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Abstract Optimization of the wire bonding process of an
integrated circuit (IC) is a multi-objective optimization
problem (MOOP). In this research, an integrated multi-
objective immune algorithm (MOIA) that combines an artifi-
cial immune algorithm (IA) with an artificial neural network
(ANN) and a generalized Pareto-based scale-independent fit-
ness function (GPSIFF) is developed to find the optimal pro-
cess parameters for the first bond of an IC wire bonding.
The back-propagation ANN is used to establish the nonlinear
multivariate relationships between the wire boning parame-
ters and the multi-responses, and is applied to generate the
multiple response values for each antibody generated by the
IA. The GPSIFF is then used to evaluate the affinity for each
antibody and to find the non-dominated solutions. The “Error
Ratio” is then applied to measure the convergence of the
integrated approach. The “Spread Metric” is used to mea-
sure the diversity of the proposed approach. Implementation
results show that the integrated MOIA approach does gen-
erate the Pareto-optimal solutions for the decision maker,
and the Pareto-optimal solutions have good convergence and
diversity performance.
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Introduction

Integrated circuits (IC) chip-package manufacturing pro-
cesses consist of taping, lapping, de-taping, wafer mount-
ing, wafer sawing, die attaching, epoxy curing, wire bonding,
molding, marking, trimming, solder plating, forming, testing
and packing (Lo and Tsao 2002). The purpose of wire bond-
ing is to use a fine gold wire to connect the IC bond pad with
the substrate inner lead. Since the wire bonding process is the
key process in an IC chip-package, it is an urgent problem
for the IC chip-packing industry to improve the wire bonding
process capability.

The wire bonding process is shown in Fig. 1. It starts from
positioning the capillary above the die bond pad with gold
ball formed at the end of the gold wire. The capillary then
descends and presses the gold ball onto the bond pad to form
the first bond. This is also called the ball bond. In a thermo-
sonic wire bonding system, ultrasonic power and vibration
force are applied with heat to the pad to facilitate the bonding
efficiency. After the ball is bonded to the die, the capillary
arises to the loop height position. The gold wire is then led by
a capillary to the substrate inner lead. The capillary deforms
the wire against the lead, producing a wedge-shaped bond
that is called the stitch bond or the second bond. The cap-
illary then arises to a preset height and a new wire ball is
formed on the tail of the gold wire. A hydrogen flame or an
electric frame may be used to form the ball.

The process parameters that have been proven to have
significant effects on the first and second bonds include the
vibration force, ultrasonic power, and processing time. The
quality criteria for the first bond include the ball shears and
ball sizes. It is well known in IC wire bonding practice that
the parameters leading to a large ball shear will also pro-
duce a large ball bond. However, the ball bond can not be too
large. A large ball bond will result in short circuits. Therefore,
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Fig. 1 The wire bonding process

these two quality criteria result in a two-objective optimiza-
tion problem, i.e., maximizing the ball shear and keeping
the ball size at a preset value. However, these two required
quality criteria are conflict. It is necessary to capture a set
of Pareto-optimal process parameters for setting the IC wire
bonding process.

With the rapid development of computational techniques,
many multi-objective evolutionary algorithms (MOEAs),
multi-objective tabu search (MOTS) and multi-objective
simulated annealing (MOSA) have received considerable
attention and been used to solve the multi-objective optimi-
zation problems (MOOPs) (Schaffer 1985; Goldberg 1989;
Fonseca and Fleming 1993; Horn 1994; Srinivas and Deb
1995; Deb et al. 2002; Cochran et al. 2003; Kulturel-Konak
et al. 2006; Varadharajan and Rajendran 2005). They all can
find the possible Pareto-optimal solutions to decision makers.
The most important differences among these algorithms are
the strategies used to generate the Pareto-optimal solutions.

Recently, immune algorithm (IA) has been used by some
researchers to solve multi-model and combinatorial opti-
mization problems (Khoo and Situmdrang 2003; Chen and
You 2005). IA is an adaptive system, inspired by theoreti-
cal immunology and observed immune functions, principles
and models. It is not only related to the creation of abstrac-
tion or metaphorical models of the biological immune sys-
tem, but also includes theoretical immunology models being
applied to tasks such as optimization, control, and autono-
mous robot navigation. Chun et al. (1999) used IA to opti-
mize the shape of electromagnetic devices. They modified a
GA-based search procedure to solve the multi-objective opti-
mal problem (MOOP) in a structural system. Yoo and Hajela
(1999) used IA to solve the MOOP by applying a utility func-
tion and a weighting mechanism to convert a multi-criteria
problem into a single-objective problem. Lin et al. (2003)
applied IA to optimize the switching operation for distribu-
tion loss minimization and loading balance by merging two
objective functions into an overall objective function. Kim
and Lee (2004) proposed an intelligent controller for a non-
linear power plant based on IA and the multi-objective fuzzy
approach. They used the membership function concept to
transform the multiple objective values into a fuzzy set for
optimization. In short, these researchers tried to convert the
multi-objective functions into a single objective when they

applied an IA to optimize the MOOPs. However, the IA is not
suitable for solving the multi-objective optimization prob-
lems when the objective functions are conflict, such as the IC
wire bonding process. Therefore, it is necessary to develop a
multi-objective immune algorithm (MOIA) that can find the
optimal parameters for the conflict output quality criteria for
the IC wire bonding process.

The performance of an MOIA depends on the appropri-
ate design of the fitness evaluation method and the strategies
used to generate the Pareto-optimal solutions. The fitness
function between the process parameters and quality criteria
in the IC wire bonding process is still unknown and needs to
be defined. However, the back-propagation neural network
(BPN) has been proven to be very useful for modeling a
complex manufacturing process. Therefore, in this research
the BPN is used to establish the nonlinear multivariate rela-
tionships between the wire boning parameters and quality
criteria, and used as the fitness function. Regarding to the
definition of the Pareto-optimal solutions, Deb (2001) used
the domination concept to determine the Pareto-optimal solu-
tions. Ho et al. (2004) proposed a generalized Pareto-based
scale-independent fitness function (GPSIFF) that considered
the quantitative fitness values in Pareto space for both domi-
nated and non-dominated individuals to determine the
Pareto-optimal solutions. The GPSIFF not only maintains the
essence of domination concepts proposed by Deb (2001), but
also has quantitative evaluation of solutions. Therefore, the
GPSIFF is applied in this research to evaluate the candidate
solutions and to generate the Pareto-optimal solutions.

In short, the objective of this research is to propose an
integrated MOIA that combines IA with BPN and GPSIFF
approaches to find out the Pareto-optimal process parame-
ters for the first bond of the IC wire bonding process. The
BPN is used to calculate the fitness function values and the
GPSIFF is applied to find the Pareto-optimal solutions in
optimizing a multi-objective problem. The artificial neural
network, Pareto-optimal solution and immune algorithm are
briefly described in “Multiple biology-inspired algorithm”.
The proposed integrated approach is then presented in “The
proposed MOIA approach”. Implementation results of the
proposed approach are then illustrated in “Application to an
IC wire bonding process”. Finally, concluding remarks are
made in “Conclusions”.

Multiple biology-inspired algorithm

Biology-inspired algorithms, such as artificial neural net-
works, evolutionary algorithms, immune algorithm, and ant
colony optimization algorithm etc, are computational tech-
niques used to solve scientific and engineering problems by
imitating biological principles and behaviors. In the follow-
ing subsections, artificial neural networks, multi-objective
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Fig. 2 A three-layer feed-forward neural network structure

evolutionary algorithms, artificial immune system and
immune algorithm are introduced.

Artificial neural networks

Artificial neural networks (ANNs) mimic human brains in
learning the relationship between certain inputs and outputs
from experience. They are information processing systems
that have the abilities to learn, recall and generalize from
training data. An ANN consists of several layers of a large
of highly interconnected computational units called neurons.
Figure 2 is the general structure of a three-layer feed-forward
ANN. The process of adjusting the connection weights by
repeatedly exposing the network to known input–output data
is called training. The error back-propagation neural (BPN)
learning method is the most popular and successful training
technique. For each input–output pair (x, y), the back-propa-
gation algorithm first calculates the output y′ by propagating
x forward from input layer to output layer. The error signal,
||y − y′||, is back propagated from the output layer to input
layer to update the connection weights. A trained ANN can
take inputs and produce outputs very quickly, which is an
advantage in doing optimization in the proposed approach.
Details of the error back-propagation learning method can
be found in Hornik et al. (1989).

ANNs have been proved to be universal estimators, hence
they are used to model complex manufacturing processes
and to identify the optimal process setting. In this research,
the ANN with the error back-propagation learning algorithm
is used to construct an approximate model for the IC wire
bonding process, and used to calculate the fitness function
values.

Multi-objective evolutionary algorithms and Pareto-optimal
solutions

Many optimization problems in engineering applications
inherently involve optimizing multiple conflict objectives.
Multi-objective evolutionary algorithms (MOEAs) are

especially appropriate to solve these multi-objective nonlin-
ear optimization problems because they can capture a set of
Pareto-optimal solutions in a single run of the algorithm. In
general, the domination concept is applied to determine the
Pareto-optimal solutions in the MOEAs. In the domination
concept, a comparison is made to determine whether one
solution dominates the other solution or not. A solution X1

is said to dominate the other solution X2, if the following
conditions are satisfied: (Deb 2001)

Condition 1: The solution X1 is no worse than X2 in all
objectives.

Condition 2: The solution X1 is strictly better than X2 for
at least one objective.

If one of the above conditions is not satisfied, the solution
X1 does not dominate the solution X2. For example, let us
consider a two-objective (Max–Min) optimization problem
with five different solutions in the objective space, as illus-
trated in Fig. 3. We assume that objective 1 is to be maximized
while objective 2 is to be minimized. Since both objectives
are equally important to the decision maker, it is usually diffi-
cult to find a solution that is the best with respect to these two
objectives. The domination concept can be used to determine
the better solution between any two solutions in terms of both
objectives. For instance, if solutions A and C are compared,
solution C is better than solution A in both objectives 1 and
2. In this way, both of the domination conditions are satis-
fied. Therefore, solution C dominates solution A. Let us take
another example by comparing solution A and solution E.
Here, solution E is better than solution A in objective 1 and
solution E is no worse (equal) than solution A in objective 2.
Therefore, both of the domination conditions are also satis-
fied, and solution E is said to dominate solution A. By using
the domination concept to compare the solutions in multiple
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Fig. 3 An example of a two-objective optimization problem with five
solutions
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Fig. 4 The mechanisms of the artificial immune system and biological immune system

objectives, most MOEAs can find all of the non-dominated
solutions that are also called the Pareto-optimal solution.

Another simple and easy way to determine the Pareto-
optimal solution is called the generalized Pareto-based scale-
independent fitness function (GPSIFF). The basic idea in
GPSIFF is that it evaluates the domination of each solution
using a score value. The score value of a solution X is cal-
culated according to the following score function:

score(X) = p − q + c (1)

where, p is the number of solutions dominated by X, and q

is the number of solutions which dominate X. The scaling
constant c is used to get a positive fitness value.

By calculating the score values for all solutions, the
Pareto-optimal solutions that have the higher score values
can be found. Let us take the five solutions in the Fig. 3 as an
example and let’s set c to 5. For the solution A, it is found that
one solution (B) is dominated by A (i.e., p = 1) and two
solutions (C and D) dominate A (i.e., q = 2). Therefore,
the score value of A is 1 − 2 + 5 = 4. By this way, we can
calculate the score value for all solutions and find the Pareto-
optimal solutions that have the higher score value. For the
case in Fig. 3, score (B) = 0, score (C) = 8, score (D) = 4,
and score (E) = 8. Therefore, solutions C and E are the two
Pareto-optimal solutions illustrated using the white points in
Fig. 3 because they have the highest score value. In this study,
the GPSIFF concept is applied to determine the Pareto-opti-
mal solutions for the IC wire bonding process.

Artificial immune system (AIS) and immune algorithm (IA)

Artificial Immune System (AIS), emerged in the 1990s as
a new branch in computational intelligence by imitating the

biological immune system, are used in optimization, pattern
recognition, fault detection, and the other applications in the
field of science and engineering problems. Immune algorithm
is one of AISs used to solve optimization problems. Figure 4
shows the mechanisms of the biological immune system and
artificial immune system.

The biological immune system is a complex adaptive sys-
tem that protects living bodies from the invading of foreign
antigens, such as viruses and bacteria. There are three types
of immunity in human body, the innate immune response,
humoral immunity and the cell-mediated immunity. When an
infectious foreign antigen attacks the human body, the innate
immune system is activated as the first line of defense. It is
called innate immune response (IIR). The most important cell
in the IIR is phagocyte. Some phagocytes have the ability to
present antigens to other cells, being termed antigen-present-
ing cell (APC). The APC interprets the antigen appendage
and extracts the features, by processing and presenting anti-
genic peptides on its surface to the T-cells and B-cells. The
cells in the adaptive system are able to develop an immune
memory so that they can recognize the same antigenic stimu-
lus when it is presented to the organism again. When a B-cell
recognizes an antigen, the B-cell will produce antibodies by
the bone marrow. The bone marrow then generates a distinct
chemical structure which is placed on the outer surface of
the lymphocyte to act as a receptor. The antigens will only
bind to these receptors with which it makes a good fit. The
strength of the binding between an antigen and an antibody
is called the affinity or degree of match.

The antibody production in response to a determined infec-
tious antigen is the humoral immunity and the cell-mediated
immunity by lymphocytes which are responsible for recogni-
tion and elimination of the antigen. The former takes part in

123



J Intell Manuf (2008) 19:361–374 365

the humoral immunity secretes antibodies by the clonal pro-
liferation while the latter takes part in cell mediated immu-
nity. Moreover, B-cells are also affected by Helper T-cells
during the immune responses. The Helper T-cell plays a
remarkable key role for deciding the immune system toward
the cell mediated immunity or the humoral immunity, and
connects the non-specific immune response to make a more
efficiency specific immune response. The Killer T-cells
destroy the infected cell whenever they recognize the infec-
tion and the Helper T-cells trigger clonal expansion and sup-
press antibody formation.

The AIS is developed by imitating the mechanism of the
biological immune system. It consists of antigen, antibody,
lymphatic system, memory cells, suppresser cells and evo-
lutionary operators. When AIS is applied to solve an opti-
mization problem, the problem can be treated as the antigen
and the solution to the problem as the antibody. The affinity
calculation in the lymphatic system is used to judge if the
antibody matches the antigen. If it is matched, the memory
cells will produce appropriate antibodies to remove the anti-
gen. If it is not matched, the evolutionary operators will be
applied to produce matched antibodies to remove the antigen
by crossover or mutation operations. Generally, the suppres-
sor cell is used to eliminate the surplus similar candidate
solutions while the memory cell is used to keep the candi-
date solutions. The basic steps of an AIS algorithm in solving
a single objective optimization problem can be summarized
as follows:

Step 1: Encode the antibodies and generate antibodies (pop-
ulations) randomly

Represent the problem variable as an antibody with a fixed
length similar to a chromosome in genetic algorithms, and
randomly generate the initial antibody population. The struc-
ture of antibodies is shown in Fig. 5. The size of the antibody
population is denoted as N . Each antibody has a length of q

digit and each digit is a binary code.
Step 2: Calculate the affinity

Calculate the affinity ayv,w between two antibodies v and
w according to Eq. 2:

Fig. 5 The structure of the antibody population

ayv,w = (1 + E(2))−1 (2)

E(2) is the diversity evaluation between two antibodies
according to Eq. 3 for N = 2.

E(N) = 1

q

q∑

j=1

Ej(N) (3)

Ej(N) =
K∑

k=1

Pk,j log

(
1

Pk,j

)
(4)

where, j = 1, 2, . . ., q, q is the length of an antibody. i =
1, 2, . . ., N , N is the population of antibodies. k = 1, 2, . . .,

K , K is the number of codes. For a binary code, K equals 2.
Pk,j is the probability of j antibody code whose value is k.
E(N) is the diversity among all the antibodies.

In addition, the affinity axv between an antibody v and an
antigen is calculated according to the Eq. 5.

axv = optv (5)

where, optv corresponds to the evaluated value of the func-
tion being optimized. It is the affinity between an antigen and
the antibody v.
Step 3: Create the memory cell and the suppresser cell

Determine the concentration Cv of each antibody accord-
ing to the following equations:

cv = 1

N

N∑

w=1

acv,w (6)

acv,w =
{

1 ayv,w ≥ δ1

0 otherwise
(7)

where δ1 is the pre-specified threshold and ayv,w is the affin-
ity between antibodies v and w.

If Cv is greater than a given threshold δ, it means that the
antibody v is very similar to other antibodies in the candi-
date pool and therefore must be put into a suppressor cell.
Otherwise, it is put into a memory cell. The suppressor cell
is used to eliminate the surplus similar candidate solutions
while the memory cell is used to keep the candidate solutions
Step 4: Proliferation and selection

The antibodies that are put into the suppressor cell or are
the same with the antibodies in the suppressor cell are deleted
from the candidate pool and replaced with the antibodies
in the memory cell. The expected proliferation rate ev of
the antibody v in the memory cell is calculated according
to the Eq. 8. Antibodies presenting higher affinities with an
antigen axv have higher probability of being selected for
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proliferation, while antibodies having higher affinity with
antibodies in the suppressor cell are suppressed for prolifer-
ation.

ev = axv

s∏

l=1

(1 − ayv,l) (8)

where, s is the number of suppressor cell.
Step 5: Generation of new antibodies using GA operations,
e.g., crossover and mutation

To allow for a response to unknown antigens, generate
new antibodies by using genetic operators such as crossover
and mutation procedures corresponding to its probability.
Step 6: Termination criterion

Repeat steps 2–5 until the predefined terminal condition
is reached.

The proposed MOIA approach

In this study, an integrated MOIA approach that can be used
to find the Pareto-optimal solutions for the multi-objective
optimization problem with conflict objectives is proposed.
The advantages of the proposed MOIA are that this approach
not only can be applied to solve multi-objective optimization
problem when the objectives are conflict but also can quickly
and effectively find the Pareto-optimal solutions because of
the characteristics of adaptive immune system and recogni-
tion memory. The MOIA approach integrates artificial
immune algorithm with BPN and GPSIFF. The integration
of BPN and GPSIFF allows the MOIA approach to quan-
titatively evaluate the solutions and find the Pareto-optimal
solution. The MOIA approach, being based on the artificial
immune algorithm, takes advantages of the memory cell and
suppressor cell mechanisms, and can efficiently and effec-
tively find the Pareto-optimal solutions because the suppres-
sor cell has the effect of eliminating the search of the similar
candidate solutions and the memory cell has the effect of
keeping the good candidate solutions. The flow diagram of
the proposed approach is shown in Fig. 6. The first step of the
proposed approach is to initialize the problem and generate
some candidate solutions. The second step is to calculate the
affinity between the candidate solutions and calculates eval-
uation value for each solution. The third step is to create the
memory cell and the suppressor cell and assign antibodies
to the memory cell or the suppressor cell. The fourth step
is to delete the dominated solution from the candidate solu-
tion pool and replace the solution from the memory cell. The
fifth step is to generate new candidate solutions using GA
operators. The details of the proposed approach are shown
as follows:

Step 1: Antibody representation and generation
Represent the problem variable as an antibody with a fixed

length which is similar to a chromosome in GA, and ran-

No
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Step 3.2: Suppressor cell Step 3.1: Memory cell

Step 2: Affinity calculation
(GPSIFF)

Pareto-optimal 
front

Step 1: Antibody representation

Generation of new 
antibody population

Step 5: Generation of new antibodies by using 
GA operators

Yes

Step6: Termination test

If antibody is 
Non-Dominated

Step 3: Formation of the memory 
cell and suppressor cell

BPN NetworkBPN Network

Inputs

Outputs

BPN Model

Fig. 6 Flow diagram of the proposed MOIA and BPN approach

domly generate initial antibody population that is also called
the candidate pool. The structure of an antibody population
is shown in Fig. 5. The size of the antibody population is N .
Each antibody has a length of q digit (e.g., q = 30) and each
digit is a binary code. The process parameters of an IC wire
bonding are used to create the antibody for the MOIA. The
search ranges for these three parameters are 5–15 for force,
40–60 for power and 15–25 for time. The binary string repre-
sentation for coding antibody (chromosome) is adopted for
this MOIA and each process parameter that is normalized
in the interval of 0–1 is encoded into 10 binary digits. For
example, if X1 = 0.129, X2 = 0.256, and X3 = 0.065, then
the antibody will be shown as follows:

0010000001 0100000000 0001000001

Step 2: Affinity calculation
This step calculates the affinity between any two antibod-

ies in the candidate pool using Eqs. 2–4 and generates the
affinity between an antibody and the antigen using Eq. 5.
In this research, the BPN is used to generate the multiple
response values for each antibody. The affinity score(v) for
an antibody v is then calculated using the GPSIFF as shown
in Eq. 1 to represent the affinity between the antibody v and
the antigen, and to find the Pareto-optimal solutions.
Step 3: Formation of the memory cell and the suppressor cell

According to Eq. 1, if an antibody v has q = 0, then
it is a non-dominated (Pareto) solution. If an antibody v has
q > 0, then it is a dominated solution. Therefore, an antibody
is put into the memory cell if its q value is zero (q = 0);
Otherwise, it is put into the suppressor cell. The mechanisms
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of the memory cell and the suppressor cell are shown in the
following:

Step 3.1: The memory cell (when q=0)
Assume the number of memory cells is w(w = 1, 2,

. . . , m) in the MOIA system. In this research, the memory
cell is used to store the non-dominated (Pareto) solutions
according to the value of score(v) and ayv,w.

1. When the memory cell is not full, the new non-dominated
solution v is put into the memory cell.

2. If the memory cell is full, the new non-dominated solu-
tion v is stored in a virtual memory cell and an affinity
calculation ayv,w between the new non-dominated solu-
tion v and those old non-dominated solution w (w =
1, 2, . . . , m) in the memory cell is required for this assign-
ment. The calculation and assignment processes are as
follows:

(1) Calculate the affinity ayv,w between the antibody
v in the virtual memory cell and the antibody w(for
w = 1, 2, . . . , m) in the memory cell according
to Eqs. 2–4.

(2) If the score (v) of the new non-dominated solution
v is larger than that of the old non-dominated solu-
tion w(w = 1, 2, . . . , m) in the memory cell and
all the affinity ayv,w are smaller than the thresh-
old δ1, which means that the new non-dominated
solution v and the old non-dominated solution w

are not similar, the new non-dominated solution v

is put into the memory cell to substitute for the
old non-dominated solution that has the minimum
score value.

(3) If the score (v) of the new non-dominated solu-
tion v is larger than that of the old non-dominated
solution w(w = 1, 2, . . . , m) in the memory cell
and one of the affinity value ayv,w is greater than
the threshold δ1, which means that the new non-
dominated solution v and the old non-dominated
solution w are similar. The new non-dominated
solution v is not put into the memory cell.

The δ1 is the pre-specified threshold to check if the new
antibody v and antibody w are similar.
Step 3.2: The suppressor cell (when q > 0)

Assume the number of suppressor cells is t (t = 1, 2,

. . . , s) in the MOIA system. In this research, the suppressor
cell is used to store the dominated (Non-Pareto) solutions
according to the value of score(v) and ayv,t .

1. When the suppressor cell is not full, then the new dom-
inated solution v is put into the suppressor cell.

2. If the suppressor cell is full, the new dominated solution
v is stored in a virtual suppressor cell and an affinity

calculation ayv,t between the new dominated solution
v and the old dominated solutions t (t = 1, 2, . . . , s) in
the suppressor cell is required for this assignment. The
calculation and assignment processes are as follows:

(1) Calculate the affinity ayv,t between the antibody v

in the virtual suppressor cell and the antibody t (for
t = 1, 2, . . . , s) in the suppressor cell according to
Eqs. 2–4.

(2) If the score (v) of the new non-dominated solution
v is larger than that of the old non-dominated solu-
tion t (t = 1, 2, . . . , s) in the suppressor cell and
all the antibody ayv,t are smaller than the threshold
δ1 which means the new non-dominated solution v

and the old non-dominated solution t are not sim-
ilar, the new dominated solution v is put into the
suppressor cell to substitute for the old non-domi-
nated solution that has the minimum score value.

(3) If the score (v) of the new non-dominated solution
v is larger than that of the old non-dominated solu-
tion t (t = 1, 2, . . . , s) in the suppressor system
and one of the affinity value ayv,t is greater than the
threshold δ1 which means that the new non-domi-
nated solution v and the old non-dominated solu-
tion t are similar. The new non-dominated solution
v is not put into the suppressor cell.

A brief illustration of the Step 3 is shown in Fig. 7. In this
example, the number of population N is 6, the number of
memory cell m is 3, the number of suppressor cell s is 3,
the constant c of score(v) is 5, a pre-specified threshold δ1 is
0.75 and both the objectives Y1 and Y2 are to be maximized.
According to the score (v) value and the q value, the first
and the fourth antibodies are put into the suppressor cell, and
the second, the third, and the fifth antibodies are put into the
memory cell, which results in the memory cell being full.
The sixth antibody is put into the virtual memory cell and
finally replaces the third antibody in the memory cell.
Step 4: Restrain and reproduce of antibodies in the candidate
pool

In this step, the restrain procedure is used to avoid another
searching for the dominated solutions stored in suppressor
cell again. The reproduce procedure is used to keep the non-
dominated solutions in the candidate pool in the next genera-
tion. In the restrain procedure, an affinity calculation between
the antibody v in the candidate pool (v = 1, 2, 3. . ., i, i is
the number of populations in the candidate pool) and the
dominated solution t (t = 1, 2, 3, . . ., s, s is the number of
suppressor cell ) in the suppressor cell is conducted. If the
antibody v is similar to the dominated solution t , the anti-
body v is then deleted from the candidate pool. Otherwise, the
antibody is kept in the candidate pool. The deleted antibodies
will be replaced by the non-dominated solutions stored in the
memory cell. In the reproduce procedure, the non-dominated
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Fig. 7 A brief illustration of Step 3 of the proposed MOIA

solution with the highest expected value ev in the memory
cell will be selected and reproduced first. The reproduce pro-
cedure proceeds in this way until all the deleted antibodies in
the candidate pool have been substituted. The expected value
ev of the proliferation of the antibody v is calculated using
the following equation:

ev = score(v)
m∑
1

score(v)

(9)

where m is the number of the memory cell.
Step 5: Generation of new antibody population by using GA
operators

Create a couple of new antibodies by applying genetic
operators in this step, such as the crossover and mutation.
A two-cut-point crossover operation is applied to generate
the new antibodies with the crossover probability Pc and the
one-gene mutation operation with a pre-specified mutation
probability Pm is applied to generate the new antibodies.
Step 6: Termination criterion

Stop the evolution of the MOIA when a pre-defined maxi-
mum evolution (e.g., generation number=5000) is reached.

The Step 2 to Step 5 are repeated until the maximum evolu-
tion is reached.

Application to an IC wire bonding process

Experimental results and BPN results

The three process parameters, each with three levels, and
some interactions between process parameters are investi-
gated in this research. The process parameters and their fac-
tor levels are summarized in Table 1. The required quality
responses of the IC wire bonding process are to maximize
the ball shear and to keep the ball size at a preset value.

Table 1 Factors and levels

Factors Levels

Level 1 Level 2 Level 3

A Force 5 10 15

B Power 40 50 60

C Time 15 20 25
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In order to save on experimental costs and time, the
orthogonal array (OA) experiment rather than a full factorial
experiment design is applied to obtain the quality response
measurements of the IC wire bonding process. The selection
of use of an OA depends on the degree of freedom of the fac-
tors and interactions. In this research, three process param-
eters, each with three levels, and the interactions between
force (A) and power (B), force (A) and time (C) are investi-
gated. The calculations of the degrees of freedom are shown
as follows:

The degrees of freedom of the main factors = (3−1) ∗ 3 = 6;
The degrees of freedom of the interactions =(3−1) ∗ (3−1) ∗
2 = 8;

The summation of the degrees of freedom from the main
factors and interactions is 14. This means we have to choose
an L14 OA at least. However, all of the parameters have three
levels, the OA must be a cube of 3 (e.g., L9, L27, L81).
Therefore an L27(313) OA is used to conduct the experi-

ment in this research. The L27(313) can lay out 27 trials, up
to 13 factors in columns, and 3 factor levels. The layout of
the L27(313) OA is shown in Table 2. It also shows the two
output responses for each experimental trial. For each trial
in the Table 2, 20 replications are conducted and the output
responses (ball shear and ball size) are average values.

The ball shear and ball size for training are the output
response based on the process parameters shown in Table 1
and used to train the BPN. The ball shear and ball size for
testing are the output response based on the process parame-
ters that are slightly different from those on Table 1, and used
to test the BPN. A BPN with three input nodes, one hidden
layer with four nodes, two output nodes (as shown in Fig. 2) is
applied to learn the nonlinear relationships between the pro-
cess parameters and the ball shear and ball size for training.
The learning rate is set at 0.7 and momentum rate is set at
0.3. After 5,000 epochs the BPN converges to reasonable out-
puts. The trained BPN is then tested using the test ball shear

Table 2 The L27 (313) orthogonal array and output responses

Input parameters Output responses

A B A × B A × B C A × C A × C e e e e e e Ball shear Ball size

1 1 1 1 1 1 1 1 1 1 1 1 1 1 10.0 35.0

2 1 1 1 1 2 2 2 2 2 2 2 2 2 11.0 36.0

3 1 1 1 1 3 3 3 3 3 3 3 3 3 13.0 38.0

4 1 2 2 2 1 1 1 2 2 2 3 3 3 12.5 40.0

5 1 2 2 2 2 2 2 3 3 3 1 1 1 14.0 38.5

6 1 2 2 2 3 3 3 1 1 1 2 2 2 14.5 39.5

7 1 3 3 3 1 1 1 3 3 3 2 2 2 13.0 38.0

8 1 3 3 3 2 2 2 1 1 1 3 3 3 14.0 39.0

9 1 3 3 3 3 3 3 2 2 2 1 1 1 15.5 40.0

10 2 1 2 3 1 2 3 1 2 3 1 2 3 11.5 36.5

11 2 1 2 3 2 3 1 2 3 1 2 3 1 13.0 38.0

12 2 1 2 3 3 1 2 3 1 2 3 1 2 15.0 40.0

13 2 2 3 1 1 2 3 2 3 1 3 1 2 15.5 40.5

14 2 2 3 1 2 3 1 3 1 2 1 2 3 16.5 41.5

15 2 2 3 1 3 1 2 1 2 3 2 3 1 17.5 42.0

16 2 3 1 2 1 2 3 3 1 2 2 3 1 15.5 40.5

17 2 3 1 2 2 3 1 1 2 3 3 1 2 17.0 41.5

18 2 3 1 2 3 1 2 2 3 1 1 2 3 16.5 41.5

19 3 1 3 2 1 3 2 1 3 2 1 3 2 9.0 35.0

20 3 1 3 2 2 1 3 2 1 3 2 1 3 12.5 37.5

21 3 1 3 2 3 2 1 3 2 1 3 2 1 13.0 40.0

22 3 2 1 3 1 3 2 2 1 3 3 2 1 16.0 41.0

23 3 2 1 3 2 1 3 3 2 1 1 3 2 14.5 39.5

24 3 2 1 3 3 2 1 1 3 2 2 1 3 17.0 42.5

25 3 3 2 1 1 3 2 3 2 1 2 1 3 16.0 41.0

26 3 3 2 1 2 1 3 1 3 2 3 2 1 17.0 42.0

27 3 3 2 1 3 2 1 2 1 3 1 3 2 18.5 42.0
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Table 3 BPN test results for the first bond

NO. Ball shear Ball size Ball shear test Ball size test Ball shear error Ball size error

1 14 38 13.3752 38.8292 0.6248 0.8292

2 13.5 37.5 13.7111 39.1360 0.2111 1.6360

3 13 38 14.3632 39.6869 1.3632 1.6869

4 13.5 40 13.6539 39.0883 0.1539 0.9117

5 13 38.5 13.9948 39.3856 0.9948 0.8856

6 13.5 39.5 14.7618 40.0147 1.2618 0.5147

7 13 38 13.9410 39.3259 0.9410 1.3259

8 14 39 14.3182 39.6514 0.3182 0.6514

9 14.5 40 15.1890 40.3513 0.6890 0.3513

10 14 38.5 13.4978 38.9285 0.5022 0.4285

11 13 38 13.8837 39.2785 0.8837 1.2785

12 14 40 14.6609 39.9270 0.6609 0.0730

13 13.5 39.5 13.8730 39.2592 0.3730 0.2408

14 13.5 39.5 14.2472 39.5883 0.7472 0.0883

15 14 40 15.1084 40.2862 1.1084 0.2862

16 14 40.5 14.3262 39.6187 0.3262 0.8813

17 13.5 41.5 14.6888 39.9399 1.1888 1.5601

18 14.5 39.5 15.5697 40.6395 1.0697 1.1395

19 13 39.5 13.7206 39.1045 0.7206 0.3955

20 13.5 38.5 14.1322 39.4798 0.6322 0.9798

21 14 40 15.0060 40.1997 1.0060 0.1997

22 13.5 40.5 14.2587 39.5536 0.7587 0.9464

23 14.5 39.5 14.6132 39.8741 0.1132 0.3741

24 14 39 15.4918 40.5782 1.4918 1.5782

25 13.5 40.5 14.8988 40.0456 1.3988 0.4545

26 13 41 15.2077 40.3301 2.2077 0.6699

27 14.5 37 15.9797 40.9381 1.4797 3.9381

Ball shear (Mean error=0.8603); Ball size (Mean error=0.9002)

and ball size and its corresponding process parameters. The
result on Table 3 shows that the BPN has very small square
root error (SRE) and is an useful tool to model the relation-
ships between the process parameters and output responses.

MOIA results

It is very common in the wire bonding practice that the param-
eters leading to a large ball shear will also produce a large
ball bond. However, the ball bond can not be too large. A
large ball bond will result in short circuits. The reason of
the ball size should be smaller than 40µm is a production
engineering consideration. In the wire bonding process, the
ball size is about 1.5–2 times of the diameter of the gold
wire (20µm) and the ball size cannot be larger than the open
window of the bond pad (43µm). Hence, in this research the
ball size is set to be smaller than 40µm. Therefore, the “ball
sizes” response is nominal the best. In general, the max-nom-

inal case is less frequently discussed due to the Pareto-opti-
mal solutions display. To easily display the solution space
and the Pareto-optimal front, the Max-Nominal problem is
transformed into a Max–Max multi-objective optimization
problem using the following equation.

index = −[log(|ball size − 40|)], index > 0 (10)

In order to show the solution space of the multi-objective
problem, 10,000 antibodies are randomly generated and the
BPN is applied to calculate the multiple response values for
each antibody. Figure 8a shows the original solution space
and the Pareto-optimal front of the Max-Nominal two-
response problem. Figure 8b shows the transformed solution
space and the Pareto-optimal front of the Max–Max two-
response problem. In the Fig. 8a, b, the set of the black points
is the solution space of the multi-objective wire bonding
problem and the gray curve represents the possible
Pareto-optimal front.
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Fig. 8 (a) The original solution space of the two-response problem (Max-Nominal); (b) The transformed solution space of the two-response
problem (Max–Max)

Table 4 The MOIA parameters

The parameters of MOIA Value

A. Antibody population size 20

B. Iteration number 2,000

C. Affinity threshold δ1 0.95

D. Memory cell size 20

E. Suppressor cell size 40

F. Crossover rate 0.8

G. Mutation rate 0.02

The parameters that may affect the MOIA search quality
include antibody population size, iteration number, affinity
threshold δ1, memory cell size, suppressor cell size, crossover
rate and mutation rate. By performing an orthogonal array
experiment for these factors, the optimal parameters of the
MOIA in this study are shown in Table 4. These parameters
of the MOIA are used to find the optimal process parameters
for the IC wire bonding process. After running the proposed
MOIA, as described in “The proposed MOIA approach” with
the parameters for the two-response (Max–Max) problem
in this study, 20 Pareto-optimal solutions were found and

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f1 shear

ezis 2f

population size:20 generation:2000

Fig. 9 The solution space and the Pareto-optimal front of the Max–
Max optimal problem in an IC wire bonding process

shown as the small circle points in Fig. 9. The normalized
process parameter values and their corresponding response
values are summarized in the Table 5. Because these process
parameter values and the corresponding response values had
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Table 5 The summary table of the normalized parameter values and
corresponding response values of the 20 Pareto-optimal solutions

Force Power Time Ball shear Ball size

1 0.4800 0.9663 0.9995 0.8246 0.1636

2 0.5518 0.9751 0.9966 0.8609 0.1454

3 0.8096 0.9990 0.9995 0.9305 0.1177

4 0.1929 0.9995 0.9981 0.6784 0.4493

5 0.1694 0.9995 0.9976 0.6710 1.2237

6 0.2105 0.9995 0.9966 0.6846 0.3910

7 0.3506 0.9487 0.9961 0.7559 0.2166

8 0.2964 0.9976 0.9966 0.7206 0.2679

9 0.4194 0.9966 0.9985 0.7851 0.1905

10 0.2651 0.9858 0.9990 0.7077 0.2958

11 0.1699 0.9985 0.9966 0.6712 0.7987

12 0.1851 0.9995 0.9976 0.6759 0.4896

13 0.1714 0.9888 0.9981 0.6723 0.5860

14 0.1714 0.9995 0.9985 0.6715 0.7259

15 0.1694 0.9981 0.9990 0.6710 0.9416

16 0.3272 0.9888 0.9990 0.7367 0.2413

17 0.2334 0.9946 0.9966 0.6937 0.3417

18 0.1714 0.9956 0.9995 0.6718 0.6252

19 0.1694 0.9990 0.9981 0.6710 1.0593

20 0.1699 0.9985 0.9995 0.6711 0.8414

Table 6 The actual parameter values and corresponding response val-
ues of the 20 Pareto-optimal solutions

Force Power Time Ball shear Ball size

1 9.800 59.326 24.995 16.833 36.227

2 10.518 59.502 24.966 17.179 36.090

3 13.096 59.980 24.995 17.840 35.883

4 6.929 59.990 24.981 15.445 38.370

5 6.694 59.990 24.976 15.374 44.178

6 7.105 59.990 24.966 15.504 37.933

7 8.506 58.975 24.961 16.181 36.624

8 7.964 59.951 24.966 15.845 37.009

9 9.194 59.932 24.985 16.458 36.429

10 7.651 59.717 24.990 15.724 37.219

11 6.699 59.971 24.966 15.376 40.990

12 6.851 59.990 24.976 15.421 38.672

13 6.714 59.775 24.981 15.387 39.395

14 6.714 59.990 24.985 15.379 40.444

15 6.694 59.961 24.990 15.375 42.062

16 8.272 59.775 24.990 15.998 36.810

17 7.334 59.893 24.966 15.590 37.563

18 6.714 59.912 24.995 15.382 39.689

19 6.694 59.980 24.981 15.374 42.945

20 6.699 59.971 24.995 15.376 41.310

been normalized for the BPN operation, we have to make a
transformation for the data in order to restore them. The final
actual process parameters and their corresponding responses
are shown in Table 6. These 20 process parameters are the
optimal process parameters that should be shown to the deci-
sion maker in the IC wire bonding process.

Performance of the proposed MOIA approach

In general, convergence and diversity are two key indexes
used to measure the search performance for the non-dom-
inated solutions. Convergence is the measure of the non-
dominated solutions that are close to the Pareto-optimal-
front. Diversity is the measure of non-dominated solutions
that are spread at the Pareto-optimal-front as far as possible.
A good MOEA technique should meet with these two key
performances. In this study, the “Error Ratio” proposed by
Veldhuzin and Lamont (2000) is applied to measure the conv-
ergence of the MOIA, and the “Spread metric” proposed by
Deb (2001) is applied to measure the diversity of the MOIA.
The formula used to calculate the convergence (Error Ratio,
ER) is shown in the following:

ER =
∑|Q|

t=1 ei

|Q| , where ei = 1 if /∈ P ∗; ei = 0,

otherwise. (11)

where, Q is the number of non-dominated solutions; P * is
the Pareto-optimal front solution.

The ER simply counts the number of the solutions of Q

which are not members of the Pareto-optimal front P *. The
Eq. 11 reveals that the ER takes a value between zero to one
and a smaller ER value means a better convergence to Pareto-
optimal front. When the ER=0, it means that all solutions are
members of the Pareto-optimal front P *. This is the best sit-
uation in applying the MOEA. In general, the smaller “ER”
value represents the better performance of the MOIA. For
example, let us consider a Max–Min optimization problem
as illustrated in Fig. 10. We assume that the set P ∗ (dot 1–5)
is the Pareto-optimal front solutions and the set Q (point A,
B, C and point D) is the non-dominated solutions. Once one
element of set Q lies on the Pareto-optimal front solutions
(P ∗), then the value of ei = 0. Otherwise, ei = 1. In the case
shown on the Fig. 10, we can find out that all the elements of
set Q don’t lie on P ∗. So all the value of ei for all four points
A to D are equal one (ei = 1). Therefore, the ER value is
calculated and shown as follows:

ER =
∑|Q|

t=1 ei

|Q| = 1 + 1 + 1 + 1

4
= 1

In the best situation, all the elements of the non-dominated
solution set Q obtained by the MOIA lie on the Pareto-opti-
mal front (P ∗). In this way, the ER value will be equal zero.
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Fig. 10 The illustrated example of Max–Min optimization problem to
calculate the convergence and diversity of MOIA

The formula used to calculate the diversity (Spread metric,
�) is shown as follows:

� =
∑M

m=1 de
m + ∑|Q|

t=1

∣∣di − d̄
∣∣

∑M
m=1 de

m + |Q| d̄ , 0 ≤ � ≤ 1 (12)

where, di is the crowding distance for the neighbor point solu-
tion, de

m is the distance between Q and P *, M is the number
of objectives (i.e., in two-objective problem, M =2), d̄ is the
mean of summation di.

When � = 0, it is an ideal outcome and it means that
the distribution of the obtained non-dominated solutions is
uniform. In general, a smaller “diversity” value means better
MOIA performance. Using the same case in Fig. 10, we show
the detailed coordinates for the Pareto optimal set (P *) and
non-dominated solution set (Q) in Table 7. We then used this
example to calculate the diversity value in the following:

d1 = |0.76 − 0.75| + |0.9 − 0.7| = 0.21;
d2 = |0.75 − 0.3| + |0.7 − 0.4| = 0.75;
d3 = |0.3 − 0.25| + |0.4 − 0.3| = 0.15;
de

1 = |0.9 − 0.76| + |0.9 − 0.9| = 0.14;
de

2 = |0.95 − 0.9| + |0.2 − 0.3| = 0.14;

d̄ = (0.21 + 0.75 + 0.15)

3
= 0.37;

diversity

= (0.14+0.15)+|0.21−0.37|+|0.75−0.37|+|0.15−0.37|
(0.14+0.15)+0.37 ∗ 3

= 0.75

Using the MOIA parameters shown in Table 3 and 5
replications are conducted to test the performance of the pro-
posed MOIA. The summary “Error Ratio” and “Spread met-

Table 7 The detail coordinates for the Pareto optimal set (P *) and
non-dominated solution set (Q) in calculating “diversity” value

P * f1 f2 Q f1 f2

1 0.9 0.95 A 0.76 0.9

2 0.8 0.7 B 0.75 0.7

3 0.7 0.45 C 0.3 0.4

4 0.5 0.35 D 0.25 0.3

5 0.25 0.2

Table 8 The summary table of “Error Ratio” and “Spread metric” of
MOIA technique

Trial no. Performance CPU time (min)

ER Spread

1 0.217 0.254 77.79

2 0.167 0.413 80.71

3 0.227 0.339 78.53

4 0.350 0.303 76.98

5 0.333 0.441 74.92

Mean 0.259 0.350 77.79

ric” of the MOIA technique is shown in Table 8. It is clearly
shown that the mean of “Error Ratio”=0.259. This means
that 74.1% of the whole non-dominated solutions found by
the MOIA are the Pareto-optimal front. In other words, they
are close to the Pareto-optimal front. The mean of “Spread
metric”=0.35. This means that diversity of the non-domi-
nated solution found using the MOIA is not an ideal uniform,
but is satisfactory. In short, the proposed integrated MOIA
approach can find the Pareto-optimal solutions for the deci-
sion maker, and the Pareto-optimal solutions have good per-
formance in convergence and diversity.

Conclusions

The wire bonding process is the key process in an IC chip-
package. It is an urgent problem for IC chip-package industry
to improve the wire bonding process capability. The first bond
of the wire bonding process is a multi-objective optimiza-
tion problem. Multi-objective evolutionary algorithms (MO-
EAs) have been used to solve multi-objective optimization
problems. They can provide all the possible Pareto- optimal
solutions for the decision maker. Artificial immune systems
(AISs), inspired by theoretical immunology and observed
immune functions, principles and models, are adaptive sys-
tems which have been applied to problem solving tasks such
as optimization, control, and autonomous robot navigation.
When compared to other well established MOEA techniques
such as vector evaluated genetic algorithm (VEGA),
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non-dominated sorting genetic algorithm(NSGA), multiple
objective genetic algorithm (MOGA), elitist non-dominated
sorting GA(NSGA), Niched-Pareto genetic algorithm
(NPGA), multi-population genetic algorithm (MPGA),
NSGA-II… etc., the field of the multi-objective immune
algorithm (MOIA) is still in its infancy. Not many industrial
MOIA applications have been reported in the literature.

In this research, an integrated MOIA that combines
immune algorithms with ANNs and GPSIFF approach is pro-
posed to find the optimal process parameters for an IC wire
bonding. The BPN neural network is used to establish the
nonlinear multivariate relationships between the wire bon-
ing parameters and the multi-responses, and is applied to
generate the multiple response values for each antibody. The
GPSIFF is used to measure the affinity for each antibody and
to find the Pareto-optimal solution. The algorithm of MOIA
with memory cell and suppressor cell mechanisms is devel-
oped. The antibody is put into memory cells or suppressor
cells depending on its affinity score value. The candidate
antibody that is similar to the antibodies in the suppressor
cell is deleted from the candidate pool and then is replaced
by the antibody in the memory cell. Because of this mecha-
nism, the MOIA can find the optimal solution in an efficient
and effective way. The proposed MOIA that integrated BPN,
GPSIFF, and IA is then applied to find the Pareto-optimal
parameters for the first bond of the IC wire bonding pro-
cess. Finally, we applied the “Error Ratio” to measure the
convergence of the MOIA, and applied the “Spread met-
ric” to measure the diversity of the MOIA. Implementation
results show that the proposed MOIA approach does pro-
vide Pareto-optimal solutions for the decision maker. The
Pareto-optimal solutions have good convergence and diver-
sity performance.
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