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Abstract Fault diagnostics are increasingly important for
ensuring vehicle safety and reliability. One of the issues in
vehicle fault diagnosis is the difficulty of successful interpre-
tation of failure symptoms to correctly diagnose the real root
cause. This paper presents an innovative Bayesian Network
based method for guiding off-line vehicle fault diagnosis. By
using a vehicle infotainment system as a case study, a num-
ber of Bayesian diagnostic models have been established for
fault cases with single and multiple symptoms. Particular
considerations are given to the design of the Bayesian model
structure, determination of prior probabilities of root causes,
and diagnostic procedure. In order to unburden the compu-
tation, an object oriented model structure has been adopted
to prevent the model from overly large. It is shown that the
proposed method is capable of guiding vehicle diagnostics in
a probabilistic manner. Furthermore, the method features a
multiple-symptoms-orientated troubleshooting strategy, and
is capable of diagnosing multiple symptoms optimally and
simultaneously.
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Introduction

With the increase in product and engineering complexity
of automobiles, fault diagnostics are becoming increasingly
important for vehicle safety and reliability. However, an auto-
motive system is hard to diagnose because of two reasons. (1)
An automotive system has a number of components and sub-
systems that interact with each other in complicated ways.
(2) The possible root causes and the observations available
to locate the real causes are numerous, leading to difficulty
of successful interpretation of fault symptoms and observa-
tions. The task of troubleshooting is to interpret initial failure
symptoms and derive a sequence of test to effectively and
accurately allocate the real root causes of failures.

Conventional troubleshooting flow diagrams, also called
fault trees, are widely employed to generate the test sequences
for guiding the diagnostic technician. Figure 1 shows an
example of a troubleshooting flow diagram for diagnosing a
fault in a modern vehicle infotainment system. Initiated from
the fault symptom, “SYS-NoSound”, this diagram guides the
users to locate the defect by telling them which test to per-
form step by step. It seems this is exactly what the user needs.
Actually, this method possesses several intrinsic drawbacks.
(1) It is a kind of “if and then” reasoning, and troubleshooting
decisions are made based on simple “yes” or “no” judgments.
In practice, judgement on the failure cause can be uncertain;
each troubleshooting step contains multiple uncertain options
to be considered by the user. This means that the fault diagno-
sis should ideally be guided in a probabilistic way. (2) In each
troubleshooting step, the user only has one fixed choice and is
forced to perform the test suggested by the method. The user
is prone to misdiagnosis if any of the tests in the diagram is
problematic or skipped over. (3) The method has a rigid struc-
ture and does not allow the users freedom of choice in terms
of their own diagnostic experiences and knowledge. (4) Each
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Fig. 1 A traditional
troubleshooting flow diagram

troubleshooting diagram only deals with a fault case with a
single symptom. For a fault case with multiple symptoms,
which is common place, the method diagnoses the failures
separately. This working mechanism does not allow all fail-
ures to be considered in an integrated manner, resulting in a
number of unnecessary or ineffective tests and checks.

A Bayesian Belief Network (BBN) is a probability based
modelling technique, and suitable for knowledge-based diag-
nostic systems. A BBN enables us to model and reason about
uncertainty, ideally suited for diagnosing real world prob-
lems where uncertain incomplete data exist. Therefore, it is
a suitable solution for troubleshooting complex automotive
systems. This paper presents an innovative method for auto-
motive fault diagnosis. By incorporating the BBN technique,
the proposed method overcomes the drawbacks of conven-
tional troubleshooting flow diagrams mentioned above. The
advantages and novelty of the proposed method are; (1) It is
probability-based method with the diagnostic decision made
in terms of the probabilities of root causes. (2) It features
a dynamic process where the probabilities in the model are
constantly updated with respect to new evidences. (3) The
method adopts a multiple-symptom-orientated troubleshoot-
ing strategy, and is capable of giving an optimised proce-
dure to simultaneously troubleshoot a fault case with multiple
symptoms.

In this study, a vehicle infotainment system has been
selected as a case study. A number of diagnostic models have
been established for fault cases with single symptom or with
multiple symptoms. Particular considerations are given to the
design of the model structure, determination of prior proba-
bilities of root causes, and diagnostic procedure. In order to
unburden the computation, an object oriented model struc-
ture has been adopted to prevent the model from overly large.

A great deal of research has been conducted in medi-
cal diagnostics using BBN techniques (Wang, Zheng, Good,
King, & Chang, 1999; Kahn Jr, Roberts, Shaffer, & Had-
dawy, 1997). BBN has also been applied in the monitoring of
manufacturing processes (Kang & Golay, 1999; Wolbrecht,
D’Ambrosio, Paasch, & Kirby, 2000). In contrast with

an automobile system, these applications targeted a rela-
tively specific and small system. For knowledge-based vehi-
cle diagnostics, relevant research work has been reported by
Foran and Jackman (2005), who proposed a rule-based rea-
soning method for diagnosing distributed multi-ECU con-
trol systems. Gelgele and Wang (1998) reported an expert
system for engine fault diagnosis. Neil, Fenton, Forey and
Harris (2001) and Neil, Fenton and Nielsen (2000) applied
BNN to predict the reliability of military vehicles, and pro-
posed a generic procedure on building large-scale Bayesian
networks. The preliminary research results of this project
have been also published in 8th International Symposium on
Advanced Vehicle Control (Huang, Antory, Jones, & Groom,
2006).

This paper consists of four sections. “Bayesian belief net-
work”, following this introduction, gives generic analysis on
the characteristics and probability calculation of a Bayes-
ian Network. “Diagnosis for single symptom case” presents
the Bayesian Network based method tailored for automo-
tive diagnosis by using vehicle infotainment system as case
study. Two types of models for single symptom fault case and
multiple symptoms fault case have been discussed. “Diagno-
sis for multiple symptom case” presents the conclusions.

Bayesian belief network

Naïve Bayesian diagnostics

A naive Bayesian diagnostic model is a direct application of
Bayes’ theorem in engineering diagnostics. Figure 2 shows
a basic structure of a naive Bayesian Network where A is a
fault symptom and Bi (i = 1, 2, . . . n) are mutually exclu-
sive and complete set of root causes generating A, Bayes’
theorem gives the following relation between the symptom
A and root causes Bi :

P(Bi |A) = P(Bi A)

P(A)
= P(A|Bi )P(Bi )

∑n
i=1 P(Bi )P(A/Bi )

(1)
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Fig. 2 A Navie Bayesian diagnostic model

If the prior probabilities P(Bi ) and prior conditional proba-
bilities P(A/Bi ) that Bi generates A are known either from
experience or statistical data, we will be able to calculate the
posterior probability P(Bi/A) that A is caused by Bi from
Eq. 1. A Navie Bayesian diagnostics troubleshoots the fault
by calculating the probability that the fault Bi occurs giv-
ing symptom A occurs, i.e. posterior conditional probability
P(Bi/A).

Two assumptions were made for Eq. 1 that the fault set
Bi (i = 1, 2, . . . n) must be mutually exclusive and complete,
i.e. the probabilities of Bi sum to unity. However, in vehi-
cle fault diagnosis applications, fault set Bi is not exclusive
and can occur simultaneously. Furthermore, it is very diffi-
cult to know complete root causes in practice. In addition,
a practical diagnostic issue may be concerned with mul-
tiple layers of causal relationships, for example, each root
cause may be indicated by different observations. Therefore,
a naïve Bayesian diagnostic model is not a suitable solu-
tion for automotive fault diagnosis. As an extension of naïve
Bayesian diagnostics, a BBN provides an effective solution
for the issues addressed above.

Basic features of Bayesian belief network (BBN)

A Bayesian Belief Network is a probability-based graphic
model that allows complex events to be described graphi-
cally as a network, and accordingly reason about the causal
relationship between the events in a probabilistic manner. For
a particular fault symptom, the BBN diagnostic model does
not require a complete root cause set and accommodate the
root causes occurring simultaneously.

Topology of the BBN

A BBN consists of a number of nodes, directed links and
probability tables as shown in Fig. 3. Because the directed
links are not allowed to form cycles, a BBN is also called a
directed acyclic graph. For a BBN diagnostic model, nodes
represent variables that can be failure symptoms, component
defects (root causes) or observations. Directed links indi-
cate casual relationships between the variables. The nodes
are annotated with probabilities. For root edge nodes, these
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Fig. 3 A simple example of Bayesian network

are prior probabilities. For other nodes, these are conditional
probabilities that a given state of the node is present or absent,
given that the parent nodes connected to it have failed or not.
Conditional probabilities indicate the strength of causal rela-
tionships between the connected nodes.

Calculus of posterior conditional probability

The target of building a diagnostic BBN is to reversely infer
the most likely root cause, given one or more failure symp-
toms occur, i.e. to calculate posterior probabilities of the
cause. The calculus of posterior probability involves calcu-
lating the joint probability for the model (probabilities of all
combined states for all nodes within the model). To simplify
the calculus of the joint probability, BBN makes the follow-
ing three assumptions of conditional independence:

1. All root nodes in the top layer of a network are indepen-
dent of each other.

2. Any two unlinked nodes are independent, given the state
of their common parent node.

3. A node is independent of their indirect parent (grandpar-
ent) nodes, given the states of all of its parent nodes.

Figure 4 gives an example of a BBN illustrating these three
types of conditional independence. The network contains five
nodes X1, X2, X3, X4, X5 with a structure of three layers. In
terms of the definition of the three types of conditional inde-
pendence, X1, is independent of X2, given the state of X3 X4

is independent of X1 and X2; and X5 is independent of X4,
X1 and X2. The following derivation indicates how to calcu-
late the posterior conditional probability P(X1 = true|X5 =
true) in virtue of the three types of conditional independence.
Bayes’ Theorem gives

P(X1 = true|X5 = true) = P(X1 = true, X5 = true)

P(X5 = true)
(2)

where P(X1 = true, X5 = true) and P(X5 = true) are
called marginal probabilities, and can be calculated from
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Fig. 4 Three types of conditional independence

P(X1 = true, X5 = true)

=
∑

X2,X3,X4

P(X1 = true, X2, X3, X4, X5 = true) (3)

and

P(X5 = true) =
∑

X1 X2 X3 X4

P(X1, X2, X3, X4, X5 = true)

(4)

where P(X1 = true, X2, X3, X4, X5 = true) and P(X1, X2,

X3, X4, X5 = true) involve calculating the joint probability
of the model. In terms of the definition, the joint probability
of this model P(X1, X2, X3, X4, X5) can be calculated from

P(X1 X2 X3 X4 X5) = P(X1)

5∏

i=2

P(Xi |X1 X2 . . . Xi−1)

= P(X1)P(X2|X1)P(X3|X1 X2)

×P(X4|X1 X2 X3)P(X5|X1 X2 X3 X4)

(5)

Applying the three types of conditional independence, Eq. 5
can be simplified as

P(X1 X2 X3 X4 X5) = P(X1)P(X2)

×P(X3|X1 X2)P(X4|X3)P(X5|X3)

(6)

Substituting Eq. 6 into Eq. 3 and Eq. 4 makes the calculus of
posterior probability much easier.

Diagnosis for single symptom case

A vehicle Infotainment system has been selected as an appli-
cation case in this work. The diagnosis is symptom based,
and the fault symptoms to be modelled were categorised in
terms of subsystems, functions, operations by using four lev-
els of qualifier. Such a typology of fault symptoms is also in
line with the common quality data of the system supplier. The
strategy was to establish a number of sub-models for diagnos-
ing the fault case with a single symptom reported, and adopt
an object oriented model structure to connect related sub-
models for diagnosing the fault cases with multiple symp-
toms reported.

Framework of the single symptom diagnostic model

The existing troubleshooting flow diagrams are an impor-
tant basis of building Bayesian diagnostic models. Figure 1
indicates that a troubleshooting flow diagram consists of two
types of node, i.e. observation node wrapped by lozenges
and action node wrapped by rectangles. In terms of these
characteristics, we proposed a tailored structure of Bayes-
ian diagnostic model as indicated in Fig. 5. The Bayesian
diagnostic model contains four layers of events, i.e. fault
symptom, intermediate, root cause and observation. There
are direct causal relationships between the layers. The layer
of fault symptom is the failure symptom reported by the cus-
tomer such as “no display”, “no sound” or failure code logged

Fig. 5 Framework of the
Bayesian diagnostic model
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by the service technician such as diagnostic trouble codes
(DTC). The layer of root cause consists of all possible root
causes generating the fault symptoms such as faulty com-
ponents, disconnected harness, and software problems. The
layer of intermediate nodes is in between the fault symptom
layer and the root cause layer. It is normally the group or cat-
egory of the root causes such as hardware issues, or software
issues. In practice, each node in the model has been limited to
have a maximum of four parent nodes by applying an inter-
mediate layer. This tactic prevents highly complex condi-
tional probability tables, thereby facilitating generation of the
diagnostic models. The observation layer can be any infor-
mation useful for allocating the root cause such as customer’s
reports, or the outcomes of tests performed by a diagnostic
technician. An observation node is affiliated to a specific root
node, and each root cause may normally have one or more
observations. The intermediate nodes may also have obser-
vations. In this case, the observation is useful information
indicating the group or category of the likely root causes.

Knowledge collection and analysis

Apart from the existing troubleshooting flow diagrams, the
following data sources were accessed for generating the diag-
nostic model: documentation such as subsystem specific
diagnostic specifications, failure mode effect analysis
(FMEA); experience of diagnostic engineers; and field infor-
mation such as warranty databases. Analysis of the docu-
ments generated a basic structure for the diagnostic models.

After determining the structure of the model, the prior
information required by the model was obtained by the fol-
lowing ways:

– Prior probability required by the root cause layer was
generated from the statistical analysis of historic failure
data.

– Prior conditional probabilities required by other layers
were provided by the domain experts.

The evidence required for Bayesian Network reasoning was
provided by customer reports or by diagnostic technicians
via a sequence of tests.

Model for symptom “no sound”

A Bayesian diagnostic model for the symptom “no sound”
is shown in Fig. 6. The model contains 20 observation nodes
drawn with blue ellipses, 13 root cause nodes drawn with
amber ellipses, 7 intermediate nodes drawn with green ellip-
ses and 1 symptom node drawn with yellow ellipse. It can
been seen that all root cause nodes are set as root layer edge
node. This is because prior probability of the root causes can
be extracted from statistic analysis of historic fault data while
the prior probability of the observation node is often unknown
and very difficult to estimate. Table 1 lists the names, signs,
categories, discrete states of all nodes, prior probabilities of
the root caused nodes and conditional probabilities of the
observation nodes. Because the conditional probabilities of
the intermediate and symptom nodes are always definite, we
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Fig. 6 Bayesian diagnostic model for the symptom “no sound”
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Table 1 List of nodes, prior and conditional probabilities

Node event Sign State Probability

Observation layer Incorrect amplifier installed? O1 T F P(O1
1/R1

1) = 1P(O2
1 /R1

1) = 0

P(O1
1/R2

1) = 0P(O2
1 /R2

1) = 1

Is there a problem when trying O2 T F P(O1
2/R1

2) = 1P(O2
2 /R1

2) = 0

to read out software versions P(O1
2/R2

2) = 0P(O2
2 /R2

2) = 1

Does the problem go when O3 T F P(O1
3/R1

2) = 1P(O2
3 /R1

2) = 0

a known good Amplifier is fitted P(O1
3/R2

2) = 0

P(O2
3 /R2

2) = 1

Is battery voltage low (<10.5 V)? O4 T F P(O1
4/R1

3) = 0.95P(O2
4 /R1

3) = 0.05

P(O1
4/R2

3) = 0P(O2
4 /R2

3) = 1

Has customer noted other systems warning lights O5 T F P(O1
5/R1

3) = 0.7P(O2
5 /R1

3) = 0.3

or cutting out which may indicate low battery voltage? P(O1
5/R2

3) = 0.05P(O2
5 /R2

3) = 0.95

Was vehicle subject to excessively high temperatures O6 T F P(O1
6/R1

4) = 0.7P(O2
6 /R1

4) = 0.3

when shut down occurred (> 85◦C)? P(O1
6/R2

4) = 0P(O2
6 /R2

4) = 1

Is DTC U200386 logged? O7 T F P(O1
7/I 1

3 ) = 1P(O2
7 /I 1

3 ) = 0

P(O1
7/I 2

3 ) = 0P(O2
7 /I 2

3 ) = 1

Are there any faulty vehicle fuses? O8 T F P(O1
8/R1

5) = 1P(O2
8 /R1

5) = 0

P(O1
8/R2

5) = 0P(O2
8 /R2

5) = 1

Are wiring connectors to amplifier loose O9 T F P(O1
9/R1

6) = 0.9P(O2
9 /R1

6) = 0.1

or not properly installed? P(O1
9/R2

6) = 0P(O2
9 /R2

6) = 1

Is there a problem with power feeds and/or O10 T F P(O1
10/R1

6) = 0.8P(O2
10/R1

6) = 0.2

grounds present at amplifier connector? P(O1
10/R2

6) = 0P(O2
10/R2

6) = 1

Is there a problem with Infotainment system earth? O11 T F P(O1
11/R1

6) = 0.8P(O2
11/R1

6) = 0.2

P(O1
11/R2

6) = 0P(O2
11/R2

6) = 1

Is DTC U200388 logged? O12 T F P(O1
12/R1

7) = 1P(O2
12/R1

7) = 0

P(O1
12/R2

7) = 0P(O2
12/R2

7) = 1

Is DTC U200331 logged? O13 T F P(O1
13/R1

8) = 1P(O2
13/R1

8) = 0

P(O1
13/R2

8) = 0P(O2
13/R2

8) = 1

Is DTC U200381 logged? O14 T F P(O1
14/R1

9) = 1P(O2
14/R1

9) = 0

P(O1
14/R2

9) = 0P(O2
14/R2

9) = 1

Is the incorrect EQ file installed? O15 T F P(O1
15/R1

10) = 1P(O2
15/R1

10) = 0

P(O1
15/R2

10) = 0P(O2
15/R2

10) = 1

Is problem cleared by Battery Reset? O16 T F P(O1
16/R1

11) = 1P(O2
16/R1

11) = 0

P(O1
16/R2

11) = 0P(O2
16/R2

11) = 1
Incorrect Amplifier Software O17 T F P(O1

17/R1
12) = 0.8P(O2

17/R1
12) = 0.2

Loaded? (not latest level) P(O1
17/R2

12) = 0P(O2
17/R2

12) = 1

Incorrect Audio Control Module O18 T F P(O1
18/R1

13) = 0.8P(O2
18/R1

13) = 0.2

Software Loaded? (not latest level) P(O1
18/R2

13) = 0.2P(O2
18/R2

13) = 0.8

Is DTC U300048 logged? O19 T F P(O1
19/R1

13) = 0.9P(O2
19/R1

13) = 0.1

P(O1
19/R2

13) = 0P(O2
19/R2

13) = 1

Is the sound missing for the CD or Radio? O20 T F P(O1
20/R1

13) = 1P(O2
20/R1

13) = 0

P(O1
20/R2

13) = 0P(O2
20/R2

13) = 1

Root cause layer Incorrect Amplifier installed R1 T F P(R1
1) = 0.054P(R2

1) = 0.946

Amplifier Hardware Fault R2 T F P(R1
2) = 0.109P(R2

2) = 0.891

Amplifier shut down due to low voltage R3 T F P(R1
3) = 0.027P(R2

3) = 0.973

Amplifier shut down due to high temperature R4 T F P(R1
4) = 0.027P(R2

4) = 0.973

Fuse Blown R5 T F P(R1
5) = 0.109P(R2

5) = 0.891

Amplifier power or ground not properly connected R6 T F P(R1
6) = 0.109P(R2

6) = 0.891

MOST Bus error—The MOST ring is cut off R7 T F P(R1
7) = 0.109P(R2

7) = 0.891

(not immediately before IHU)
No MOST signal received by Audio Control Module R8 T F P(R1

8) = 0.054P(R2
8) = 0.946
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Table 1 continued

Node event Sign State Probability

Module not responding to MOST commands R9 T F P(R1
9) = 0.054P(R2

9) = 0.946

Incorrect EQ file installed R10 T F P(R1
10) = 0.109P(R2

10) = 0.891

Recoverable Software Fault R11 T F P(R1
11) = 0.011P(R2

11) = 0.989

Amplifier Software Fault R12 T F P(R1
12) = 0.011P(R2

12) = 0.989

(bug/error or corruption)
Audio Control Module Software Fault R13 T F P(R1

13) = 0.027P(R2
13) = 0.973

(bug/error or corruption)
Intermediate layer Amp not working I1 T F

Amplifier Issue I2 T F
Amplifier shutdown I3 T F
Power supply problem I4 T F
MOST Communication Error I5 T F
Software or MOST Problem I6 T F
Software Issue I7 T F

Symptom layer SYS-NoSound (complete loss of audio, S1 T F
display functions working)

do not list these probabilities in the table. In this study, we
use HUGIN software for Bayesian Network propagation and
reasoning.

Determination of prior probabilities of root causes

This section explains how to extract the prior probabilities of
the root causes from historic fault data. Referring to Fig. 6, the
posterior conditional probability P(R1/S1) can be obtained
from:

P(R1/S1) = P(S1/R1) · P(R1)

P(S1)
(7)

Therefore, prior probability P(R1) of the root cause R1 is
got by

P(R1) = P(R1/S1) · P(S1)

P(S1/R1)
(8)

We assume if R1 occurs S1 must occur, that is the conditional
probabilityP(S1/R1) = 1. This is true in our applications
since all root causes are defined in such a way. Thus,

P(R1) = P(R1/S1) · P(S1) (9)

Considering P(S1) as a scaling factor, Eq. 9 indicates that the
prior probabilities of a root cause R1 can be set as its condi-
tional probability P(R1/S1) given the symptom S1 occurs. In
practice, the statistical fault data is available for each failure
symptom, that is, the conditional probability of individual
root causes given the symptom occurs is known. For exam-
ple, historic data tells that 10 of 100 “SYS NoSound” failures
were caused by root cause R1 “Incorrect Amplifier installed”,
that means the conditional probability P(R1/S1) = 0.1.
Accordingly, we can also know conditional probabilities
for other root causes including P(R1/S1), P(R3/S1) . . .

P(R13/S1). Considering P(S1) as a scaling factor, these
conditional probabilities can be set as prior probabilities of
the root causes R1 R2. . .R13. The prior probabilities of the
root causes indicate the likelihood that the defect occurs
without any evidence. It is worthy noting that the layer of
intermediate nodes do not affect the prior probabilities of
root causes since the causal relationship between them is
definite.

Diagnostic procedure

Diagnosis based on the Bayesian Network Model is an iter-
ation process of ranking the observation node, conducting
the test in terms of ranking order, updating probabilities of
the all nodes by inputting the test results into the model,
determining the most likely defects, repairing the defect and
checking if the symptom still exists. This iteration continues
until the symptom does not occur any more. In each iteration,
the first task is to derive a sequence of tests to effectively
locate the real root causes of failures, i.e. ranking the
observation nodes in a sensible order. The ranking rules are
as follows;

– An intermediate node has higher priority than a root cause
node, i.e. observation nodes affiliated to intermediate
nodes are always ranked in front of observation nodes
affiliated to root cause nodes. This is because the inter-
mediate nodes determine the route from symptom to root
causes.

– For observation nodes affiliated to different intermediate
nodes or different root cause nodes, the probabilities of
the intermediate nodes or root cause nodes determines
the priority of the observation nodes affiliated to them.
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– For observation nodes affiliated to the same intermediate
node or the same root cause node, their own probabilities
determine the priority.

In summary, the ranking order is illustrated as Fig. 7.
Referring again to the model in Fig. 6, after establishing

the model, we first calculate the probability of the symptom
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Fig. 7 Priority hierarchy of ranking test sequence

node P(S1 = true) = 57.1% which indicates the likelihood
of symptom occurring under no evidence given. Diagnosis
starts from instantiating the symptom, i.e. setting P(S1 =
true) = 1. With this initial evidence, the probabilities of one
intermediate node, root cause nodes and their affiliated obser-
vation nodes are recalculated as listed in Table 2. In terms of
the rules of ranking observation nodes, the observation node
O7 is ranked on the top since it is affiliated to the intermediate
node I3. The next suggested tests are O2, O3, O8, O12 and
O15 because their root cause nodes have the highest prob-
ability (19.07) amongst all root cause nodes and they also
have the highest probability (19.69) amongst all observation
nodes belonging to those root cause nodes. Accordingly, the
order of the rest of the tests is also indicated in the table.

For guiding the diagnosis, in each diagnosis step, we pres-
ent all possible root causes marked with their probabilities,

Table 2 The probability list of all nodes and ranking order under initial evidence P(S1 = true) = 1

Root cause or intermediate nodes Prob. of true Affiliated observation nodes Sign Prob. Order

Amplifier shutdown 9.32 Is DTC U200386 logged? O7 18.29 1
Amplifier Hardware Fault 19.07 Is there a problem when trying to

read out software versions
O2 19.69 2

Does the problem go when a known
good Amplifier is fitted

O3 19.69 2

Fuse Blown 19.07 Are there any faulty vehicle fuses? O8 19.69 2
MOST Bus error—The MOST ring
is cut off (not immediately before
IHU).

19.07 Is DTC U200388 logged? O12 19.69 2

Incorrect EQ file installed. 19.07 Is the incorrect EQ file installed? O15 19.69 2
Amplifier power or ground not
properly connected

19.07 Are wiring connectors to amplifier
loose or not properly installed?

O9 17.97 3

Is there a problem with power feeds
and/or grounds present at amplifier
connector?

O10 16.06 4

Is there a problem with Infotain-
ment system earth?

O11 16.06 4

Incorrect Amplifier installed 9.45 Incorrect amplifier installed? O1 10.26 5
No MOST signal received by Audio
Control Module

9.45 Is DTC U200331 logged? O13 10.26 5

Module not responding to MOST
commands

9.45 Is DTC U200381 logged? O14 10.26 5

Audio Control Module Software
Fault (bug/error or corruption)

4.72 Incorrect Audio Control Module
Software Loaded? (not latest level).

O18 22.83 6

Is DTC U300048 logged? O19 5.2 10
Is the sound missing for the CD or
Radio?

O20 5.63 8

Amplifier shut down due to low
voltage

4.72 Is battery voltage low (<10.5 V)? O4 5.44 9

Has customer noted other systems
warning lights or cutting out which
may indicate low battery voltage?

O5 8.07 7

Amplifier shut down due to high
temperature

4.72 Was vehicle subject to excessively
high temperatures when shut down
occurred (> 85◦)?

O6 4.26 11

Recoverable Software Fault 1.92 Is problem cleared by Battery
Reset?

O16 2.89 12

Amplifier Software Fault (bug/error
or corruption)

1.92 Incorrect Amplifier Software
Loaded? (not latest level).

O17 2.52 13
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also list all optional testing ranked according to the order
defined by the rules above. The user has a flexibility to con-
duct one or more tests according to the suggested testing
list, or according to their own diagnostic experiences and the
level of the difficulty of each individual test. After the user
conducts the tests the new evidence (test results) are be input
into the model. The model will then recalculate the proba-
bilities of all nodes and generate a new suggested test list
and updated probabilities for potential root causes. This pro-
cess continues until the probability of one root cause has a
higher probability convincing the user to repair the defect.
If the repair action does not fix the failure (symptom), the
user should conduct other tests and repair other suggested
defects with highest probability until the symptom no longer
exist.

Diagnosis for multiple symptom case

An important advantage of the Bayesian network diagnostic
approach is its capability of diagnosing multiple symptoms
optimally and simultaneously, thereby leading to a more sen-
sible and efficient diagnosis. To achieve this we need to estab-
lish a Bayesian diagnostic model with multiple symptoms.
There are two ways to establish such a model. Firstly, we
can still use the method described in “Framework of the sin-
gle symptom diagnostic model” by simply giving multiple
symptom nodes to the model. However, this method tends
to make the model overly large because each symptom may
have many independent root cause nodes. BBNs are a NP-
hard problem where computation grows exponentially with
system complexity, i.e. the size of the network. Thus, it is not
a good way to model multiple symptom cases using a sin-
gle BBN model. Consequently, appropriate methods must
be created to optimise the network structure and to achieve
computational efficiency. A reasonable approximation based
on causal independence has been proposed by Heckerman,
Breese, & Rommelse, (1995) to alleviate the computational
burden. Causal independence is the method of defining a dis-
crete distribution that can dramatically reduce the number of
prior probabilities necessary to define a distribution. In other
work, Wang et al. 1999 unburdened a BBN by optimally
decomposing the network. In this research, we employed an
object oriented method for building a large scale Bayesian
diagnostic model with multiple symptoms.

Object oriented BBN structure

The object oriented BBN structure can be described as fol-
lows; an object oriented BBN diagnostic model consists of a
number of sub-models and residing in a main model. The sub-
models are constructed for individual symptoms and contain
detailed diagnostic knowledge for diagnosing the specific

symptom. The main model links the sub-models in terms
of their common root causes and gives an overview of the
relationship between multiple sub-models.

The benefits of the object oriented BBN are: (1) Enable
modelling of a complex system. (2) Enable simultaneous
diagnosis of multiple symptoms. (3) Easy maintenance of the
large mount of sub-models. (4) Sub-models can be reused as
a class. (5) Probability computation is only allocated to the
sub-models with the symptoms instantiated.

In this study, the diagnostic boundary was defined as the
infotainment system, but can be extended into a complete
vehicle system in virtue of the object oriented method.

Object oriented Bayesian diagnostic model with four
symptoms

A BBN diagnostic model with four symptoms has been estab-
lished. Figure 8 shows the main model which contains four
sub-models and three common root causes. Each block in the
main model represents a sub-model specified to one particu-
lar failure symptom. They are respectively “SYS-NoSound”,
“SYS-Interference”, “IHU-CDFailure” and “IHU-Display-
Failure”. Within each block, underlying nodes are hidden and
only interface nodes can be viewed. These interface nodes
consist of input nodes drawn with dashed borders and output
nodes drawn with solid borders. The interface nodes link
those sub-models which have common root causes. Actu-
ally, the linked interface nodes are the common root cause
nodes, while the input nodes are not real nodes but are place-
holders in the sub-models. It can be seen from this figure
that the sub-models S1 and S2 have two common root causes
C R1 “Amplifier Software Fault (bug/error or corruption)”
and C R2 “Amplifier Hardware Fault”. The sub-model S1, S3

and S43 share one common root cause C R3 “Audio Control
Module Software Fault (bug/error or corruption)”. The sub-
model S1 “SYS-NoSound” is shown in Fig. 6 where three
output nodes are drawn with thick grey borders.

S1

S2 S3 S4

RC 1 RC 2
RC 3

RC 1 RC 2 RC 3 RC 3

Fig. 8 Main diagnostic model with four sub-models and three common
root causes
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Determination of prior probabilities of root causes in object
oriented model

For each sub-model with a single symptom, we can use the
method described in “Framework of the single symptom
diagnostic model” to determine the prior probabilities of the
root causes because the probability of the symptom can be
considered as a scaling factor. However, if two or more sub-
models have common root causes and are linked together,
we cannot keep the original prior probabilities for the root
causes in the model newly generated because the root cause
set has been extended. Accordingly, we must consider all
root causes of related sub-models as a complete event set.
Figure 9 shows the event set for the model shown in Fig. 8.
In Fig. 9, S1, S2, S3 and S4 are the root cause set of four symp-
toms respectively. S1 and S2 have an intersection S1S2. S1, S3

and S4 have an intersection S1S3S4. R is the root cause only
belonging to the set S2. As defined by the model in Fig. 8,
the intersection S1S2 consists of the common root causes
C R1 and C R2, and the intersection S1S3S4 only consists of
the common root cause C R3. Therefore, the complete root
cause set C of Fig. 9 can be calculated as

C = S1 + S2 + S3 + S4 − S1S2 − S1S3S4

= S1 + S2 + S3 + S4 − C R1 − C R2 − C R3 (10)

The root cause R is the subset of S2, thus,

P(R) = P(RS2) = P(R/S2) · P(S2) (11)

The set S2 is the subset of C , thus,

P(S2) = P(S2C) = P(S2/C) · P(C) (12)

Substituting Eq. 12 into Eq. 11 generates

P(R) = P(R/S2) · P(S2/C) · P(C) (13)

S2 S1

CR2

R

CR1

CR3

S3

S4

Fig. 9 Root cause event set for four symptoms with three common
root causes

Considering P(C) as a scaling factor, we have

P(R) = P(R/S2) · P(S2/C) (14)

The Eq. 14 indicates how to determine prior probability of
root causes in the model with multiple linked sub-models. In
practice, we can calculate the complete root cause set C using
Eq. 10, the conditional probabilities of each sub-model root
cause set such as P(S2/C), and the conditional probabilities
of each root cause such as P(R/S2) from the statistical anal-
ysis of historic failure data, and then the prior probability of
the root cause can be calculated from Eq. 14. By using this
method, the prior probabilities of the root causes in individual
sub-models become comparable.

Diagnostic procedure

The diagnostic procedure for multiple symptom cases is basi-
cally the same as the single symptom case. The diagnosis
starts from the main model. If only one symptom is instan-
tiated, the probability calculation will be limited to the cor-
responding sub-model. In this case, the suggested tests will
be those observation nodes within the sub-model. If two or
more symptoms occur simultaneously, the probability prop-
agation will spread to multiple corresponding sub-models.
In this case, possible root causes can be the single common
root cause, or two or more root causes belonging to different
sub-models.

Conclusion

A novel method has been developed for guiding offline vehi-
cle fault diagnosis. The method incorporates the BBN tech-
nique. Theoretical analysis on the characteristics of BBN
has been given. The proposed method has been practically
applied to a model vehicle infotainment system. A number of
Bayesian diagnostic models have been established for fault
cases with single and multiple symptoms. Special arrange-
ments have been designed for model structure, determination
of prior probabilities of root causes, and diagnostic proce-
dure. In order to unburden the computation, an object ori-
ented model structure has been adapted to prevent the model
from overly large. It has been demonstrated that, in con-
trast to the traditional troubleshooting flow diagrams, the
proposed method possesses two distinctive advantages. (i)
The method is capable of guiding vehicle fault diagnosis in
a probabilistic manner, thereby emulating the human way
of thinking; (ii) The method features a multiple-symptoms-
orientated troubleshooting strategy, and is capable of simulta-
neously diagnosing multi-symptoms fault cases in an
optimised way. These two advantages make automotive fault
diagnostics more effective and accurate.
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