J Intell Manuf (2008) 19:283-292
DOI 10.1007/s10845-008-0081-9

Artificial neural network models for the prediction of surface roughness

in electrical discharge machining

Angelos P. Markopoulos - Dimitrios E. Manolakos -

Nikolaos M. Vaxevanidis

Received: 1 January 2007 / Accepted: 1 July 2007 / Published online: 24 January 2008

© Springer Science+Business Media, LLC 2008

Abstract In the present paper Artificial Neural Networks
(ANNSs) models are proposed for the prediction of surface
roughness in Electrical Discharge Machining (EDM). For
this purpose two well-known programs, namely Matlab®
with associated toolboxes, as well as Netlab®, were emplo-
yed. Training of the models was performed with data from
an extensive series of EDM experiments on steel grades; the
proposed models use the pulse current, the pulse duration,
and the processed material as input parameters. The reported
results indicate that the proposed ANNs models can satisfac-
torily predict the surface roughness in EDM. Moreover, they
can be considered as valuable tools for the process planning
for EDMachining.

Keywords Artificial neural networks - Modeling - Surface
roughness - Electrical discharge machining (EDM)

Introduction

Electrical discharge machining (EDM) is one of the most
extensively used non-conventional material removal pro-
cesses. It is considered especially suitable for machining
complex contours, for high accuracy and for materials that
are not amenable to conventional removal methods (Ho and
Newman 2003). To achieve electrical discharge machining by
the preferential erosion of the work electrode, a succession

A. P. Markopoulos - D. E. Manolakos (B<)

Mechanical Engineering Department, Manufacturing Technology
Division, National Technical University of Athens, Athens, Greece
e-mail: manolako @central.ntua.gr

N. M. Vaxevanidis

Department of Mechanical Engineering Teachers, Institute of
Pedagogical and Technological Education, N. Heraklion Attikis,
Greece

of discrete discharge pulses is applied between the tool and
the workpiece both immersed in a dielectric fluid. Stability of
operating conditions is usually secured by a servo-controlled
mechanism, so that the cutting tool impresses its comple-
mentary shape on the workpiece with a small “over-cut”.

However, EDM is a thermal process with a complex metal
removal mechanism, involving the formation of a plasma
channel between the tool and workpiece electrodes, melting
and evaporation action and shock waves. As a result phase
changes, tensile residual stresses, cracking and metallurgical
transformation of the machined material may be observed.
The above are included in the term “surface integrity” and
determine the operational behavior of the machined parts
(Mamalis et al. 1987).

It should be noted that although nowadays EDM is an
established technology in tools and dies industry and is also
integrated within CIM/CAPP environments (De Silva and
McGeough 2000), is still one of the expertise-demanding
processes in the manufacturing industry. A complete, clear,
and scientifically admissible theory of EDM has not yet been
established. The best explanation of EDM material removal
mechanism is offered by the thermo-electric theory, as esta-
blished by extensive experimental studies; for an overview
see (Mamalis et al. 1987; Ho and Newman 2003). Three
stages can be distinguished:

(i) Ionization and arc formation at a localized area bet-
ween the electrodes, following the application of a
voltage exceeding the breakdown voltage.

(i) The occurrence of the main discharge as an electron
avalanche striking the anode; low electrical resistance
in the discharge channel, hydraulic restriction of the
dielectric and the magnetic pinch effect establish high
current densities. The cathode is struck by ions and is
heated less rapidly than the anode.
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(iii) Local melting and evaporation follow and material is
removed from the site of the discharge by explosion
occurring after the cessation of the electrical discharge.
The current density decreases with increasing
discharge duration, the discharge tending to become an
arc. De-ionization of the plasma channel occurs after
the completion of the whole cycle and a new cycle can
start at the site of the closest electrode distance.

The dominating thermal mechanism briefly described
above is also the reason for the lack of analytical models
correlating the process variables and surface finish; for the
prediction of surface roughness empirical models as well as
multi-regression analysis are usually applied (Mamalis et al.
1990; Rebelo et al. 2000; Tsai and Wang 2001a; Petropoulos
et al. 2004).

In the past decade, Artificial Neural Networks (ANN5s)
have emerged as a highly flexible modeling tool applicable
in numerous areas of manufacturing discipline (Dimla et al.
1997; Dini 1997; Briceno et al. 2002; Ezugwu et al. 2005;
Feng et al. 2006). An artificial neural network is defined
as “a data processing system consisting a large number of
simple, highly interconnected processing elements (artifi-
cial neurons) in an architecture inspired by the structure
of the cerebral cortex of the brain” (Tsoukalas and Uhrig
1997). Actually, ANNs are models intended to imitate some
functions of the human brain using its certain basic struc-
tures. ANNs have been shown to be effective as computatio-
nal processors for various associative recall, classification,
data compression, combinational problem solving, adaptive
control, modeling and forecasting, multisensor data fusion,
and noise filtering (Davalo et al. 1991). As far as EDM is
concerned, the relative literature includes publications where
ANNSs are applied, mainly, for the estimation or prediction
of the material removal rate, the optimization and the on-
line monitoring of the process (Kao and Tarng 1997; Tsai
and Wang 2001b; Wang et al. 2003; Panda and Bhoi 2005)
whilst prediction of surface finish is presented only by Tsai
and Wang (2001c).

In the present paper the application of novel ANN models
for the prediction of the center-line average surface rough-
ness, R, of electrical discharge machined surfaces is discus-
sed. The proposed models use data for the training procedure
from an extensive experimental research concerning surface
integrity of EDMed steels (Mamalis et al. 1987, 1990; Vaxe-
vanidis 1996). The workpiece material, the pulse current, /.
and the pulse duration, #, were considered as the input para-
meters of the models. More specifically, five steel grades,
namely a mild steel, a carbon steel, and three alloyed steels,
were tested while the pulse current, and the pulse duration
varied over a wide range, from roughing to near-finishing
conditions.
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The proposed feed-forward neural networks trained with
the back propagation algorithm were proven to be successful,
resulting in reliable predictions, providing a possible way to
avoid time- and money-consuming experiments.

Artificial neural networks overview

Two main and important features of neural networks are their
architecture, i.e., the way that the network is structured, and
the algorithm used for its training. After the appropriate trai-
ning, the selected network has the ability to interconnect one
value of output to given input. These two features of neural
networks along with some techniques used for the improve-
ment of their performance are briefly presented below. Note
that the origin, the development and the mathematical details
for implementing the ANNs can be found in a number of
excellent reference works, see for example (Davalo et al.
1991; Fausset 1994; Haykin 1999); therefore they are not
discussed here.

Neural network’s architecture

Artificial neural networks are mathematical representations
of the human brain function. The “core” element of a neural
network is the neuron. Neurons are connected to each other
with a set of links, called synapses and each synapse is des-
cribed by a synaptic weight. Neurons are placed in layers
and each layer’s neurons operate in parallel. The first layer
is the input layer. The activity of input units represents the
non-processed information that entered the network; at that
layer neurons do not perform any computations. The hidden
layers follow the input layer and the activity of each hidden
unit is determined from the activity of the input units and
the weights at the connections of input and hidden units. A
network can have many or none hidden layers and their role
is to improve the network’s performance. The existence of
these layers at the network becomes more necessary as the
number of input neurons grows. The last layer is the output
layer. The behavior of output units depends upon the activity
of the hidden units and the weights between hidden units
and output units. The output of the layer is the output of
the whole network; output layer neurons, in contrast to input
layers, perform calculations.

There are two types of neural networks: the feed-forward
and the recurrent ones. Feed-forward neural networks allow
the signals to travel in only one direction: from input to
output, i.e., the output signal of a neuron is the input of
the neurons of the following layer and never the opposite.
The inputs of the first layer are considered the input signals
of the whole network and the output of the network is the
output signals of last layer’s neurons. On the contrary, recur-
rent networks include feedback loops allowing signals to tra-
vel forward and/or backward (Fausset 1994). Feed-forward
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neural networks are characterized by simple structure and
easy mathematical description (Haykin 1999); therefore they
were selected for the modeling of surface roughness in the
present paper.

In general, there is not a standard algorithm for calculating
the proper number of hidden layers and neurons. For rela-
tively simple systems, as the present case, a trial-and-error
approach is usually applied in order to determine which archi-
tecture is optimal for a problem. Networks that have more
than one hidden layers have the ability to perform more com-
plicated calculations. However, for most applications, one
hidden layer is enough, while for more complicated appli-
cations the simulation usually takes place using two hidden
layers (Ezugwu et al. 2005; Tsai and Wang 2001c; Feng et al.
2006). The existence of more than necessary hidden layers
complicates the network, resulting in a low speed of conver-
gence during training and large error during operation. The-
refore, the architecture of a neural network always depends
upon the specific situation examined and must not be more
complex than needed (Davalo et al. 1991).

Neural network’s training

Once the number of layers and the number of units in each
layer are selected the network’s weights must be set in order
to minimize the prediction error of the network; this is the
role of the training algorithms. The historical cases that were
gathered are used to automatically adjust the weights in order
to minimize this error. The error of a particular configuration
of the network can be determined by running all the training
cases through the network and comparing the actual output
generated with the desired or target outputs. The differences
are combined together by an error function resulting the net-
work’s error. Usually the mean square error (MSE) of the
network’s response to a vector p, is calculated, according to
the equation:

I
1 2
Ep= 5 z (dp,i - "pﬁi)

i=1

In the preceding equation 0, ; are the values of the output
vector which occur for the input vector p and d, ; the values
of the desirable response corresponding to p. The procedure
is repeated until MSE becomes zero. Each time that the pro-
gram passes through all pairs of training vectors an epoch is
completed; training usually ends after reaching a great num-
ber of epochs.

One of the frequently used training algorithms is the back-
propagation (BP) algorithm. It is usually applied in feed-
forward networks with one or more hidden layers (Dini 1997;
Tsai and Wang 2001c). The input values vectors and the cor-
responding desirable output values vectors are used for the
training of the network until a function is approached which

relates the input vectors with the particular output vectors.
When the value of the mean square error is calculated, it is
propagated to the back in order to minimize the error with
the appropriate modification of the weights.

Another important parameter of the neural network models
is their ability to generalize, i.e., the ability of neural networks
to provide logic responses for input values that were not
included in the training. Correctly trained back-propagation
networks are able to perform generalization; this ability pro-
vides the opportunity of training the network using a repre-
sentative set of input-desirable output values pairs.

Improvement techniques

When an algorithm is applied to the network random values
are given to the weight factors. The convergence speed and
the reliability of the network depend upon the initial values
of weights; thus different results may be observed during
the application of the same algorithm to the network. There
are only a few elements that can guide the user for the selec-
tion of the proper values. A wrong choice may result to small
convergence speed or even to network’s paralysis, where trai-
ning stops. Furthermore, due to the fact that the algorithm
searches for the minimum error, the network may be stabili-
zed at a local minimum instead of the total minimum. As a
result, most of the times, incorrect response values of the net-
work are produced. To overcome these problems variations
of the most used algorithms have been proposed; for further
information on this topic Fausset (1994) and Haykin (1999)
may be consulted. Worth mentioning, also, that a very com-
mon and simple technique used for overcoming problems of
this type is the repetition of the algorithm many times and
the use of different initial values of the weight factors.

One of the problems that occur during the training of neu-
ral networks is over-fitting which undermines their generali-
zation ability. The error appears to be very small at the set of
the training vectors, however, when new data are imported
to the network the error may become extremely large. This
phenomenon is attributed to fact that the network memorized
the training examples and did not learn to generalize under
the new situations. The generalization ability of a network
is assured when the number of training data is quite greater
than the number of network’s parameters. However, when
the network is large the relations between input and output
become rather complicated. Hence, a network should not be
larger than needed to solve the given problem. Note, also, that
two improvement techniques were applied during modeling,
namely, normalization of the used data and the early stopping
technique. Both these techniques and their application to the
particular problem are briefly discussed in section “Matlab®
models.”
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Experimental results
EDMachining

EDMachining was performed on an industrial EMT1.10/
AGIE machine of 100V open voltage, with rectangular pulse
generator of 30 A maximum current and adjustable pulse
duration 5-1,000 s and duty factor. Electrolytic copper of
arectangular work area 40 x 22 mm? was used for tool elec-
trode of positive polarity. The removal of debris was achieved
by lateral flushing with a pressure of 0.3 bar in a hydrocar-
bon dielectric. The depth of cut was kept constant 0.5 mm
for all specimens machined. The test conditions varying for
the pulse current, i. = 6, 12, 18 and 26 A and for the pulse
duration, #, = 50, 100, 300 and 500 vs.

The test materials cover a wide range of structural and
high strength steels and are classified as follows:

e mild steel (St 37)

e alloyed steels (C 45 and 100Cr6)

e high strength low alloyed (HSLA) steels; grades of this
type tested were strengthened with different mechanisms,
namely:

— a microalloyed (Mic/al 1) steel (0.06% C, 0.87% Mn,
0.047% Nb, 0,013% Ni, 0.01% Cr, V and Ti) with the
strengthening mechanism being characterized by
dispersion hardening and grain refinement by microal-
loying.

— adual-phase (DP 1) steel (0.075% C, 0.82% Mn, 0.035%
Ni and 0.037% Cr) where the strengthening mechanism
involves the introduction of martensite islands in a fer-
ritic matrix by appropriate heat treatment.

Surface roughness values R, were obtained with a “Talysurf”
recorder (Taylor Hobson). The cut-off was set at 0.8 mm and
the roughness values were the average of at least 20 measu-
rements per specimen.

The process parameters and the corresponding average
surface roughness values are tabulated in Table 1. From these
results it can be concluded that when pulse current or pulse
duration are increased, surface roughness is also increasing.
High pulse energy results in high material removal rates but
at the same time to poor surface roughness. This is a com-
mon feature of manufacturing processes; especially in EDM,
a high metal removal rate not only results in poor surface
finish but is also associated with intensification of surface
damage such as crack generation, etc. (Mamalis et al. 1990).
To overcome this problem, fine cutting conditions may be
imposed at the final stage of processing (Vaxevanidis 1996).

ANNSs modeling

For the formulation of the ANNs and the modelling of EDM
two discrete software programs were used, namely: Matlab®
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with the neural networks toolbox (Demuth and Beale 2001)
and Netlab®.

Matlab® is a well-known program used for modeling pur-
poses. Its neural networks toolbox is user-friendly and the
creation of neural networks is performed by using a small
amount of commands; the program has a data base with func-
tions, algorithms and commands for this purpose. A lot of the
reported ANNs have been designed with this software; see
for example (Ezugwu et al. 2005; Tsai and Wang 2001b,c;
Wang et al. 2003).

Netlab® consists of a toolbox of Matlab® functions and
scripts based on the approach and techniques described in
the relevant literature (Bishop 1996). The N etlab® toolbox is
designed to provide the central tools necessary for the simula-
tion of theoretically well founded neural network algorithms
and related models to be used in research and applications
development. The Netlab® library includes software imple-
mentations of a wide range of data analysis techniques, many
of which are not yet available in standard neural network
modeling packages; for the principles behind Netlab® and
its modeling abilities see also Nabney (2004).

Neural network models
Matlab® models

In general, a neural network is characterized by its important
features such as the architecture, the activation function and
the learning algorithms (Fausset 1994). Several models were
designed and tested in order to determine the optimal archi-
tecture, the most suitable activation functions and the best
training algorithm suitable for the prediction of R,. Each
model was tested more than once in order to evaluate whe-
ther it truly converges to a low value or not. After this trial-
and-error procedure the model selected was a feed-forward
neural network with two hidden layers consisting of five and
three neurons, respectively. The activation function in both
the hidden layers was the hyperbolic tangent sigmoid transfer
function and in the output layer was the linear transfer func-
tion. The training algorithm used was the back propagation
(BP) algorithm. The architecture of the selected (optimized)
network is presented in Fig. 1.

For training the designed models the experimental data
tabulated in Table 1 were used. These data were treated in
order to become suitable to be used in the program. Initially,
the different types of workpiece material were assigned a
number, from O to 4, in order to become arithmetic; only
numeric values are allowed as input data. Then all the data
were normalized; i.e., all input and output data were suitably
transformed so that their mean value become equal to zero
and the standard deviation equal to one. Normalization is a
method used in neural networks so that all the data present a
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Table 1 Input parameters and experimental results

Input Output
Workpiece material Pulse current, 1. (A) Pulse duration, 7, (jLs) Roughness, R, (jLm)
St 37 6 50 7.05
St 37 6 100 7.35
St 37 12 100 8.80
St 37 26 100 10.80
St 37 12 300 10.90
St 37 18 300 11.60
St 37 12 500 12.45
St 37 26 300 12.30
St 37 18 500 13.70
St 37 26 500 14.50
C45 12 100 8.00
C45 18 100 10.30
C45 18 300 11.60
C45 12 500 12.20
C45 18 500 12.50
C45 26 500 13.40
100Cr6 26 50 8.30
100Cr6 26 100 10.00
100Cr6 26 150 11.70
100Cr6 18 300 11.90
100Cr6 26 500 12.10
100Cr6 26 300 12.30
100Cr6 18 500 13.50
100Cr6 26 500 14.20
Mic/al 1 12 100 6.80
Mic/al 1 18 100 7.80
Mic/a. 1 26 100 8.80
Mic/al 1 12 300 10.30
Mic/al 1 18 300 10.30
Mic/al 1 12 500 10.20
Mic/al 1 26 300 11.65
Mic/al 1 18 500 11.80
Mic/al 1 26 500 13.40
DP 1 12 100 7.30
DP 1 18 100 7.60
DP 1 26 100 7.80
DP 1 12 300 7.40
DP 1 18 300 8.70
DP 1 12 500 8.90
DP 1 26 300 10.30
DP 1 18 500 10.80
DP 1 26 500 12.00
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Fig. 1 Final neural network architecture

logical correlation. Otherwise, the neural network could sup-
pose that a value is more significant than the others because
its arithmetic value is greater. This could damage the gene-
ralization ability of the network and lead to overfitting. After
normalization all inputs are equally significant for the trai-
ning of the network.

For the improvement of generalization of a neural network
the early stopping technique was used. By this methodology
the existing data are separated in three subsets. The first sub-
set consists of the training vectors, which are used to calculate
the gradient and to form the weight factors and the bias. The
second subset is the validation group. The error in that group
is observed during training and likewise training group nor-
mally decreases during the initial phase of training. However,
when the network begins to adjust the data more than needed
the error in that group raises and when that increase continues
for a certain number of repetitions, training stops. Finally, the
third subset is the test group and its error is not used during
training. It is used to compare the different models and algo-
rithms. In order to use this technique, 1/2 of the data were
used for training, 1/4 were used for validation and 1/4 were
used for testing. The selection of the data constituting the
three groups was performed in stochastic way so that trai-
ning was not performed partially, e.g. for workpiece material
100Cr6 only, a fact that could had lead to an erroneous gene-
ralization; moreover all data are equally represented in each
subset.

The MSE of training of the selected ANN was about
0.088 and its training took almost 700 epochs to complete.
The MSE of all the three groups when the early stopping
technique was applied during the training of the neural net-
work are presented in Fig. 2. From this figure it is evident
that validation and testing group MSEs are higher than that of
the training group, as expected. Moreover, they have similar
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Fig. 2 Results of the neural network training

values which indicate that the proposed neural network pos-
sesses good generalization ability, thus being able to model
EDM process.

For the evaluation of the generalization ability of the trai-
ned neural network a linear fit between the output of the
model and the experimental data, for all the measured values
presented in Table 1, without discrimination to which group
they belong, was performed. The linear fit is presented in
Fig.3; note that T and A represent the experimental results
and the outputs of the model, respectively. The best linear
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Fig. 4 Experimental data and neural network modeling with Matlab®
for St 37 steel

fit function is calculated as: A=0.922T +0.934, while the
correlation coefficient was calculated, R =0.904.

This result indicates that the neural network can very satis-
factorily predict the output data required. Furthermore, in
Figs. 4-6 the center-line average surface roughness (R,) ver-
sus the pulse current and pulse duration, for all five steel
grades, is presented. In the same figures both the experimen-
tal data and the neural network outputs are given. Itis evident
that for all five materials the experimental and the calculated
values exhibit small discrepancies, indicating once more the
reliability of the neural network constructed with Matlab® .

Fig. 5 Experimental data and neural network modeling with Matlab®
for alloyed steels; (a) C 45 steel grade and (b) 100Cr6 steel grade

The proposed model can be saved and used for the pre-
diction of surface roughness, given that the pulse current and
duration are within the limits of the model and the workpiece
material is one of the five steel grades tested.

Netlab® models

Netlab® software was also used for the design of neural net-
work models in order to predict surface roughness. When
designing with Netlab® five different networks were deve-
loped, each one corresponding to a specific steel grade. Once
more the data from Table 1 were used for the training of the
ANNS. Since the results of each model refer to a specific
material, the number of input neurons was decreased to two,
inputs being only the pulse current and the pulse duration.
The output layer consisted of one neuron as before, corres-
ponding to the surface roughness. This modeling required
simpler neural network architecture than the previous one due
to reduced number of the inputs; after a trial-and-error proce-
dure a feed-forward ANN with one hidden layer containing
five neurons was selected.

The input and output of the program were plotted in three
dimensional graphs along with the function that results from

@ Springer



290

J Intell Manuf (2008) 19:283-292

§.] ¢ Mic/al 1
= | ]
g " .
,g] 10
= 4
S 3 .
o,
7.l :
80T~
4007 o e 28
00 T g
%.S'e 2007 T 18 U\)
bﬂg ~0.Th 0 m‘[ﬁn‘
G‘S) 100 12 ?‘ﬁse
(b) |
1
o, 13- ° %
g :
wm M
8 ol
| o
é 9‘ -
I~ ‘“T -1
74
500 -
400 TN et TN T TR e e
P‘ffsed 3;}"&& a2 4
%& 200 gt _{1—;- » (A)
oﬂ(ﬂ&y w0 g2 nise cm;\;&(\‘

Fig. 6 Experimental data and neural network modeling with Matlab®
for HSLA steels; (a) Mic/al 1 microalloyed steel grade and (b) DP 1
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Fig. 7 Neural network modeling with Netlab® for St 37 steel

the trained neural network, see Figs.7-9. With these plots
the surface roughness of the specific workpiece material can
be predicted for given values of pulse current and pulse dura-
tion. Note also that these figures can be used as guidelines
for EDM process planning for the tested materials: When the
pulse current and the pulse duration are known the surface
roughness can be predicted and vice versa; when a specific
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Fig. 8 Neural network modeling with Netlab® for alloyed steels;
(a) C 45 steel grade and (b) 100Cr6 steel grade

surface roughness must be achieved the process parameters
can be suitably selected. These plots are user-friendly; people
who are not familiar with computers and/or specialized soft-
ware can easily handle them. Therefore, they can be printed
and incorporated into EDM machine tools manuals as work
instructions.

Conclusions

In the present paper artificial neural network models for
the prediction of surface roughness in Electrical Discharge
Machining of various steel grades were proposed and vali-
dated with experimental results. For the formulation of the
ANNSs and the modeling of EDM two discrete programs were
used, namely: Matlab® and Netlab®.

For Matlab® model the workpiece material, the pulse
duration and the pulse current were used as input parameters
for the feed-forward neural network trained with the BP algo-
rithm. This neural network was trained with experimental



J Intell Manuf (2008) 19:283-292

291

Fig. 9 Neural network modeling with Netlab® for HSLA steels;
(a) Mic/al 1 microalloyed steel grade and (b) DP 1 dual phase steel
grade

data acquired from actual EDM experiments. The results
obtained indicated that the proposed ANN can successfully
predict the surface roughness, within the limits of the input
values by which it was trained.

When using Netlab® five different networks were
developed, each one corresponding to a specific steel grade.
This modeling required simpler neural network architecture
whilst the agreement between experimental and calculated
values was again very good. Moreover, the inputs and out-
puts of the models were plotted in three dimensional graphs,
i.e., Ry values versus pulse duration and pulse current. These
user-friendly graphs may be used for the prediction of the
outcome of the process as well as for process planning and
optimization when the surface roughness is prescribed.

In general, both Matlab® and Netlab® models were pro-
ven to perform well for EDM, giving reliable predictions
and providing thus a possible way to avoid time- and money-
consuming experiments.
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