keep production tools in good operating conditions
(they increase the availability of a system) and allow decreas-
ing the costs by avoiding unexpected failures. The problem
for the maintenance aspect is to determine the PM interven-
tion’ dates for each machine minimizing the system unavail-
ability. The availability is defined as “the probability that a
system or a component is performing its required function
at a given point in time or over a stated period of time when
operated and maintained in a prescribed manner” (Ebeling
1997).

The availability of a machine M is defined at a given point
in time t as:

A(t) = P(M is operating at time t) (1)

The opposite of the availability is the unavailability,
defined as:

A(t) = 1 − A(t) (2)

The availability expression of a machine Mi depends on its
failure rate λi and its repair rate µi . Here, we consider only
machines whose failure rates λi and repair rates µi are con-
stant. In other words, we assume the time to failure (resp.

123

392 J Intell Manuf (2009) 20:389–400

time to repair) of a machine Mi is represented by an expo-
nential probability distribution having failure rate parameter
λi (resp. repair rate parameter µi). We also suppose that PM
actions are used to restore the machine to “as good as new”
condition. By taking into account these hypotheses, from the
initial instant t = 0, the availability of a machine Mi at
time t is given by the following expression (Ebeling 1997;
Villemeur 1991):

Ai (t) = µi

λi + µi
+ λi

λi + µi
exp[−(λi + µi)t] (3)

The availability Ai (t) of a machine Mi being a time decreas-
ing function, the unavailability 1 − Ai (t) is therefore a time
increasing function. Then, if no PM action is performed on
Mi , its unavailability will increase. If T is the completion
time of a PM action on the machine Mi , the expression of the
availability Ai (t) at time t is given by the following expres-
sion (Ebeling 1997; Villemeur 1991):

Ai (t) = µi

λi + µi
+ λi

λi + µi
E(t), (4)

where E(t) = exp[−(λi + µi)(t − T)].
The system availability depends on the system structure

(parallel, serial or hybrid) as well as its component character-
istics. For m independent parallel components, each having
an availability function Ai (t), the system availability As(t)
at time t is given by (Ebeling 1997; Villemeur 1991):

As(t) = 1 −
i=m∏

i=1

[1 − Ai (t)] (5)

Consequently, the system unavailability is:

As(t) = 1 − AS(t) =
i=m∏

i=1

[1 − Ai (t)] (6)

The integrated model take into consideration two objectives
to be optimized simultaneously: the minimization of make-
span for the production aspect and the minimization of sys-
tem unavailability for the maintenance aspect under the
constraints defined previously. Thus, two decisions must be
taken simultaneously. The first one is to find the best assign-
ment of n jobs to m parallel machines in order to minimize
the makespan. The other one is to decide when to perform the
PM actions in order to minimize the system unavailability,
the number of PM actions on each machine being not fixed in
advance. Both objectives contribute to the system productiv-
ity, but they are antagonist. Indeed, if PM actions are carried
out, the system unavailability will decrease but the makespan
will increase. Conversely, if we don’t carry out PM actions,
the system unavailability will increase but the makesapn will
decrease.

Let C j be the completion time of a job j and Cmax be the
completion time of the last job carried out (the makespan):
Cmax = max j=1,n

{
C j

}
.

Let T = {0, t1, t2, . . ., ts, Cmax} where t1, t2, . . . , ts are
the starting times of the PM actions on all machines. Since
the unavailability is an increasing function in each interval
[ti , ti+1], i = 0, . . . , s, with t0 = 0 and ts+1 = Cmax , and as
assumed a machine becomes “as good as new” at the end of
each PM action, the system unavailability is only computed at
the times t1, t2, . . . , ts+1. The processing time of a PM action
on machine Mi is assumed to be the mean time of preventive
action, whose value is equivalent to 1/µi (Adzapka et al.
2004).

The two objectives functions to be minimized, under the
constraints defined previously, are:

F1 = {Cmax }, which is the makespan.
F2 = {max

t∈T
{As(t) = ∏i=m

i=1 [1 − Ai (t)]}}, which is the

system unavailability.

Solving method

As solution methods, we implemented and compared two
genetic algorithms. The first one is based on the scalar func-
tion for the selection of parents. The second one is the well-
known NSGA-II (Non dominated Sorting Genetic Algori-
thm) which is based on the non dominance concept. The first
choice is motivated by the fact that the only study having
taken into account two criteria used the weighted sum of
objectives as fitness function. The choice of NSGA-II is jus-
tified by its effectiveness in the multi-objective optimization
field. However, the use of the weighted sum model with fixed
weight values such as it is used in (Kaabi et al. 2003) will
not be fair compared to NSGA-II. Therefore, we consider
the weighted sum genetic algorithm with the same operators
and advantage that NSGA-II: same selection, crossover and
mutation operators. Moreover, an elitist strategy will be used
for this algorithm by adding a secondary population, where
elite (nondominated) solutions will be stored. The objective
weights will be randomly generated to select a pair of solu-
tions. With these characteristics, this algorithm is similar to
the non hybrid version of MOGLS algorithm described in
(Ishibuchi et al. 2003), except the selection scheme. There-
after, it will be named WSGA (Weighted Sum Genetic Algo-
rithm) to differentiate it from MOGLS.

In multiobjective optimization, if two objective functions
(f1 and f2) are to be minimized then for any two deci-
sion vectors x and y, we say that x dominates y (x ≺ y) if
(f1(x) ≤ f1(y) and f2(x) < f2(y)) or (f1(x) < f1(y) and
f2(x) ≤ f2(y)). The non dominated solutions set obtained
by an evolutionary algorithm is called Pareto front or tradeoff
surface.

123

J Intell Manuf (2009) 20:389–400 393

In WSGA, the following weighted sum of the two objec-
tives is used as fitness function.

f (x) = w1 f1(x) + w2 f2(x) (7)

where w1 and w2 are nonnegative weights for the two objec-
tives, which satisfy the following relations:

wi ≥ 0 for i = 1, 2 and w1 + w2 = 1. (8)

The fitness function (7) subject to relations (8) is used to
select a pair of new solutions from a pair of parent solutions
by crossover and mutation. The weight values are randomly
specified whenever a pair of parent solutions is selected. That
is, when N pairs of parent solutions are selected for gener-
ating a new population of N solutions, N different weight
couples are randomly generated. This means that N search
directions are explored in a single generation. However, if
constant weight values are used, the search direction is fixed.
As in (Ishibuchi et al. 2003), in WSGA we used an elitist strat-
egy by storing all non dominated solutions obtained during
its execution in a secondary population. A few nondominated
solutions are randomly selected from the secondary popula-
tion and their copies are added to the current population.
Let Npop be the population size and Nelite be the number of
nondominated (i.e., elite) solutions added to the current pop-
ulation. Using these notations, the WSGA algorithm can be
written as follows.

Algorithm 1 WSGA

Step 0: Randomly generate an initial population of size
Npop.

Repeat

Step 1: Evaluate the objectives for each in the current pop-
ulation. Then update the secondary population with
the nondominated solutions obtained from the cur-
rent population.

Step 2: Select (Npop − Nelite) pairs of parents by repeating
the following procedures:

a) Randomly specify the weights w1 and w2.
b) Select a pair of parents based on the scalar fit-

ness function in (7). The binary tournament
selection is used.

Step 3: Perform evolutionary operators (crossover and mut-
ation) to each of the selected (Npop−Nelite) pairs of
parents to generate new two solutions fom each pair.

Step 4: Randomly select Nelite solutions from the second-
ary population. Then add their copies to the (Npop−
Nelite) solutions generated in Step 3 to construct a
population of solutions.

Until the stopping condition is met

NSGA-II is an elitist multi-objective evolutionary
algorithm which calculates an approximation of the non dom-
inated solutions set, based on the non dominance concept. At
each generation a ranking procedure is used to identify the
different fronts of non dominated solutions. The diversifica-
tion is ensured by a crowding operator. Several studies in the
research literature classified NSGA-II among the most com-
petitive algorithm in multi-objective optimization (Basseur
2005; Coellom and Cortes 2002; Deb et al. 2000; Gaspar-
Cunta and Covas 2003 and Ishibuchi et al. 2003). Without
being exhaustive, this algorithm has been used in the fol-
lowing fields: in chemistry to optimize polymer extrusion
(Gaspar-Cunta and Covas 2003), in vehicle routing optimi-
zation (Velasco et al. 2006), in scheduling (Landa-Silva et al.
2003; Vilcot et al. 2006) and in supply chain optimization
(Amodeo et al. 2007). Also, NSGA-II is often chosen to com-
pare the performance of new or existent algorithms. In the
following we describe the general operating of NSGA-II and
give its pseudo code according to the original version (Deb
et al. 2000).

First, a random initial population P0 of size N is gen-
erated. The population is sorted on several fronts based on
the non-domination. Each solution is measured by its non-
domination level (1 is the best level). Then, binary tourna-
ment selection, crossover and mutation operators are used
to create a child population Q0 of size N . For a generation
t ≥ 1, the procedure is different. The first phase consists of
creating the population Rt = PtU Qt of size 2N and apply-
ing the non dominated sorting procedure (ranking) to return
the list of the non-dominated fronts. At the second phase, a
new parent population Pt+1 containing the N best solutions
of Rt is built by including the best fronts as long as the num-
ber of solutions in Pt+1 is less than N . To complete Pt+1with
the remaining N − |Pt+1| solutions, the crowding procedure
is applied to the first front not included. The population Pt+1

is then used to create a new child population Qt+1 of size
N by applying selection, crossover and mutation operators.
The pseudo code of NSGA-II is given by Algorithm2.

Algorithm 2 NSGA-II

1: Create initial populations P0 and Q0 of size N
2: While stopping conditions are not verified do
3: Create population Rt = Pt U Qt

4: Construct the different fronts Fi of Rt by the
nondominated sorting procedure (ranking)

5: Put Pt+1 = � and i = 0,
6: While|Pt+1| + |Fi | < N do
7: Pt+1 = Pt U Fi

8: i = i + 1
9: End While

10: Include in Pt+1 the (N − |Pt+1|) of Fi according
to the crowding procedure

123

394 J Intell Manuf (2009) 20:389–400

11: Create Qt+1 from Pt+1 by Selection, crossover
and mutation

12: End While

The following procedure (Algorithm 3) computes the
crowding distance for each solution i in population S.

Algorithm 3 Distance_crowding (S)

1: L = |S| // number of
solutions in S

2: For each i, S[i]distance = 0 // initialize distance
3: For each objective m
4: S = sort (S, m) // sort using each

objective function
5: S[1]distance = S[L]distanc = ∞ // boundary solutions

are always selected
6: For i = 2 to (L−1) // for all

other points
7: S[i]distanc = S[i]distance + (S[i + 1].m − S[i − 1].m)

S[i].m is the mth objective function value of the ith

solution in population S.

The non-dominated sorting procedure (Algorithm 4)
returns a list of the non-dominated fronts Fi when applied to
a population P . Two entities are calculated for each solution:
ni , the number of solutions which dominate the solution i and
Si a set of solutions which the solution i dominates.

Algorithm 4 Non_dominating_sorting (P)

1:For each p ∈ P
2: For each q ∈ P
3: If (p ≺ q) then Sq = Sq U {q} // if p dominates q

then include q in
S

4: Else If (q ≺ p) then np = np + 1 // if q dominates p
then increment
np

5: If np = 0 then F1 = F1 U {p} // if no solu-
tion dominates
p then p is mem-
ber of the 1st

front
6: i = 1
7:While Fi �= � do
8: H = �

9: For each p ∈ Fi

10: For each q ∈ Sp

11: nq = nq − 1 // decrement nq by
one

12: If nq = 0 then H = H U {q}
13: i = i + 1

14: Fi = H // current front is
formed with all
members of H

15:End While

A solution (or a chromosome) is composed of two seg-
ments: production and maintenance parts. The production
part is a sequence of job numbers. The maintenance part is a
series of numbers representing the theoretical periods of PM
actions. The maintenance periods are randomly generated for
each machine i within the interval [Pi , Ci]. Pi is the process-
ing time of the shortest job assigned to machine i and Ci is
the completion time of the latest job assigned to machine i .
For instance, the series (10, 18) concerns two machines and
means a PM action on M1 should be done every 10 units of
time and on M2 every 18 units of time.

The chromosome evaluation is done according to Algo-
rithm 5. The list of production jobs is assigned to machines
according to the “list scheduling” heuristic: assign the next
job in the list to the first idle machine.

The maintenance activities are inserted according to the
rational strategy: Let B j and C j the beginning (resp. the com-
pletion) time of a production job j . Let Te be the expected
date to perform the maintenance task. If C j − Te ≥ Te − B j

then the maintenance task is advanced to the date B j , else it
is delayed to the date C j .

Algorithm 5 Evaluate_solution

Step 1: Assign production jobs to machines according to
the list scheduling heuristic.

Step 2: Calculate the makespan Cmax .
Step 3: Insert the PM tasks in production scheduling using

the rational strategy and update production jobs’
dates.

Step 4: Reevaluate the makespan after inserting the PM
actions.

Step 5: Compute the system unavailability. It is equal to the
greatest value of the system unavailability encoun-
tered during the scheduling horizon.

Example
Let a production system be composed of two parallel

machines on which eight jobs are to be scheduled. The char-
acteristics of production jobs are:

Job n◦ 1 2 3 4 5 6 7 8
Duration 4 6 8 10 12 14 16 18

We assume the two machines have the same characteristics:
λ1 = λ2 = 0.1, µ1 = µ2 = 0.5. Thus, the duration of PM
actions on both machines is equal to 2 units of time. Suppose

123

J Intell Manuf (2009) 20:389–400 395

M1 J5 J8 J3 J1

M2 J4 J 6 J7 J2
0 10 12 24 30 38 40 42 46

Fig. 1 Gantt chart of production scheduling without PM tasks

J5 J8 J3 J1

J4 J6 J7 J2

0 10 12 14 24 26 32 34 42 46 48

Fig. 2 Gantt chart of the joint production-maintenance scheduling

we have to evaluate the chromosome:

5 4 6 8 7 3 1 2 16 20

The first eight alleles determine the scheduling of the pro-
duction jobs. The last two alleles (16, 20) represent the main-
tenance part which indicates that an intervention on machine
M1 must a priori be carried out every 16 units of time and on
the second machine M2 every 20 units of time. The applica-
tion of Algorithm 4 to this chromosome is presented by the
steps below:

Step 1. The list scheduling heuristic gives the scheduling
shown by Fig. 1.

Step 2. The makespan value obtained is Cmax = 46.
Step 3. Using the rational strategy and updating the produc-

tion jobs’ dates, we obtain the scheduling shown by
Fig. 2. The maintenance actions begin at times 12
and 32 for machine M1 and at time 24 for machine
M2.

Step 4. The makespan recalculated is Cmax =48.
Step 5. The system unavailability is computed at instants:

12, 24, 32 and Cmax. The system unavailability cor-
responds to the greatest value among those obtained
at the four instants.

Table 1 (resp. Table 2) gives the unavailability (resp. avail-
ability) of each machine at the four instants. The system
unavailability (resp. availability) is computed by formula (6)
(resp. (5)). Thus, the system unavailability (resp. availability)
is equal to 0.0809 (resp. to 0.9190).

The vector of objective functions for this solution is (F1,

F2) = (48, 0.0809).
The initial population is randomly generated. Several

crossover and mutation operations were examined in genetic
algorithms for scheduling problems, where good results were

Table 1 Unavailability of machines and system

t A1(t) A2(t) AS(t)

12 0.2814 0.2814 0.0792
24 0.2770 0.2856 0.0791
32 0.2851 0.2507 0.0715
48 0.2835 0.2855 0.0809

Table 2 Availability of machines and system

t A1(t) A2(t) AS(t)

12 0.7185 0.7185 0.9207
24 0.7229 0.7143 0.9208
32 0.7148 0.7492 0.9284
48 0.7164 0.7144 0.9190

Parent 1 2 1 3 6 4 8 5 7

Parent 2 4 7 3 6 1 5 2 8

Offspring1 2 1 4 3 6 5 8 7

Offspring2 4 7 2 1 3 6 5 8

Fig. 3 Two-point crossover

4 2 5

4 6 5

1 3 6 8

82 1 3

7

7

Fig. 4 Shift mutation

obtained from the combination of the two-point crossover
and the insertion mutation (Ishibuchi et al. 2003). The stop-
ping condition is a fixed number of generations.

For both production and maintenance part, a two-point
crossover method is implemented. The first (resp. second)
offspring is generated by keeping the extremities of the first
(resp. second) parent and completing it with the missed jobs
according to their appearance order in the second (resp. first)
parent, as illustrated in Fig. 3.

Concerning the mutation operators, for the maintenance
part a gene is randomly selected and its value is replaced with
another value randomly generated. For the production part,
we used a shift (or insertion) mutation as illustrated in Fig. 4,
where a randomly selected job is removed and inserted into
a randomly selected position. The neighborhood structure

123

396 J Intell Manuf (2009) 20:389–400

defined by the shift mutation was often used for taboo search
and simulated annealing algorithms.

Tests and results

Performance measures

In multi-objective problems, a set of solutions cannot be
totally ordered, because a solution may be the best for some
objectives but not for other objectives. The comparison
between two solutions remains a tricky problem seeing that
several aspects are taken into consideration: the distance of
the resulting non-dominated front to the Pareto-optimal front
should be minimized, a good (in most cases uniform) distri-
bution of the solutions found is desirable and the spread of the
obtained non-dominated front should be maximized, i.e., for
each objective a wide range of values should be covered by
the non-dominated solutions (Zitzler 1999). Unfortunately,
the different aspects cannot be taken into account by one
numerical value. Hence, several measures (or metrics) are
generally used to test a particular aspect of a tradeoff surface.
There are several metrics in the research literature, in particu-
lar in (Barichard 2005; Basseur 2005; Zitzler 1999; Zydallis
2003). These metrics allow quantifying one or more aspects
of the solution quality: convergence, distribution and spread.
Certain metrics are used when the Pareto front is known and
others if it is unknown.

The first metric we have used is the hyper-volume (or
hyper-area) metric H , introduced by (Zitzler 1999). This met-
ric calculates an approximation of the volume included under
the curve formed by the Pareto front. When two Pareto fronts
contain the same number of points, the smaller the value of H
the better is the front. It is used and recommended by many
researchers to evaluate Pareto sets (Barichard 2005; Basseur
2005; Fleischer 2003; Knowles and Hughes 2005; Knowles
and Corne 2002; Zitzler 1999), especially since (Fleischer
2003) has shown that optimization of this metric is a neces-
sary and sufficient condition for Pareto front optimization.
This measure reflects different aspects of solution quality in
particular convergence and spread. In the two dimensional
(bi-objective) case, the volume H is the union of the rect-
angles defined by points (0, 0) and (f1(xi), f2(xi)), for a
decision vector xi (i = 1, n).

Another important metric often used is the C metric intro-
duced also by (Zitzler 1999). It’s a relative measure which
allows clearly differentiating two fronts A and B when other
metrics (the hyper-volume for example) give very similar
values. The value of C(A, B) represents the percentage of
solutions in B dominated by at least one solution of A. It is
computed by formula (9).

C(A, B) = |{b ∈ B/∃a ∈ A : a ≺ b}|
|B| (9)

The value C(A, B) = 1 means that all solutions in B are
dominated by A. The opposite, C(A, B) = 0, represents
the situation when none of the points in B are dominated
by A. Thus, the closer the value of C(A, B) to 1, the bet-
ter is the front A compared to B. Since this measure is not
symmetrical, that is C(A, B) �= 1 − C(B, A), it is neces-
sary to calculate C(B, A). Therefore, A is better than B if
C(A, B) > C(B, A).

Computational results

To compare between the two algorithms used to solve our
problem, we generated ten m-machine, n-job parallel machine
problems. Using the number of machines (m) and the number
of jobs (n), we noted each test problem by the couple (m, n).
The test problems proposed are (2, 10), (2, 20), (3, 20), (3,
40), (3, 60), (5, 20), (5, 40), (5, 60), (8, 40) and (8, 60). The
processing time of each job was specified as a random integer
in the interval [1, 50]. In multi objective optimization, it is
not easy to compare efficiently two algorithms, especially if
the two algorithms include several parameters. Hence, as in
Ishibuchi et al. (2003), we examined 27 combinations of the
following parameter values:
Population size (Npop): 30, 60, 120.
Crossover probability (pc): 0.6, 0.8, 1.0.
Mutation probability (pm): 0.4, 0.6, and 0.8 (per string).

We used a number of generations of 100 for the two algo-
rithms. The number of elite solutions at each generation is 10
(Nelite = 10), which is the same value selected in (Ishibuchi
et al. 2003) for their MOGLS algorithm. The crossover prob-
ability (pc) and mutation probability (pm) are related to the
production part. For the maintenance part, these two param-
eters are set to 0.8 and 0.01 (per bit) respectively. Each of the
two algorithms was applied to each test problem 20 times for
each of the 27 combinations of the parameter values. There-
fore, 540 solution sets (nondominated fronts) were obtained
by each algorithm for each test problem. For each run, a
new instance of processing times is generated. Three perfor-
mance measures were used to compare the two algorithms:
the hyper volume metric H , the C metric and the number of
solutions obtained. We have used the Mann-Whitney test to
test if there exist a significant differences between the results
obtained from the two algorithms for a certain performance
measure. The Mann-Whitney U test is a non-parametric test
to determine whether two samples of observations come from
the same distribution. The null hypothesis is that there is no
significant differences between the two samples (they come
from a single population) and thus that their probability dis-
tribution are equal. The conditions to its application are the
independence of the two samples and the type of observations
must be ordinal or continuous.

Fair comparison between two solution sets with the H
metric requires the equality of the number of solutions

123

J Intell Manuf (2009) 20:389–400 397

Table 3 Best, average and
worst values of the number of
obtained solutions over 540
solutions sets obtained by each
algorithm for each test problem

Test problem WSGA NSGA-II

(m, n) Best Av. Worst Best Av. Worst

(2, 10) 7 3.31 1 10 5.27 2
(2, 20) 7 2.59 1 12 5.91 1
(3, 20) 7 3.52 1 11 6.17 2
(3, 40) 5 2.41 1 14 5.52 1
(3, 60) 4 2.03 1 14 4 1
(5, 20) 6 3.22 1 9 3.91 1
(5, 40) 7 3.03 1 11 5.65 1
(5, 60) 5 2.34 1 11 4.48 1
(8, 40) 3 1.46 1 4 1.70 1
(8, 60) 2 1.23 1 3 1.30 1

Table 4 Best, average and
worst values of the C metric
over 540 solutions sets obtained
by each algorithm for each test
problem

Test problem WSGA NSGA-II

(m, n) Best Av. Worst Best Av. Worst

(2, 10) 1 0.19 0 1 0.42 0
(2, 20) 1 0.11 0 1 0.49 0
(3, 20) 1 0.17 0 1 0.42 0
(3, 40) 0.67 0.12 0 1 0.50 0
(3, 60) 1 0.18 0 1 0.46 0
(5, 20) 1 0.24 0 1 0.48 0
(5, 40) 0.8 0.13 0 1 0.49 0
(5, 60) 1 0.14 0 1 0.52 0
(8, 40) 1 0.27 0 1 0.39 0
(8, 60) 1 0.26 0 1 0.45 0

Table 5 Best, average and worst values of the H metric over 540 solutions sets obtained by each algorithm for each test problem

Test problem WSGA NSGA-II

(m, n) Best Av. Worst Best Av. Worst

(2, 10) 4.978949 11.436936 16.408154 5.120944 10.980644 16.408154
(2, 20) 15.591825 23.345837 30.448923 15.673394 24.239733 30.204052
(3, 20) 1.058309 1.619620 2.422747 1.049317 1.609786 2.230322
(3, 40) 2.720125 3.335351 4.023336 2.667646 3.306552 4.049576
(3, 60) 3.778438 4.771540 5.623925 3.778438 4.736960 5.553959
(5, 20) 0.027446 0.045566 0.063287 0.028354 0.045526 0.062471
(5, 40) 0.072459 0.092899 0.117456 0.070385 0.092400 0.118705
(5, 60) 0.107876 0.141149 0.162024 0.105777 0.140193 0.160358
(8, 40) 0.000207 0.000291 0.000369 0.000193 0.000290 0.000367
(8, 60) 0.000338 0.000430 0.000504 0.000331 0.000429 0.000502

obtained by the two sets. Therefore, initially the two algo-
rithms were only compared according to two criteria, the
number of solutions obtained and the C metric. Then, other
comparisons were carried out with an equal number of solu-
tions obtained (WSGA is executed first, the comparison is
accepted only if the number of solutions obtained by NSGA-
II is equal to that of WSGA) according to both metrics H
and C . Table 3 gives the best, average, and worst values of
the number of solutions obtained from the 540 solution sets.

As we can see from this table, the two methods may obtain
low values for this criterion. In general, the number of solu-
tions obtained decreases as the number of machines and tasks
increase. This is related to the unavailability function speci-
fication and the fact that the machines are in parallel. For this
criterion, NSGA-II significantly outperforms WSGA with
the 99% confidence level by the Mann-Whitney U test.

Table 4 gives the best, the average, and the worst values of
the C metric obtained over the 540 solution sets. For each test

123

398 J Intell Manuf (2009) 20:389–400

Table 6 Best, average and
worst values of the C metric
over 540 solutions sets obtained
by each algorithm for each test
problem

Test problem WSGA NSGA-II

(m, n) Best Av. Worst Best Av. Worst

(2, 10) 1 0.20 0 1 0.48 0
(2, 20) 1 0.20 0 1 0.46 0
(3, 20) 1 0.18 0 1 0.50 0
(3, 40) 1 0.28 0 1 0.46 0
(3, 60) 1 0.34 0 1 0.43 0
0(5, 20) 1 0.20 0 1 0.52 0
(5, 40) 1 0.18 0 1 0.52 0
(5, 60) 1 0.30 0 1 0.47 0
(8, 40) 1 0.28 0 1 0.40 0
(8, 60) 1 0.30 0 1 0.47 0

Table 7 Comparison of the two algorithms using the H metric over
540 solutions sets obtained by each algorithm for each test problem

(m, n) WSGA NSGA-II

(2, 10) 10.975436 (0.107571) 10.889418 (0.103722)
(2, 20) 23.289782 (0.139554) 23.881611 (0.097461)
(3, 20) 1.597960 (0.010041) 1.573420 (0.008866)
(3, 40) 3.247095 (0.013904) 3.348115 (0.012401)
(3, 60) 4.751911 (0.012626) 4.564301 (0.014518)
(5, 20) 0.044163 (0.000216) 0.044030 (0.000213)
(5, 40) 0.089986 (0.000556) 0.090169 (0.000515)
(5, 60) 0.138199 (0.000386) 0.136138 (0.000382)
(8, 40) 0.000296 (0.000001) 0.000294 (0.000001)
(8, 60) 0.000429 (0.000001) 0.000427 (0.000001)

Table 8 Comparison of the two algorithms using the C metric over 540
solutions sets obtained by each algorithm for each test problem

(m, n) WSGA NSGA-II

(2, 10) 0.20 (0.011) 0.52 (0.014)
(2, 20) 0.17 (0.013) 0.31 (0.017)
(3, 20) 0.19 (0.010) 0.53 (0.012)
(3, 40) 0.12 (0.010) 0.33 (0.012)
(3, 60) 0.32 (0.014) 0.70 (0.018)
(5, 20) 0.30 (0.016) 0.32 (0.013)
(5, 40) 0.19 (0.009) 0.46 (0.013)
(5, 60) 0.36 (0.015) 0.37 (0.013)
(8, 40) 0.15 (0.017) 0.35 (0.023)
(8, 60) 0.20 (0.018) 0.60 (0.023)

problem, we can see that one of the two methods completely
dominated the other at least once over the 27 combinations
for each test problem, except for two test problems where
WSGA had not managed to entirely dominate NSGA-II. It is
obvious that NSGA-II significantly outperforms WSGA on
the average.

Table 5 (resp. 6) presents the best, average and worst val-
ues of the H (resp. C) metric obtained over the 540 solu-
tion sets when the equality of the number of solutions is
required to carry out comparisons. On the average, there is

no significant difference in terms of the H metric between
the two methods with the 99% confidence level by the Mann-
Whitney U Test. On the other hand, NSGA-II clearly outper-
forms WSGA in terms of the C metric as we can see in
Table 6.

Moreover we tested the performance of each algorithm
using the best combination of the three parameters Npop, pc

and pm for each test problem. We chose the combination of
the parameters having given the best solution set for each test
problem for each algorithm in Table 5. The obtained results
by each algorithm for each test problem using the H metric
and the C metric can be seen in Tables 7 and 8, respectively.

We can see from Table 7 that WSGA outperformed NSGA-
II for three test problems in terms of the H metric. Moreover,
WSGA obtains similar results to NSGA-II for two test prob-
lems in terms of the C metric. However, for the other test
problems NSGA-II widely outperformed WSGA, particu-
larly in terms of the C metric as we can see in Table 8.

Conclusions

In this paper, we have proposed a bi-objective integrated
model to solve the joint production and maintenance sched-
uling problem in parallel machine case. The reliability of
the production system is considered as a criterion of
performance. Two important criteria in the manufacturing
systems are fairly optimized: the makespan and the unavail-
ability of the system. We have proposed a new criterion to
schedule maintenance preventive actions within the produc-
tion sequence which allows finding a certain balance between
the unavailability of the system and the maintenance costs.
We have tested two multi objective evolutionary algorithms
adapted to our problem. The Pareto solutions obtained are
tradeoffs between the two objectives, enabling the manager
to make two types of decisions at the same time: Deciding to
which machine each production job is assigned and deciding

123

J Intell Manuf (2009) 20:389–400 399

when to carry out maintenance actions on each machine such
that the objectives of both services are simultaneously opti-
mized. Computational evaluations with ten test problems and
a total of 5400 instances have showed that the genetic algo-
rithm based on dominance concept provide very efficient
solutions than the one based on the scalar function according
to two performance measures.

We plan to study this problem by taking into account other
criteria like the total tardiness for the production or the costs
of PM through the number of interventions. We also think
to include in our problem constraints related to production
or maintenance. Other production environments more com-
plex like hybrid systems are envisaged. From point of view
of solution methods, we are interested to study the effect of
hybridization of the genetic algorithms used in our study.

Acknowledgements The authors would like to thank the anonymous
referees for their insightful comments on an earlier version of this paper.
Their suggestions led to a much better presentation of the paper.

References

Adzapka, K. P., Adjallah, K. H., & Yalaoui, F. (2004). On-line main-
tenance job scheduling and assignment to resources in distributed
systems by heuristic-based optimization. Journal of intelligent man-
ufacturing, 15, 131–140.

Amodeo, L., Chen, H., & El-Hadji, A. (2007). Multi-objective sup-
ply chain optimization: An industrial case study (pp. 732–741).
Springer-Verlag, EvoWorkshops, LNCS 4448.

Barichard, V. (2005). Hybrid approaches for multiobjective problems.
PhD thesis, Doctoral School of Angers, France (in French).

Basseur, M. (2005). Design of cooperative algorithms for multiobjective
optimization: Application to Flowshop scheduling problems. PhD
thesis, University of Sciences and Technologies of Lille, France (in
French).

Cassady, C. R., & Kutanoglu, E. (2003). Minimizing job tardiness using
integrated preventive maintenance planning and production sched-
uling. IIE Transactions, 35, 503–513.

Coellom, C. A., & Cortes, N. C. (2002). Solving multi-objective opti-
mization problems using an artificial immune system. Evolutionary
Computation Group, Instituto Politécnico Nacional No. 2508 Col.
San Pedro Zacatenco México.

Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A fast elitist
non dominated sorting genetic algorithm for multi-objective optimi-
zation: NSGA-II. KanGAL report 200001, Indian Institute of Tech-
nology, Kanpur, India.

Ebeling, C. E. (1997). An introduction to reliability and maintainability
engineering. USA: McGraw-Hill.

Fleischer, M. (2003). The measure of Pareto optima, applications to the
multi-objective metaheuristics. Lecture Notes in Computer Science,
Springer (EMO’03), 2632, 519–533.

Garey, M. R., & Johnson, D. S (1979). Computers and Intractability: A
guide to the theory of NP-Completeness. California, San Francisco:
W.H., Freeman and Company.

Gaspar-Cunta, A., & Covas, J. A. (2003). A real-word test problem
for EMO algorithms. Lecture Notes in Computer Science, Springer,
2632, 752–766.

Ishibuchi, H., Yoshida, T., & Murata, T. (2003). Balance between
genetic search and local search in memetic algorithms for multi-

objective permutation flowshop scheduling. IEEE Transactions on
Evolutionary Computation, 7(2), 204–223.

Kaabi, J., Varnier, C., & Zerhouni, N. (2002). Heuristics for scheduling
maintenance and production on a single machine. IEEE Conference
on Systems, Man and Cybernetics. October 6–9 Hammamet, Tunisia.

Kaabi, J., Varnier, C., & Zerhouni, N. (2003). Genetic algorithm for
scheduling production and maintenance in a Flow Shop. Laboratory
of automatic of Besançon, France (in French).

Kaspi, M., & Montreuil, B. (1988). On the scheduling of identical
parallel processes with arbitrary initial processor available time.
Technical report, School of Industrial Engineering, Purdue Univer-
sity.

Knowles, J., & Corne, D. (2002). On metrics for comparing nondomi-
nated sets. Proceedings of the 2002 Congress on Evolutionary Com-
putation (CEC 2002), IEEE, pp. 711–716.

Knowles, J., & Hughes, E. J. (2005). Multi-objective optimization on
a budget of 250 evaluations. School of Chemistry, University of
Manchester, UK.

Landa-Silva, J. D., Burke, E. K., & Petrovic, S. (2003). An Introduc-
tion to multi-objective metaheuristics for scheduling and timetabling.
Automated Scheduling, Optimisation and Planning Research Group,
School of Computer Science and IT, University of Nottingham, UK.

Lee, C.-Y. (1991). Parallel machine scheduling with non simultaneous
machine available time. Discrete and Applied Mathematics, 30, 53–
61.

Lee, C.-Y. (1996). Machine scheduling with an availability constraint.
Journal of Global Optimization, 9, 395–416.

Lee, C.-Y., & Chen. Z. L. (2000). Scheduling jobs and maintenance
activities on parallel machines. Naval Research Logistics, 47–2, 145–
165.

Liao, C. J., Chen. C. M., & Lin. C. H. (2007). Minimizing makespan
for two parallel machines with job limit on each availability interval.
Journal of the Operational Research Society, 58(7), 938–947.

Liao, C.-J., Shyur, D.-L., & Lin, C.-H. (2005). Makespan minimization
for two parallel machines with an availability constraint. European
Journal of Operational Research, 160, 445–456.

Liman, S. D. (1991). Scheduling with capacities and due-dates. PhD
thesis, Industrial and Systems Engineering Department, University
of Florida, USA.

Mellouli, R., Sadfi, C., Kacem, I., & Chu, C. (2006). Scheduling on
parallel machines with availability constraints. Sixth International
Francophone Conference of Modeling and Simulation, Mosim’06,
Marocco (in French).

Mosheiv, G. (1994). Minimizing the sum of job completion times on
capacitated parallel machines. Mathematical and Computer Model-
ing, 20, 91–99.

Ruiz, R., García-Diaz, J. C., & Maroto, C. (2007). Considering schedul-
ing and preventive maintenance in the flowshop sequencing problem.
Computers & Operations Research, 34(11), 3314–3330.

Schmidt, G. (1984). Scheduling on semi-identical processors.
Zeitschrift fur Operation Research, 28, 153–162.

Schmidt, G. (2000). Scheduling with limited machine availability. Euro-
pean Journal of Operational Research, 121, 1–15.

Velasco, N., Dejax, P., Guéret, C., & Prins, C. (2006). Genetic algo-
rithm for the bi objective collection and delivery problem. Sixth
International Francophone Conference of Modeling and Simulation,
Mosim’06, Marocco.

Vilcot, G., Billaut, J.-C., Esswein, C. (2006). A genetic algorithm for
a bi-criteria flexible job shop scheduling problem. IEEE Interna-
tional Conference on Service Systems and Service Management
(ICSSSM’06).

Villemeur, A. (1991). Reliability, availability, maintainability and
safety assessment. USA: Wiley.

Weinstein, L., & Chung, C.-H. (1999). Integrated maintenance and pro-
duction decisions in hierarchical production planning environment.
Computers and Operations Research, 26, 1059–1074.

123

400 J Intell Manuf (2009) 20:389–400

Xu, D., Sun, K., & Li, H. (2008). Parallel machine scheduling with
almost periodic non-preemptive maintenance and jobs to minimize
makespan. Computers and Operations Research, 35, 1344–1349.

Zitzler, E. (1999). Evolutionary algorithms for multi- objective optimi-
zation: Methods and applications. PhD thesis, Swiss Federal Insti-
tute of Technology, Zurich.

Zydallis, J. B. (2003). Explicit building-block multi-objective genetic
algorithms: Theory, analysis, and development. PhD dissertation,
Air Force Institute of Technology, Ohio.

123

	Bi-objective optimization algorithms for joint production andmaintenance scheduling: application to the parallel machine problem
	Abstract
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

