J Intell Manuf (2008) 19:49-69
DOI 10.1007/s10845-007-0045-5

A review of the current applications of genetic algorithms

in assembly line balancing

Seren Ozmehmet Tasan - Semra Tunali

Received: April 2006 / Accepted: December 2006 / Published online: July 2007

© Springer Science+Business Media, LLC 2007

Abstract Most of the problems involving the design and
plan of manufacturing systems are combinatorial and
NP-hard. A well-known manufacturing optimization prob-
lem is the assembly line balancing problem (ALBP). Due to
the complexity of the problem, in recent years, a growing
number of researchers have employed genetic algorithms. In
this article, a survey has been conducted from the recent
published literature on assembly line balancing including
genetic algorithms. In particular, we have summarized the
main specifications of the problems studied, the genetic
algorithms suggested and the objective functions used in
evaluating the performance of the genetic algorithms. More-
over, future research directions have been identified and are
suggested.

Keywords Assembly line balancing - Genetic algorithms -
Chromosome representation - Fitness evaluation -
Genetic operators

Introduction

Today’s highly competitive, fast pace business environment
makes it an absolute requirement on manufacturers to
continuously and effectively optimize the design of manufac-
turing systems in the shortest possible time. These conditions

S. Ozmehmet Tasan (<) - S. Tunali

Department of Industrial Engineering,

Dokuz Eylul University, 35100, Bornova, Izmir, Turkey
e-mail: seren.ozmehmet@deu.edu.tr

S. Tunali
e-mail: semra.tunali @deu.edu.tr

require a responsive manufacturing system that could be
rapidly designed, able to convert quickly to the production of
new product models, able to adjust capacity quickly, able to
integrate process technology and able to produce an increased
variety of products in unpredictable quantities. In this busi-
ness environment, the design of such manufacturing sys-
tems, which involves the design of products, processes and
the plant layout before physical construction, becomes more
and more important. Particularly, the design of an efficient
assembly line has a considerable industrial importance
(Baudin, 2002). A well-known assembly design problem is
the assembly line balancing problem (ALBP). ALBP deals
with the allocation of the tasks among workstations so that
the precedence relations are not violated and a given objective
function is optimized.

ALBP falls into the NP-hard class of combinatorial
optimization problems (Karp, 1972). The complexity of the
ALBP renders optimum seeking methods impractical for
instances of more than a few tasks and/or workstations. If
there are m tasks and r preference constraints, then there
are m!/2" possible task sequences (Baybars, 1986a). There-
fore, it can be time consuming for optimum seeking methods
to obtain an optimal solution within this vast search space.
Despite the vast search space, many attempts have been made
in the literature to solve the ALBP using optimum seeking
methods, such as linear programming (Salveson, 1955), inte-
ger programming (Bowman, 1960), dynamic programming
(Held, Karp, and Shareshian, 1963) and branch-and-bound
approaches (Jackson, 1956). However, none of these meth-
ods has proven to be of practical use for large problems due to
their computational inefficiency. Hence, numerous research
efforts have been directed towards the development of heuris-
tics such as Dar-El’'s MALB (1973), Dar-El and
Rubinovitch’s MUST (1979), and Baybars’ LBHA (1986b)
and meta-heuristics such as simulated annealing

@ Springer



50

J Intell Manuf (2008) 19:49-69

(Suresh and Sahu, 1994), tabu search (Peterson, 1993) and
genetic algorithms (Falkenauer and Delchambre, 1992).

Among these meta-heuristics, genetic algorithms (GAs)
received an increasing attention from the researchers since it
provides an alternative to traditional optimization techniques
by using directed random searches to locate optimum solu-
tions in complex landscapes. Despite the popularity of GAs’
application to ALBP, there exist only a few papers reviewing
the subject including Dimopoulos and Zalzala (2000), Aytug
et al. (2003) and Scholl and Becker (2006). Dimopoulos and
Zalzala (2000) reviewed the use of evolutionary computa-
tion methods for solving manufacturing optimization prob-
lems including the classic job-shop and flow-shop scheduling
problems, assembly line balancing and aggregate production
planning. Aytug et al. (2003) reviewed over 110 papers using
GAs to solve various types of production and operations
management problems including production planning and
control, facility layout design, line balancing, supply chain
management and etc. We noted that none of these studies
placed an adequate amount of emphasis on the use of GAs
for solving ALBPs since their scope was very broad. In a
recent paper, Scholl and Becker (2006) presented a review
and analysis of exact and heuristic solution procedures for
solving ALBPs. However, the scope of this study is limited
to the review of GAs for particularly solving the simplest
version of ALBPs.

In this review, the context is much broader; we focus on
solving all types of ALBPs using GAs. A structural frame-
work is provided in order to classify the reviewed papers
according to the type of ALBP studied, the GA methodology
and the performance specifications. Based on this structural
framework, the commonalities and differences between the
published studies are discussed and some open issues are
identified. Considering the growing number of published lit-
erature in this area, we hope that a comprehensive up-to-date
review study will guide the researchers about the new prom-
ising research directions.

The rest of the paper is organized as follows; In Section
“background information” on the main features of ALBPs
and GAs are given. Section “Review of published literature”,
the contributions of reviewed literature are discussed based
on various criteria included in the proposed structural frame-
work. Finally, the concluding remarks and future research
directions are given in the last section.

Background information
Assembly line balancing
Assembly lines, which consist of a sequence of tasks, each

having an operational processing time and a set of prece-
dence relations, are widely adopted in manufacturing plants.

@ Springer

Most of the work related to the assembly lines concentrates
on ALBP, which deals with the allocation of the tasks among
workstations, so that the precedence relations are not vio-
lated and a given objective function is optimized. The pre-
cedence relations contain the ordering in, which tasks must
be performed. The widely used notations in assembly line
balancing literature are presented in Table 1.

Figure 1 illustrates the precedence relations by means of
a precedence graph, which contains 11 nodes for tasks, node
weights in italic for task processing times and arcs for order-
ings. It is noted that the most commonly used objective func-
tion in the literature is the maximization of the line efficiency,
E = tsum/(n*c)-

Various classification schemes exist for ALBPs
(Baybars, 1986a; Becker and Scholl, 2006; Erel and Sarin,

Table 1 List of notations

Notations Definitions

n Number of workstations; i=1,...,n

c Cycle time

m Number of tasks; j=1,..., m

tj Processing time of task j

tsum Total processing time of tasks; #g,,, = % tj

WS; Workstation load of workstation i -

t(WS;) Workstation time of workstation i; (W S;) = > ¢;
jews;

maxt(WS;) Maximum workstation time

k Largest single processing time of a task, a constant

Ny Number of violations in precedence relations

¢ Fuzzy cycle time

t(V[?S) Fuzzy workstation times for workstation i

ng I Number of workstations in solution s

M Number of models; k=1,...,M

qx Demand ratio of model k

itix Idle time for workstation i after processing model k

M

IT; Average idle time for workstation i; IT; = Y qxitix

E Line efficiency =

f(s) Fitness function of a solution s

Fig. 1 Precedence graph



J Intell Manuf (2008) 19:49-69

51

Fig. 2 Classification of
assembly line balancing
problems

Assembly Line Balancing Problem

1998; Ghosh and Gagnon, 1989; Scholl, 1999). Figure 2
illustrates the classification of ALBPs based on the objective
function and problem structure. This classification compiles
Baybars (1986a), Kim et al. (1996), Scholl (1999) and Becker
and Scholl (2006).

Several versions of ALBP arise by varying the objective
function (Scholl, 1999). Type-F is an objective-independent
problem, which is to establish whether or not a feasible line
balance exists for a given combination of m and c. Type-1
and Type-2 have a dual relationship; the first one tries to min-
imize the number of workstations for a given cycle time, and
the second one tries to minimize the cycle time for a given
number of workstations. Type-E is the most general prob-
lem version, which tries to maximize the line efficiency by
simultaneously minimizing the cycle time and a number of
workstations. Finally, Type-3, 4 and 5 correspond to max-
imization of workload smoothness, maximization of work
relatedness and multiple objectives with Type-3 and Type-4,
respectively (Kim et al., 1996).

Based on the problem structure, ALBPs can be classi-
fied into two groups. While, the first group (Becker and
Scholl, 2006; Scholl, 1999) includes single-model assembly
line balancing (SMALB), multi-model assembly line balanc-
ing (MuMALB), and mixed-model assembly line balancing
(MMALB), the second group (Baybars, 1986a) includes sim-
ple assembly line balancing (SALB) and general assembly
line balancing (GALB). The SMALB problem involves only
one product. The MuMALB problem involves more than one
product produced in batches. The MMALB problem refers
to assembly lines, which are capable of producing a vari-
ety of similar product models simultaneously and contin-
uously (not in batches). Additionally, SALB problem, the
simplest version of the ALBP and the special version of
SMALB problem, involves production of only one product,
where assembly line has features such as paced line with
fixed cycle time, deterministic independent processing times,

il

(ALBP)
Based on Based on
objective function problem structure
Type-F + +
According to According to

(Scholl, 1999; Becker and Scholl, 2006) (Baybars, 1986a)

Type-1

Type-2 SMALB
Type-E MMALB
Type-3 MuMALB

Type-4

Type-5

no assignment restrictions, serial layout, one sided worksta-
tions, equally equipped workstations and fixed rate launch-
ing. The GALB problem includes all of the problems that
are not SALB, such as balancing of mixed model, paral-
lel, U-shaped and two-sided lines with stochastic dependent
processing times; thereby more realistic ALBPs can be for-
mulated and be solved.

Since balancing of assembly lines is a quite active research
area, several comprehensive survey papers on solution meth-
ods have been published including Baybars (1986a) that sur-
veys the exact (optimal) methods, Talbot et al. (1986) that
compare and evaluate the heuristic methods developed,
Ghosh and Gagnon (1989) that present a comprehensive
review and analysis of the different methods for design, bal-
ancing and scheduling of assembly systems, Erel and Sarin
(1998) that present a comprehensive review of the procedures
for single-model and multi-mixed-model assembly lines,
Rekiek et al. (2002) that focus on optimization methods for
the line balancing and resource planning steps of assembly
line design, Scholl and Becker (2006) that present a review
and analysis of exact and heuristic solution procedures for
SALB, and Becker and Scholl (2006) that present a survey
on problems and methods for GALB with features such as
cost/profit oriented objectives, equipment selection/process
alternatives, parallel workstations/tasks, U-shaped line lay-
out, assignment restrictions, stochastic task processing times
and mixed model assembly lines.

Genetic algorithms

Optimization problems arise in situations where discrete
choices must be made, and solving them amounts to find-
ing an optimal solution among a finite or countable infinite
number of alternatives. Many optimization problems are NP-
hard. Although the efforts made to solve the optimization
problems efficiently have produced important progress in

@ Springer



52

J Intell Manuf (2008) 19:49-69

the last years, there is no universal method. Consequently,
there is much interest in approximation algorithms that can
find near-optimal solutions within a reasonable computation
time. Genetic algorithms, which have been introduced by
John Holland (1975) in the 1970s have become increasingly
popular among approximation algorithms for finding near
optimal solutions to large optimization problems.

GA is a stochastic search method inspired by concepts
from Darwinian evolution theory and belongs to a class of
meta-heuristic methods known as evolutionary algorithm
(EA). As asolution approach, GA has two advantages: (i) GA
searches a population rather than a single point and this
increases the likelihood that the algorithm will not be trapped
in a local optimum since many solutions are considered con-
currently, and (ii) GA fitness function may take any form
and several fitness functions can be utilized simultaneously.
The general idea of a typical GA is best explained by the
following scheme:

// start with an initial time
/I construct an initial popu-
lation of individuals

/I evaluate fitness of all
individuals of initial popu-
lation

Step 1: t=0;
Step 2: initpopulation P (t);

Step 3: evaluate P (t);

Step4:t:=t+1;

Step 5: P’ := selectparents
P (t);

Step 6: crossover P’ (t);

Step 7: mutate P’ (t);

Step 8: evaluate P’ (t);
Step 9: P :=survive PP’ (t);

Step 10: while not do steps
4 through 9
Step 11: end GA

// increase the time counter
/I select a sub-population
for offspring production

/I crossover the “genes” of
selected parents

/Il perturb the mated popu-
lation stochastically

/[ evaluate its new fitness
/I select the survivors from
actual fitness

// test for termination crite-
rion (time, fitness, etc.)

/I terminate the algorithm

GA is initialized with a population of individuals to start
the search process. During the search, candidate solutions
(individuals) in the solution space (population) are encoded
as symbolic strings, known as chromosomes. A typical GA
uses two operators, crossover and mutation, to direct the
population towards convergence at the global optimum. The
search algorithm analyses and extracts superior evolving
information from the search space, and guides the search
in a prespecified direction with these operators. Crossover
allows solutions to exchange information in a way similar to
that used by a natural organism undergoing sexual reproduc-
tion. Mutation is used to randomly change the value of sin-
gle genes within chromosomes. Mutation is typically applied
very sparingly. After selection, crossover and mutation are

@ Springer

applied to the initial population, a part of the existing pop-
ulation survives to next generation and it forms a new pop-
ulation. This process of GA is continued until a termination
criterion is met. A fixed number of generations and some
form of convergence are typical termination criteria.

GA is a general method, capable of being applied to an
extremely wide range of problems ranging from robotics and
finance to marketing and manufacturing. In this article, we
particularly placed the emphasis on the use of GAs in solv-
ing ALBPs. Therefore, detailed discussion on other GAs and
applications are beyond the scope of this paper. The reader
can refer to Goldberg (1989), Mitchell (1996) and Coley
(2003) for an introduction to GAs. Besides, some recent
applications of GAs for solving various manufacturing opti-
mization problems can be found in Cheng et al. (1996, 1999),
Dimopoulos and Zalzala (2000), Iyer and Saxena (2004),
Martens (2004) and Stockton et al. (2004a,b).

Review of the published literature

In this section, using a structural framework given in Fig. 3,
we reviewed the present literature based on specifications of
problem, GA and performance. As seen in Fig. 3, problem
specifications contain the main features of the problems stud-
ied, GA specifications summarize information about the GA
methods developed, initialization of the population, chro-
mosome representation, fitness function, genetic operators,
selection and survival schemes, feasibility issues, and termi-
nation criteria and finally, performance specifications include
information about the data sets used to test GA, other solution
methods to, which the performance of GA was compared, the
computation time and the implementation language. Using
this structural framework, in Section “Problem specifica-
tions” we focused on the problem specifications of the pub-
lished literature in chronological order, in Section “Genetic
algorithm specifications” we analyzed the GAs in order to
draw attention to the commonalities and differences between
specifications of GAs, and finally, in Section “Performance
specification” we investigated the performance specifications
of the researches.

Problem specifications

We referred to the classification given in (Baybars, 1986a) to
identify the major trends in types of problems studied. Hence,
we reviewed the published literature under two groups: SALB
and GALB. Table 2 chronologically lists the reviewed studies
based on the type of the problems studied and the objective
functions.



J Intell Manuf (2008) 19:49-69 5

(95}

Fig. 3 Structural framework [ GAs for solving ALBP ]
for reviewing

[ ]
Problem GA Performance
Specifications Specifications Specifications
Method _| Selection type _' Experimental settings
— Size of Population -
Objective Hypothetical
function o
romosome Feasibility -
representation —' Comparlson
Crossover type &

Methods
compared
rate (R.)

Results

Termination criteria

Mutation type &

rate (R) Computation time

-[ Implementation Language

A

Table 2 Assembly line balancing problem specifications

Problem specifications

Year Researcher(s) Problem type Objective function
1992 Falkenauer & Delchambre SALB Type-1

1994 Leu et al. SALB Type-1

1994 Anderson & Ferris SALB Type-2

1995 Rubinovitz & Levitin SALB Type-2

1995 Tsujimura et al. GALB (SMALB) Type-1

1996 Kim et al. SALB Type-1,2,3,4,5
1996 Suresh et al. GALB (SMALB) Type-1

1997 Falkenauer GALB (SMALB) Type-1

1998 Ajenblit & Wainwright GALB (SMALB) Type-1

1998 Chan et al. GALB (SMALB) Type-1

1998a Kim et al. SALB Type-2

1999 Rekiek et al. SALB Equal Piles
2000 Bautista et al. SALB Type-1, Type-2
2000 Kim et al. GALB (SMALB) Type-1

2000 Ponnambalam et al. SALB Type-1, Type-3
2000 Sabuncuoglu et al. SALB Type-1

2001 Carnahan et al. SALB Type-2

2001a Simaria & Vilarinho GALB (MMALB) Type-2

2002 Chen et al. GALB (Assembly planning ) Type-2

2002 Goncalves & De Almedia SALB Type-1

2002 Miltenburg GALB (MMALB & sequencing simultaneously) Type-1

2002 Valente et al. GALB (SMALB) Type-2

2004 Brudaru & Valmar GALB (SMALB) Type-1

2004 Martinez & Duff GALB (SMALB) Type-1

2004 Simaria & Vilarinho GALB (MMALB) Type-2

2004a, 2004b Stockton et al. SALB Type-1

2005 Brown & Sumichrast SALB Type-1

2006 Levitin et al. GALB (SMALB) Type-2

2006 Noorul Haq et al. GALB (MMALB) Type-1

@ Springer



54

J Intell Manuf (2008) 19:49-69

Research on SALB problem

Typical features of SALB problem are one product
production, paced line with fixed cycle time, deterministic
independent processing times, no assignment restrictions,
serial layout, one sided and equally equipped workstations
and fixed rate launching.

Falkenauer and Delchambre (1992) were the first to solve
SALB problem with GAs. Falkenauer (1991) presented the
Grouping Genetic Algorithm (GGA) especially for solving
grouping optimization problems, where the aim was to group
members of a set into a small number of families in order
to optimize objective function under given constraints. GGA
has a special chromosome representation scheme and genetic
operators, which are used to suit the representation scheme.
Later, Falkenauer and Delchambre (1992) implemented the
GGA to two grouping optimization problems; i.e. bin pack-
ing problem and SALB Type-1 problem. This study was the
first attempt to balance an assembly line Type-1 problem
with GA. The authors first presented a special representation
scheme and special genetic operators for the bin packing
problem, and they later modified the special genetic opera-
tors for line balancing. Other implementations of GGA for
solving ALBPs can be found in Falkenauer (1997), Rekiek
et al. (1999) and Brown and Sumichrast (2005). For more
information about GGA, the reader may refer to Falkenauer
(1998), where he describes the drawbacks, i.e. problems with
standard representation scheme and standard genetic opera-
tors, which occur when applying the typical GA to grouping
problems.

Following Falkenauer and Delchambre (1992), SALB
problem was studied by many researchers. Leu et al. (1994)
developed a GA to solve SALB Type-1 problems and used
heuristic procedures to determine the initial population. They
also proposed a number of techniques to deal with the feasi-
bility problems during initialization of the population as well
as after the reproduction phase. They also demonstrated the
possibility of balancing assembly lines with multiple criteria
and zoning constraints.

The first article, which presented a GA application to
the SMALB Type-2 problem, was published by Anderson
and Ferris (1994). The authors mainly aimed at showing the
effective use of GAs solving combinatorial optimization
problems. They first described a fairly typical serial imple-
mentation of GA for the ALBP and studied the effects of
various GA variables on the performance of the GA. Follow-
ing, they introduced an alternative parallel version of the GA,
where each individual in the population resided on a proces-
sor. The comparative study between serial GA and parallel
GA showed that the quality of the solutions from the parallel
implementations was worse than the best solutions obtained
from serial implementation.

@ Springer

Rubinovitz and Levitin (1995) used a GA to obtain SALB
Type-2 problem in, which the processing times of a task was
dependent upon workstation assignment. The authors com-
pared the proposed GA to Dar El and Rubinovitch MUST
(1979), where the proposed GA solved the problems involv-
ing more than 20 workstations faster than MUST. Finally,
the authors concluded that their GA achieved its greater
advantage when the precedence constraints were the least
restrictive.

Kim et al. (1996) developed a GA to solve multiple objec-
tive SMALB problem. They addressed several types of ALBP
such as minimize number of workstations (Type-1), mini-
mize cycle time (Type-2), maximize workload smoothness
(Type-3), maximize work relatedness (interrelated tasks are
allotted to the same workstation as much as possible) (Type-
4), and a multiple objective with Type-3 and Type-4 (Type-5).
The authors placed the emphasis on seeking a set of diverse
Pareto optimal solutions. Although, Kim et al.’s multi-objec-
tive GA seems to be very promising, the chromosome rep-
resentation scheme they used is not well suited to the some
of the problem types, since they used a single chromosome
representation scheme to represent all of the problem
types.

Kim et al. (1998a) considered maximizing the workload
smoothness, which has been generally neglected in the liter-
ature. Extensive computational experiments were made and
the advantages of incorporating problem specific heuristics
information into the algorithm were demonstrated. The
experimental results showed that the proposed GA outper-
formed the existing heuristics and the standard GA.

Rekiek et al. (1999) proposed a GGA (Falkenauer and
Delchambre, 1992) based on Equal Piles approach for solv-
ing SALB problem. They tried to assign tasks to fixed num-
ber workstations in such a way that the workload of each
workstation was nearly equal by leveling on average the size
of each workstation (minimizing the standard deviation of
sizes). Therefore, the proposed method warranted to obtain
the desired number of workstations and tried to equalize the
workloads of workstations as possible. Later, Rekiek devel-
oped a GGA for solving multi-objective assembly line design
problem in his PhD thesis (Rekiek, 2000).

Bautista et al. (2000) considered the SALB problem with
incompatibilities between tasks. To avoid assigning two
incompatible tasks to the same station, the authors developed
a Greedy Randomized Adaptive Search Procedure (GRASP)
obtained from the application of some classic heuristic meth-
ods and a GA. They first tried to solve the SALB Type-1
problem and then the SALB Type-2 problem once the num-
ber of workstations has been determined. They also revised
GRASP by using weights and called it Greedy Randomize
Weighted Adaptive Search Procedure (GRWASP). In the pro-
posed method, the greedy heuristic methods were based on



J Intell Manuf (2008) 19:49-69

55

the application of priority rules for assignment of tasks to
workstations such as longest processing time and greatest
number of immediate successors. The greedy heuristic favors
tasks with the best index value, while the GA phase simply
changes the order of elements in the solution. Their com-
parative study showed that the proposed GA and GRWASP
resulted in better performance than the greedy heuristics and
GRASP.

Ponnambalam et al. (2000) developed a multi-objective
GA for SMALB Type-1 problem to optimize several objec-
tives simultaneously: the number of workstations, the line
efficiency, and the smoothness index. Several comparisons
were made between other heuristics on several examples.
The results of the comparisons indicated that GA performed
better in all cases studied. However, the execution time for
the GA was found to be longer.

Sabuncuoglu et al. (2000) developed a new GA to solve
the SMALB problem by utilizing the intrinsic characteristics
of the problem. The authors also proposed a method called
‘dynamic partitioning’ that modified chromosome structure
of GAs to save CPU time. The method modifies the chromo-
some structure by allocating tasks to workstations (i.e. freez-
ing certain tasks) that satisfy some criteria, and continues
with the remaining unfrozen tasks. Furthermore, they con-
structed a new elitism structure adopted from the concept of
simulated annealing. It is observed that this new elitism struc-
ture contributes significantly to the performance of the GA.
In fact, the results of extensive computational experiments
indicated that the proposed GA approach outperformed the
well-known heuristics in the literature.

Carnahan et al. (2001) considered the physical demands
placed on workers in solving SALB Type-2 problem. In order
to measure physical demand, the authors used grip strength
capacity that represented the maximum finger flexor strength
generated by a worker using a semi-pronated power grip.
Three methods, i.e. a ranking heuristic, a combinatorial GA
and a problem space GA, were developed to simultaneously
minimize the maximum manual gripping demands and the
cycle time. The authors concluded that the problem space
GA performed better than the others.

Goncalves and De Almedia (2002) presented a hybrid GA,
which combined heuristic priority rules with GA to solve
SALB Type-1 problem. Several problems from the litera-
ture have been used to demonstrate the effectiveness and
robustness of the proposed hybrid GA. The result of the
experiments showed that the proposed method performed
remarkably well.

Stockton et al. (2004a,b) investigated the use of GAs for
solving various problems that arises when designing and
planning manufacturing operations, i.e. assortment planning,
aggregate planning, lot sizing within material requirement
planning environments, line balancing and facilities layout.
In Stockton et al. (2004a), the authors have examined the

application of GA to the SMALB Type-1 problem. They
compared the performance of the GA with a traditional solu-
tion method, i.e. Ranked Positional Weight (RPW) (Helger-
son and Birnie, 1961). In Stockton et al. (2004b), the authors
performed computational experiments in order to identify
suitable genetic operators and parameter values. As these two
papers complement each other, they are reviewed together in
the following sections.

Brown and Sumichrast (2005) compared the performance
of GGA (Falkenauer, 1991) against the performance of typ-
ical GA across a range of grouping problems, i.e. bin pack-
ing, machine part cell formation and SALB Type-1 problem.
They applied the two techniques, i.e. standard GA and GGA,
to a set of problems and compared the results with respect to
solution quality and computation time. They noted that both
of the techniques managed to find the optimal solution for
all test problems; however GGA found the optimal solution
more quickly.

Research on GALB problem

The studies reviewed in this part focus on GALB problems
that include all of the problems that are not SALB, such as
balancing of single-model or mixed-model, parallel,
U-shaped and two-sided lines with stochastic, fuzzy or depen-
dent processing times.

Tsujimura et al. (1995) were the first to solve GALB prob-
lem with GAs. The authors used the fuzzy numbers to repre-
sent the imprecise, vague and uncertain task processing times
as the processing times are uncertain due to both machine and
human factors. They proposed a GA to solve SMALB Type-1
problem, represented the fuzzy processing times by triangu-
lar membership functions and illustrated the application of
the proposed GA on a problem with 80 tasks.

Following Tsujimura et al. (1995), several versions of
GALB problem were studied by many researchers. Suresh
et al. (1996) used a GA to solve the SMALB Type-1 prob-
lem with stochastic processing times. A modified GA, work-
ing with two populations (one allowing infeasible solutions),
and exchange of specimens at regular intervals, were pro-
posed for handling irregular search space (i.e. the unfeasi-
bility problem due to problem specifications). The authors
believed that a population of feasible solutions would lead
to a fragmented search space, thus increasing the probabil-
ity of getting trapped in a local minimum. They stated that
infeasible solutions can be allowed in the population only
if the genetic operators can lead to feasible solutions from
infeasible ones. Throughout the generations, some solutions
were exchanged at regular intervals between the two pop-
ulations (i.e., the exchanged solutions have the same rank
of fitness value in their own populations). The results of
the experiments indicated that the GA working with two

@ Springer



56

J Intell Manuf (2008) 19:49-69

populations can give better results than the GA with only
feasible population.

Falkenauer (1997) presented a GA based on GGA
(Falkenauer and Delchambre, 1992) and branch and bound
algorithm for SMALB Type-1 problem with resource depen-
dent processing times. The problem involved allocating
resources with different cost and speed to each task and also
assigning the tasks to workstations, in such a way that the
total cost of the line be minimal. The author employed GGA
to assign the tasks to workstations, and then branch and bound
algorithm to select the optimal source for each workstation.
In this problem, the processing time of a task depends on
the resources being used; therefore, resources with different
cost and speed are allocated to each task in addition to the
assignment of tasks to workstations, in such a way that
the total cost of the line be minimal. In the proposed method,
the tasks were assigned to workstations by GGA, and the
optimal source for each workstation was selected by branch
and bound algorithm.

Ajenblit and Wainwright (1998) were pioneers in bal-
ancing the U-shaped SMALB Type-1 problem using GAs.
The authors dealt with two possible variations of this prob-
lem, minimizing the total idle time and balancing of work-
load among workstations, or a combination of both. They
developed six different assignment algorithms to interpret a
chromosome and assign tasks to workstations. The authors
applied the proposed GA to 61 test problems. In comparison
to previous researchers, they obtained superior results in 11
cases, the same results in 49 cases and worse result in one
case.

Chan et al. (1998) proposed a GA for SMALB Type-1
problem in the clothing industry. The authors tried to improve
the line efficiency by minimizing the time spent in assembly
line balance planning. They also included the various skill
levels of workers as problem specific information to solve
41-task ALBP. The experimental results showed that the per-
formance of GA was much better than the performance of
the greedy algorithm, which performed optimization by pro-
ceeding to a series of alternatives and assigned most skillful
worker to each task.

Kim et al. (2000) developed a GA for balancing two-sided
SMALB Type-1 problem with positional constraints. Two-
sided assembly lines consist of two connected serial lines in
parallel, where some task can be performed at one of the two
sides of the line, while the others can be performed at the
either side of the line. In the two-sided assembly lines, the
tasks are classified into three types: L (left); R (right); and E
(either) type tasks. L type tasks are easily performed at the
left hand side of the line, similarly R type tasks are easily per-
formed at the right hand side of the line and E type tasks are
easily performed at both sides of the line. The performance
of the proposed GA was compared to integer programming
and other heuristic methods at Kim et al. (1998b) using five

@ Springer

test problems. The results indicated that the proposed GA
showed better performance than the heuristics studied. The
authors stated that the proposed GA can be directly applied
to the different versions of the ALBP.

Simaria and Vilarinho (2001a) proposed an iterative search
procedure including GA for MMALB Type-2 problem with
parallel workstations. The proposed GA procedure was orig-
inally based on the model developed in Simaria and Vilarinho
(2001b) for SMALB Type-2 problem, where the simulated
annealing was used as a solution method. The iterative proce-
dure starts with a lower bound of cycle time and successively
solves MMALB Type-1 problem by increasing cycle times.
Once a feasible solution is found, the procedure employs a
GA to decrease the cycle time. Besides minimizing the cycle
time, the procedure minimizes the workload balances. The
iterative procedure was illustrated using a simple example
with two assembly models and 25 tasks.

Chen et al. (2002) presented a GA approach for assembly
planning involving various objectives, such as minimizing
cycle time, maximizing workload smoothness, minimizing
the frequency of tool change, minimizing the number of
tools and machines used, and minimizing the complexity of
assembly sequences. They classified the assembly line plan-
ning problems into line balancing, tooling and scheduling
problem. The proposed method was improved by including
heuristic solutions into initial population and developing a
self tuning method to correct infeasible chromosome. Sev-
eral examples were employed to illustrate the proposed GA.
Experimental results indicated that the proposed GA effi-
ciently yields many alternative assembly plans to support the
design and operation of an assembly system.

Miltenburg (2002) solved the assembly line balancing
Type-1 problem and sequencing problems simultaneously
for mixed model U-shaped assembly line. They proposed a
GA to solve the balancing and sequencing problems jointly.
The proposed GA was found to offer good solutions.

Valente et al. (2002) proposed a GA to solve assembly line
balancing Type-2 problem in a real-world application, a two-
sided car assembly line. The solution to the problem involved
satisfying the constraint that the length of each workstation
was constant. The proposed GA was found to reduce the total
assembly time of the current line by 28.5%.

Brudaru and Valmar (2004) proposed a hybrid GA for
solving SMALB Type-1 Problem. They considered the pro-
cessing times of tasks as fuzzy numbers like Tsujimura et al.
(1995). Their hybrid method combined the branch and bound
with GA. The authors presented a special chromosome rep-
resentation scheme, embryonic representation, which used
subsets of solutions rather than the individual solutions. They
also proposed a new type of genetic operator called growing
operator to be used for the hybrid GA. The proposed hybrid
GA was found to take longer computation time with respect
to solution quality.



J Intell Manuf (2008) 19:49-69

57

Martinez and Duff (2004) addressed the U-shaped SMALB
Type-1 problem. They first solved this problem using 10 heu-
ristic rules adapted from the simple line balancing problem,
such as maximum ranked positional weight, maximum total
number of follower tasks or precedence tasks, and maximum
processing time, and compared these heuristic solutions with
the optimal solutions obtained from previous researches. Fol-
lowing, they modified the Ponnambalam et al.’s GA (2000)
and inserted the solutions obtained using these heuristic rules
to the initial population. They illustrated the proposed GA
using the Jackson’s problem (1956). The results showed that
the addition of a GA can improve the current solution.

Simaria and Vilarinho (2004) expanded the application of
their previous work in Simaria and Vilarinho (2001a), where
they proposed an iterative GA based search procedure for
MMALB Type-2 problem with parallel workstations. The
authors have also conducted a set of computational experi-
ments on a set of generated ALBPs.

Levitin et al. (2006) proposed a GA for solving a spe-
cial kind of SMALB Type-2 problem, i.e. Robotic Assem-
bly Line Balancing (RALB) problem. The authors defined a
robotic assembly line, where robots with different capabili-
ties and specializations were assigned to the assembly tasks.
Various procedures for adapting the GA to the RALB prob-
lem such as a local optimization (hill climbing) work-piece
exchange procedure were introduced. Tests were conducted
on a set of randomly generated problems to determine the
most effective GA procedure based on the best combination
of parameters.

Noorul Haq, Jayaprakash, and Rengarajan (2006) pro-
posed a hybrid GA for solving MMALB Type-1 problem.
They incorporated the solution from the modified RPW
(MRPW) method into the GA’s randomly generated initial
population to reduce the search space within the global search
space. It was noted that this integration reduced the search
time. The authors illustrated the implementation of hybrid
GA approach on seven problems and compared the results
with the MRPW and the standard GA. The results showed
that the proposed approach performed better than the stan-
dard GA.

Findings based on problem specifications

Referring to Table 2, we could list the findings of this survey
study based on problem specifications as follows:

e Almost half of the articles surveyed (i.e. 14 out of 29)
focused on SALB, the simplest version problem of assem-
bly line balancing, while other half focused on GALB.

e Only four of the articles surveyed (Simaria and Vilarinho,
2001a, 2004; Miltenburg, 2002; Noorul Haq et al., 2006)
dealt with MMALB problem.

e One of the articles (Miltenburg, 2002) tried to solve
balancing and sequencing problems of mixed model
assembly line simultaneously.

e 19 out of 29 articles surveyed studied Type-1 problem,
minimization of number of workstations. The other nine
researches focused on Type-2 problem, minimization of
cycle time. Rekiek et al. (1999) considered the equal piles
approach. Only Kim et al. (1996), Bautista et al. (2000)
and Ponnambalam et al. (2000) considered the multi-
objective problem.

e Two of the assembly lines Kim et al. (2000); Valente et al.
(2002) studied were two-sided, two of them (Ajenblit and
Wainwright, 1998; Martinez and Duff, 2004) were U-
shaped, and two of them (Simaria and Vilarinho, 2001a,
2004) had parallel workstations.

e Only one article (Suresh et al., 1996) dealt with stochas-
tic, another two (Brudaru and Valmar, 2004; Tsujimura
etal., 1995) dealt with fuzzy, and all the others dealt with
deterministic processing times.

e Only one article (Rubinovitz and Levitin, 1995) dealt
with workstation dependent, and another one (Falkenauer,
1997) dealt with resource dependent deterministic pro-
cessing times.

e Only one article (Bautista et al., 2000) considered the
incompatibilities between tasks.

e Only one article (Carnahan et al., 2001) considered the
physical demands placed on workers during assembly
line balancing.

e Only one article (Levitin et al., 2006) considered RALB
problem, where robots have different capabilities and
specializations.

From the problem specifications perspective, we noted that
most of the researchers focused on SALB, the simplest ver-
sion of the problem, with single objective and ignored the
recent trends, i.e. mixed model production, U-shaped lines
and etc, in the complex manufacturing environments, where
ALBP are multi-objective in nature.

Genetic algorithm specifications

In this section, the proposed GAs were investigated based on
nine criteria; the proposed GA method, formation of initial
population, the genetic representation of individuals (chro-
mosome), the evaluation function to compute the fitness of
individuals (fitness function), genetic operators to alter new
individuals (crossover and mutation), selection scheme to
select individuals for mating, the survival scheme to gener-
ate a new population, feasibility issues and termination cri-
teria. Table 3 presents the chronological order of published
literature based on these nine criteria.

@ Springer



49-69

J Intell Manuf (2008) 19

58

ERAEIN
-U0J + UONRId syse) Jo ‘ou=13ud| 09 =0azisdod
-ud3 I, 0y dny 92104 wsnig [99yM ano[noy wHd %09=24 % DI % paseq yseL % wopuey VO pHasH e 10 ueyeuIR) 100
uone syse) Jo ‘ou=3us|
-10U93 L 01 &D 2104 wsniyg [29ym I3[NOY uonejnu dquieIdS JIA0SSOID 19pIQ 2 paseq yse], wopuey plepuel§ T’ :-WCEu:ﬁLdm 0002
(onsunay
I9A0SSOI0 JO "ou) ] =y3ud[
- Paau ON wsniyg [99yM ROy uoneIW wWopuey yurod om, 2 paseq JNsLNeY wopuey plepuels ‘[® 19 WeRquIRUUOg 0002
%0S =94 % (XOS)
uone %01 =wy % 124085012 Jutod
-ouad [ 0y dn - wsnIy JUSWRLINO], uoneINW wWopuey QUO PAIMINNG Joqunu dno1g SONSLINOH +WOpURY plepuels e 10 Wy 000T
sonsunay
uone Jo "ou=1Suo|
-1ouad [ 01dn Paau ON - - - - 29 paseq dNSLINOH - VD paseq dnSLINoH ‘[e 10 wIsnneqg 0002
)Suo[ oqeLIeA
- 9104 - - - XOdd PRYIPON 2% paseq Surdnorn wopuey VOO PHALH LRER B E). | 6661
sysen
% 0T-01=ury %06-0L=4 Jo -ou=3uo| 3 001 =ozisdod
a810AU0D) 20104 wsnig JuaWRLINO], » NSH % XSH Paseq UONBISIOMN 2 wopuey VD paseq dnSLNoH ‘T2 30 wry ©8661
S 000S uaIp[IO (paseq -19p10 syse1 Jo ‘ou=y3u9[ 0g=oaz1sdod
je QU9 2010 QAIAING [09yM a1o[NOY INSS WIOJTUN) WLIOJIu) 29 paseq yse], 2 wopuey pIepuel§ ‘e 10 uey) 8661
SYsE) JO "ou=13ua| 001 =ozisdod
- 93104 - - PasnION X0 % paseq seL % wopuey plepuels WFHMUIEA pue Hqualy 8661
39 S[qeLIeA
- 92104 - - N4 PYIPON XDdd PaYIpPON 2 poseq Surdnoxn wopuey punog pue youeld ¥ VOO Joneudy[ed L661
vo dod z ur 9] =ury syse) (uonendod 7
Aeuad 2 vO 29 uonenw %BOL-0S=24 % Jo ou=ydudy % im) 09-0p =ozisdod
- pis ut aredoy wsniyg wsniyg sfueyoranuy 19A08s010 Jutod suQ PasEq UONBISION 2 wopury plepuels ‘T8 12 ysang 9661
%Or-0T=ury % %09-07=>4 %
uoneInwW pIepue)s I0A0SSOID PIEpUEIS Syse1 Jo ‘ou=y3u9[ 001 =ozisdod
- 1edoy wsnIg JUWIRWINO], uou pue pIepuelg uou pue pIepuelsg 29 paseq yse[, 2 wopuey pIepuel§ ‘T2 10 wry 9661
SY$E) JO "ou=1)3ua[
- 1edayy wsniyg wsniyg uonenw demg XINd 2 paseq yse], wopuey plepuels ‘Te 19 eanwtlns [, S661
(DY) 12A0SSOID
uone (WD) SuLopIoar syse1 Jo ‘ou=y3uo[
-1oua8 [, 01 dn) 9010 wsnig AJwopuey uoneInW HYJ Juowdesy 2 paseq yse], wopuey VO pLUgAH UNIAY pUE Z)IAOUIqNY S661
o310A syse)
-U0d + uonerd Surpdures Y%= O=ury % %08-0L—09=°¥ % Jo rou=1)Suo| 9 =ozisdod %
-uaf ggg 01 dn Kpeuag wsnig [BSIQAIUN DNSBYD0IS uonenw jutod duQ 104085010 Jutod auQ PIseq UONRISYIOM SONSLINAY +Wopuey [o[[ered % prepuels 119, pU® UOSIOpUY 661
o310A (Surmous)
-uod  +uonerd pr=wy y syse) Jo ‘ou=3ua| og=9ozisdod %
-uad gog 01 dn 90104 [99YM 9NJ[NOY uoneINwW JqUILIdS 9%86=94 ¥ XO 2 paseq yseL, SONSLINOH + WOopuey plepuelg ‘219 nog 661
uorneruad )Suo[ o[qeLIeA
00001 o1 dn 9010 - - INdE PaYIPOIN XDdd PaYIpPON 29 poseq Surdnorn wopuey (VDD) prepueig dlquieyde( pue roneudyeq 661
(uononpoidax
Kreudg 10
BLIOILID /nedayy/eo10) Juowededar) (Sunew (ury) Aer (oy) orex uonejuasaidar uonendod jo az1s
UONRUIULIY, Anqiqiseay ad£) [eAraIng 103) 2d£) uonosjeg 2 2d£y uoneinpy 2 2d£) 10A08501D) QUIOSOWOIY) 2 uonendod fenuy POYRIN
suoneoy1oads wyiLos[e onduan (s)19y18as9Yy IR0

JOpIO [BIISO[OUOIYD UI 2INJRINI] JO suonedyroads wiypiios[e onouan) ¢ qe],

pringer

A



59

49-69

J Intell Manuf (2008) 19

pringer

As

- - - - P S=Wrg % 08=>Yd - ONSLINOH + Wopuey VD PHIKH ‘Te 12 bey [niooN 900T
uone 9, [ =ury Syse) JO "ou=13u[ 001 =ozisdod
-1uad I o1 dny 2010 wsniyg Kqwopuey 2 uoneinw dems oA 2 paseq Yse], 2 wopuey VD pUqAH NLAERUNIES| 900T
3u9[ dqeLIeA
- 90104 - - - XOdd PPYIPOIN 2 paseq Suidnoin - (VDD) prepuels ISEIYOIWNG PUB UmoIg $002
% SL-0L-§9-09=°Y
29 I9A0SSOId
- Apeuag wsniyg [23YM anANOY %S 0-ST-S=wy Jutod omJ, Areurg plepuelg RLAERIGINpIGIN ar00T BH00T
2310A sysey
-U0d + uonerd Jo "ou=1)Su9|
-uas I, 01 dn aredoy wsniyg juaWRUINQY, uoneinu jutod suQ XOS Paseq UONBISYION SONSLINAH + Wopury VO SANRISN PIdels om], OYULIB[IA PUR BLIBWIS +00T
(onsumay
Jo ou) o[ =ypSus| 0g=0az1sdod
- pasu ON - - - - 2 paseq oNSLINOH 2 wopuey plepue)s Jnq pue zountep +002
3u9[ S]qeLIeA
- - - - - - 29 ookIquig punog pue youelg 3 VO Tew[eA pue niepnig +00T
(sysey
uonero Surjdures 9% p=wy % 9%08=2Y % Jo rou)g [ =yiSuo| 001 =ozisdod
-uaf ooz 01 dn Kyeuag wsnig [BSIDATUN J1ISBYI01S uonenu 1q ordurrg 10A0s5010 Jutod auQ Paseq UoneRISYIOA 29 wopuey piepuel§ “Te 10 QIUIRA 00T
sIaquinu
[opoul +syse)
Jo rou=1)3u9[
» paseq
9ouanbas [opowr
S00E wsnip pue paseq yse) 05 =9z1sdod
AL U] § aredoy wsniyg I UONOI[3S yury uopenw demg 9[9LD pue XO Jo uoneurquo) 2 wopuey plepuels Snquar 7002
syse) Jo ‘ou=1Sud| syse)
(sysey 9%07=wy ¥ % 0L=24% 29 paseq ONsLNaY Jo ~ou=0azisdod 2 sopn1 Kyuond onsunay
Jo-ou,g)ordn padu oN wsniyg 961 Adop Qerouad Ajuopuey JIOA0SSOIO WLIOJIU[) Koy wopuey SONSLINOH +Wopuey| M puqhky % pIrepuels RIPIW[Y (] PUB SIA[BOUOD) 00T
Sumum-jos QPKD-XINd %
- Sursn mredoy wsniyg [29YM an_NOY uopenw dems -ZI9pIQ-119pI0 Paseq UONBISYION SONSLINGH + Wopury plepuels RUAERIEN) 00T
a310A syse)
-Uuod+uonerd Jo -ou=13ud
-ues I o1 dn aredoy wsniyg jusWIRLINQY, uoneinw jutod suQ XOS Paseq UONBISYIOMN SONSLINGY +Wopury VD 9AnRIDN pagels oM, OYULIB[IA PUE BLIBWIS ®100T
(uononpoidarx
Kyreusaq 10
RLIAILID /areday/e010 Juawodedar) (Sunew (ury) arex (oY) 211 uonejuasaidar uonendod jo az1s
uoneuILLIRY, Apiqiseaq adA) [eAraIng 10§) od£) uonoojeg 2 2d£) uoneny % ad£) 1908501 QWOSOWOIYD) 2 uonendod [enruy POy
suoneoy1oads wyiLos[e onausan (3)T2yDIRISY Tedx

panunuod ¢ Iqey,



60

J Intell Manuf (2008) 19:49-69

Considering the great number of criteria investigated, we
summarized the findings of this review study under two parts;
in the first part, we considered only six of the criteria includ-
ing the GA method, initial population, selection scheme, sur-
vival scheme, feasibility issues and termination criteria. The
second part included the discussion of published literature
based on chromosome representation scheme, genetic oper-
ators and fitness evaluation.

Many of the GAs developed to solve ALBPs have common
characteristics. As it is seen in Table 3, most of the research-
ers (19 out of 29) used a typical GA procedure (see Section
“Background information”). It must be noted that Falkenauer
and Delchambre’s GGA (1992), which was implemented in
four researches, was also considered as a typical GA, since it
consisted of a new representation scheme and special genetic
operators without changing the general procedure of a typ-
ical GA. Among the papers surveyed, only Anderson and
Ferris (1994) employed both the typical GA and also paral-
lel GA. We noted the combination of GA with branch and
bound in two studies: Falkenauer (1997) employed the GGA
for assignments of tasks and branch and bound for selection
of optimal resource, and Brudaru and Valmar (2004) com-
bined the GA with branch and bound to evaluate the fitness
function. A recent trend to increase efficiency of GAs is to
hybridize them with heuristics, Kim et al. (1998a), Bautista
etal. (2000) and Goncalves and De Almedia (2002). Lastly, to
solve Type-2 problems, Simaria and Vilarinho (2001a, 2004)
proposed a two staged iterative GA by sequentially evaluat-
ing the solutions of Type-1 and then Type-2 problem.

A GA starts from a set of individuals called initial popu-
lation. Numerous initialization methods exist ranging from
random methods that produce an entirely random initial pop-
ulation to more direct methods that produce a selective ini-
tial population when prior knowledge of the search space
is known. There are also other initialization methods, which
combine both of these approaches; for example, initialization
by inserting the results of heuristic solutions to the problem.
Inclusion of heuristic generated solutions to the population
was first reported by Leu et al. (1994) and Anderson and
Ferris (1994). It is noted that most of the researchers (i.e.,
16 out of 29) generated the initial populations randomly. The
other researchers used both randomly and heuristic generated
individuals in the initial population. To initialize the popula-
tion, Ponnambalam et al. (2000) used the 14 simple greedy
heuristics given at Talbot et al. (1986).

After generation of the initial population, first, the fitness
of each individual in the population is calculated, the poten-
tial parents are selected to create the offspring (new individu-
als) and then a selection scheme is used to select individuals
for mating based on their relative fitness. With some excep-
tions (see Table 3, most of the GAs in literature used either
roulette wheel selection or stochastic universal sampling to
select the parents. In roulette wheel selection, a sector of a

@ Springer

roulette wheel whose size is proportional to the appropriate
fitness measure is assigned to the individuals, then a ran-
dom number is generated (spin the wheel), and the parents
are selected according their random position on the wheel.
In stochastic universal sampling, an individual is selected
entirely on its position in the population and its relative dis-
tance to the other individuals in the population. Hence, this
scheme prevents unfit individuals from dominating the selec-
tion process.

In a GA, survival is an essential process that removes indi-
viduals with a low fitness and drives the population towards
better solutions. Survival scheme is tightly related to the size
of the population. Most of the current GAs for ALBP assumes
a constant population size N, which is a user-controlled input
parameter. The GAs with constant population size is gener-
ally called as the “steady-state” GA. This kind of GA rigidly
enforces this limit (N), in the sense that each time an offspring
is produced resulting N+ 1 individuals, a survival scheme is
invoked to reduce the population size back to N. By contrast,
Leu et al. (1994) permitted more elasticity in the population
by allowing the population to grow before a survival scheme
is invoked. With some exceptions, all of the researchers used
elitism strategy for survival of individuals to next genera-
tion. Elitism strategy guarantees that the best individuals of
the population survive into the next generation. Chan et al.
(1998) modified the elitism strategy; in a way that the parent
was replaced with offspring rather than the worst individual
in the population was replaced with offspring.

Another important issue in designing the GA is to decide
on whether infeasible individuals should be allowed in the
population or not. In an ALBP, assigning each task to exactly
one workstation and satisfying the precedence relations and
all other constraints generates a feasible individual in the
GA. However, crossover and mutation operations may result
in formation of infeasible individuals. In this study, we noted
that the researchers have employed three types of strategies to
cope with infeasible individuals such as forcing individuals
for feasibility, repairing infeasible individuals and including
penalty for infeasible individuals. The first strategy, forcing
individuals for feasibility, requires generating only valid indi-
viduals in the initial population (Ajenblit and Wainwright,
1998; Chan et al., 1998; Leu et al., 1994). Each gene of
the chromosome in the initial population is obtained ran-
domly choosing the next task among unselected tasks whose
predecessors had already been chosen. Also, some special
genetic operators (see Section “Genetic operators’), which
ensure feasible chromosomes, can be used to force individ-
uals for feasibility. An appropriate representation scheme in
conjunction with carefully designed genetic operators and
fitness function is essential for maintaining the feasibility
of chromosomes. The second strategy repairs the infeasi-
ble individuals by rearranging the tasks according to pre-
cedence relations and other defined constraints (Kim et al.,



J Intell Manuf (2008) 19:49-69

61

1996; Tsujimura et al., 1995). The third strategy leaves out
the infeasible individual in the population and calculates its
fitness value using a penalty function. Anderson and Ferris
(1994) and Stockton et al. (2004a,b) used traditional standard
genetic operators, and stated that maintaining a percentage
of infeasible individuals in the population would lead to cov-
ering a larger area in the search space. Moreover, they added
a penalty cost to the fitness function and stated that allowing
infeasible individuals to stay in the population would increase
the amount of variability in the population. An example of
a fitness function with a penalty cost is given in Section
“Fitness evaluation”.

A GA for ALBP is terminated either after reaching a spec-
ified number of generations or after reaching to an acceptable
convergence that is usually represented by no improvement
in the best solution after a certain amount of generation. The
best individuals of the population are then tested to determine
if they satisfy the precedence constraints and other zoning
restrictions. In this survey study, we noted that most of the
researchers specified a maximum number of generations as
a terminating condition.

Furthermore, in order to implement GA, it is necessary to
construct a chromosome representation scheme to represent
the chromosomes, genetic operators to crossover and mutate,
and an external objective function to evaluate the fitness. The
findings of this review study regarding these criteria are given
in the following section.

Chromosome representation scheme

The first step in applying GA to a particular problem is to
convert the solutions (individuals) of ALBP into a string
type structure called chromosome. This representation must
uniquely map the chromosome values (genotypes) onto the
decision variable domain.

Alternative chromosome representation schemes will be
illustrated using the example given in Fig. 4, where the cycle
time ¢, is 10min and number of workstations, n is 5. The
workstation loads for this solution are WS, = {1, 3},
WSg = {2,4,5}, WSc = {6, 7}, WSp = {8, 9},and WSg =
{10, 11}.

Fig. 4 Solution for c=10 and m=5

Real-valued representations are much more effective for
the representation of balancing problem. In Scholl and Becker
(2006), where only the literature related to SALB was
reviewed, four types of chromosome representation schemes
are presented. In this survey study covering a broad range of
literature on assembly line balancing, we noted six different
types of chromosome representation schemes; i.e. task based,
embryonic, workstation based, grouping based, binary and
heuristic based; each having pros and cons concerning the
type of applicable genetic operators. Note that the classic
binary representation of the simple GA has only been used
for the ALBP in Stockton et al. (2004a,b). Due to the lack of
information on binary representation of an individual, in this
section, only the remaining five chromosome representation
schemes are explained in detail. The chromosome represen-
tation schemes are named in order to suit the characteristics
of ALBP. These representation schemes can be classified as
follows:

1. Taskbased representation: The chromosomes are defined
as feasible precedence sequences of tasks (Ajenblit and
Wainwright, 1998; Leu et al., 1994; Sabuncuoglu et al.,
2000). The length of the chromosome is defined by the
number of tasks. For example, the task based representa-
tion of the solution given in Fig. 4 is illustrated in Fig. 5a.
In order to calculate the fitness of a task based chro-
mosome, additional operations, which assign the tasks
to workstations according to the task sequence in the
chromosome, is needed. Task based representation is the
most appropriate representation for ALBP Type-1, since
Type-1 problems consider the minimization of worksta-
tions as an objective function.

2. Embryonic representation: Embryonic chromosome
representation that was proposed by Brudaru and Val-
mar (2004) is actually a special version of the task based
chromosome. Only difference between the two is that the

4 6 7

DEEE

a) Task based representation

DEE

b) Embryonic representation

T

5

[

C) Workstation based representation

’AIBIAIBIBICIC D

DIE

T

d) Grouping based representation

’H,IH;IHs H | H | He | Hy

e) Heuristic based representation

Fig. 5 Chromosome representation schemes used for ALBP

@ Springer



62

J Intell Manuf (2008) 19:49-69

embryonic representation of a solution considers the sub-
sets of solutions rather than the individual solutions. Dur-
ing the generations, the embryonic chromosome evolves
through a full length solution. Therefore, the chromo-
some length varies throughout the generations. The
length is initially defined by a random number and then
increases until it reaches the number of tasks. Figure 5b
illustrates an example of embryonic representation of the
solution given in Fig. 4.

3. Workstation based representation: The chromosome is
defined as a vector containing the labels of the work-
stations to, which the tasks are assigned (Anderson and
Ferris, 1994; Kim et al., 2000). The chromosome length
is defined by the number of tasks. For example, the work-
station based representation of the solution given in Fig. 4
is illustrated in Fig. 5c, where the task 4 is assigned to
workstation B. This kind of chromosome representation
scheme is generally used for ALBP Type-2.

4. Grouping based representation: This type of representa-
tion was proposed by Falkenauer and Delchambre (1992)
especially for grouping problems, i.e. ALBP Type-1. The
authors stated that the workstation based representation,
which is object oriented, is not suitable for ALBP Type-1.
In grouping based representation, the workstations are
represented by augmenting the workstation based chro-
mosome with a group part. The group part of the chro-
mosome is written after a semicolon to list all of the
workstations in the current solution (see Fig. 5d). The
length of the chromosome varies from solution to solu-
tion. Asitis seen in Fig. 5d, the first part is the same as in
workstation based chromosome. Difference comes from
the grouping part, which list all the workstations, i.e. A,
B, C, D, and E.

5. Heuristic based (indirect) representation: This type of
representation scheme represents the solutions in an indi-
rect manner. In Goncalves and De Almedia (2002), and
Bautista et al. (2000), the authors first coded the prior-
ity values of the tasks (or a sequence of priority rules),
then they applied these rules to the problem to gener-
ate the solutions. The chromosome length is defined by
the number of heuristics. For example, Fig. Se shows an
example chromosome having seven different heuristics,
which are used in the sequence of Hy, H», Hs, H4, H7,
Hg and Hj3 to assign the tasks to the workstations.

An appropriate chromosome representation scheme in
conjunction with carefully designed genetic operators and fit-
ness function is essential for GA design, since the
application of standard crossovers or mutations to task, work-
station and grouping based chromosomes may result in infea-
sible solutions. This aspect must be dealt with by penalizing
infeasibilities, rearranging the solution by certain heuristic
strategies or constructing of special genetic operators, which

@ Springer

will force feasibility. In this context, heuristic based chromo-
somes have the advantage to achieve the feasibility without
such difficulties.

Fitness evaluation

In order to mimic the natural process of the survival of the
fittest, the fitness evaluation function assigns a value reflect-
ing the relative superiority (or inferiority) to each individual.
The objective function provides a measure of an individual’s
performance or fitness in the search space.

As mentioned in Section “Background informmation”,
different objective functions, with a range of complexities,
are developed for each specific problem type in assembly
line balancing. Among these objective functions, we noted
an implementation difficulty with the objective of Type-1 as
the fitness function. When there are alternate optimal solu-
tions having the same objective value, this objective function
does not give a strong distinction between the alternate solu-
tions. This problem is less relevant for Type-2 or Type-E.

During this literature survey, some of following fitness
functions have been noted:

e Falkenauer and Delchambre (1992), and
Brown and Sumichrast (2005) used the following fitness
function, f(S), for SALB Type-1 problem.

[ =D (c—1(WS8)*/n

i=1

e Anderson and Ferris (1994) used the following fitness
function, f(§), which sums up the maximal workstation
time and a penalty term for solving SALB Type-2 prob-
lem. This penalty term is used to assign some penalty cost
to any individual, which is infeasible because of prece-
dence violations.

f(S) =maxt(WS;) + kN,

e Leu et al. (1994) used the following three fitness func-
tions, f1(S), f2(S), and f3(S), for SALB Type-1 prob-
lem. The first objective function aims the minimization
of mean squared idle time, the second one aims the min-
imization of mean idle time and the third one combines
the first two objectives.

AS) = izl<c WS /n

£(S) = zl (c — 1(WSi)/n
£(S) = 2T + £(5)



J Intell Manuf (2008) 19:49-69

63

e Tsujimuraetal. (1995) used balance delay as fitness func-
tion, f(S), for solving SMALB Type-1 problem where
the cycle time and processing times of tasks are repre-
sented by fuzzy numbers.

=@ 1ws)

i=1

(8

e Bautista et al. (2000) used the following fitness func-
tion, f(S), which considers the number of workstations
in this solution in the first term, the lower bound of num-
ber workstations in the second term and the degree of
imbalance in the third term.

Z li
f(8) =—ng+

Disi(c —t(WS))?
¢ X /ng

e Sabuncuogluetal. (2000) used the following fitness func-
tion, f(S), which aims at reducing the imbalance in the
first term and minimizing the number of workstations in
the second term, for solving SALB Type-1.

S (max(t (WS))) — 1(WS))>?
i=1

f(8) =

n

i (max (1 (WS;)) — 1 (WS;))?
i=l1
+

n

e Simaria and Vilarinho (2001a, 2004) used the following
fitness function, f (), which considers the cycle time in
the first term and balance workstation load in the second
term, for solving MMALB Type-2 problem.

f(§) =c+

s a3 (- )

=1 k=1

Genetic operators

Genetic operators are of two kinds, crossover and mutation.
Crossover is the operation by, which two individuals in the
current population create offspring for the next population.
The mutation is used to maintain diversity in the popula-
tion. Mutation does this by randomly changing elements in
a chromosome.

The GA applications have created a great variety of
chromosome representation schemes and genetic operators.
The most frequently used are representations for numeric
domains, permutation domains, matrix domains, and func-
tion domains. It is beyond the scope of this survey study to
describe all of them in detail. Here, we will focus on the
numeric and function domains, which are the two primary
domains relevant for assembly line balancing.

Anderson and Ferris (1994) used traditional standard
genetic operators and believed that maintaining a percentage
of infeasible individuals in the population can help to obtain
a good coverage of the search space. Hence, they included a
penalty cost to the evaluation function (see Section “Fitness
evaluation”).

In this survey, we noted several specialized crossover oper-
ators (crossover and mutation), which ensure the feasibility of
chromosomes. Some of the specialized crossover operators
employed include Modified Bin Packing Crossover (Modified
BPCX) (Falkenauer and Delchambre, 1992), Order-Based
Crossover (OX) (Leuetal., 1994), Modified Partially Mapped
Crossover (Modified PMX) (Tsujimura et al., 1995), Heuris-
tic Structural Crossover (HSX) (Kim et al., 1998a), Uniform
Order-Based Crossover (Chanetal., 1998), and Order Cross-
over (Sabuncuoglu et al., 2000).

Falkenauer and Delchambre (1992) used modified BPCX
especially generated for grouping based representations. This
crossover operator is applied only to the group part of the
chromosome, while the workstation based part of the chro-
mosome remains the same. Since the length of the group
part of grouping based chromosome varies, this operator can
handle variability of chromosome length. Leu et al. (1994)
used a modified version of standard two-point order cross-
over, i.e. OX, which cuts each of the parent chromosomes
into three parts. One of the offsprings keeps the first and the
last part of the first parent. The middle part of the sequence
is filled in by adding the missing tasks in the order in, which
they are contained in the second parent. The other offspring
is built analogously based on the first and the last part of
the second parent. Both of the resulting offsprings are feasi-
ble due to filling in the middle part in a precedence feasible
order. Also, Tsujimura et al. (1995) modified the standard two
point order crossover (modified PMX). They first exchange
the middle parts of the chromosome between parents to cre-
ate offspring. Then they repaired the resulting chromosome
without changing the middle part according to the precedence
relations. HSX uses problem-specific constraints to choose
multiple groups of workstations to copy from two parents
to a child. This procedure is repeated twice; therefore, two
parents are used to create two children (Kim et al., 1998a).
Uniform order-based crossover uses two parents, P1 and P2,
to create two offspring C1 and C2. A gene string that is the
same length as the parent is generated. If the value in gene
i of the chromosome is equal to 1, then the value in gene

@ Springer



64

J Intell Manuf (2008) 19:49-69

iin P1 is copied into C1. A list of the elements in P1 that
correspond to zeros in the gene string are then permuted so
that they appear in the same order that they appear in P2, then
the gaps in C1 are filled in with these ordered permuted ele-
ments. C2 is created in a similar fashion (Chan et al., 1998).
Order crossover (Sabuncuoglu et al., 2000) is similar to OX
crossover. Two random cut locations are generated for two
parents; however, with the Order crossover, the centre section
is permuted while the extreme ends remain unchanged. This
centre section of each of the two children is generated by
filling in the missing elements in the order that they appear
in the other parent without duplicating any of the elements
within the children’s chromosomes.

Specialized mutation operators include Modified Bin Pack-
ing Mutation (modified BPM) (Falkenauer and Delchambre,
1992), Heuristic Structural Mutation (HSM) (Kim et al.,
1998a), Scramble Sublist Mutation (SSM) (Chanetal., 1998),
and Scramble Mutation (SM) (Sabuncuoglu et al., 2000).

Falkenauer and Delchambre (1992) used modified BPM,
especially generated for grouping based representations. Like
crossover operator, this mutation operator is also applied only
to the group part of the chromosome, while the workstation
based part of the chromosome remains the same. HSM (Kim
etal., 1998a) randomly selects some tasks from each chromo-
some, proportional to the mutation rate, and then reassigns
those tasks. SSM selects a sublist from a parent, by having the
centre area created by randomly determining two cut points.
Elements within the sublist are then permuted, or scrambled;
therefore, the newly created child has the permuted centre
section surrounded by the original data made up of the two
extreme endpoints of the parents. Similarly, SM identifies a
cut point in a parent, and the child is created by copying the
elements before the cut point into the child, in the order that
they appear in the parent. The remaining genes located after
the cut are then placed in the child randomly while maintain-
ing feasibility. Surprisingly, Ajenblit and Wainwright (1998)
did not use mutation in their implementation. They stated that
the mutation operator does not have any potential to improve
the solutions since it just replicates the work done by the
initialization.

In addition to crossover and mutation operators, Brudaru
and Valmar (2004) proposed a new type of genetic operator
called growing operator for their embryonic representation
scheme. The proposed growing operator helps the subset of
a solution represented by embryonic chromosome to evolve
through a full length chromosome.

‘We noted that, when infeasible individuals were allowed in
the population, the traditional standard genetic operators are
used and on the other hand, allowing only feasible individuals
in the population necessitated using special genetic operators.
As a consequence, for effective GA design, the researcher
must consider genetic operators together with chromosome
representation scheme and fitness function.

@ Springer

Performance specifications

In this section, the published literature has been reviewed
based on the experimental settings in, which the proposed
GAs implemented, the other solution methods to, which the
GA’s performance compared, the computation time required
and, finally, implementation language employed. However,
the reader should bear in mind that, as the reviewed GAs
employed different ALBP types, test sets and hardware, the
comparison among their performances can not be justified.
Therefore, this section does not try to compare the perfor-
mances of the reviewed GAs; it only includes the findings of
the comparative studies reported in each paper. For the perfor-
mance comparison among reviewed GAs, further compari-
sons must be made under fair conditions and with challenging
test sets.

As seen in Table 4, most of the researches evaluated the
performance of the proposed GAs using hypothetical prob-
lems, such as randomly generated problems (Anderson and
Ferris, 1994) and non benchmark problems (Kim et al., 1996;
Leuetal., 1994; Suresh et al., 1996). The real-world applica-
tions of GAs are only seen in Chan et al. (1998) in clothing
industry and Valente et al. (2002) in automotive industry.
Furthermore, it is noted that, the computational testing of
most GAs has been done either by ignoring existing bench-
marks or by using the simple test data. Hence, the findings of
the GA researches are limited to a narrow scope. To attract
the attention of practitioners to the use of GAs, we believe
that it is necessary to divert more effort to solving real-world
ALBPs.

For the computational testing, the researchers used sev-
eral problems with various sizes. For instance, Falkenauer
and Delchambre (1992) used a problem with the size of 64
tasks, Leu et al. (1994) used problems with the size of 45, 50
and 100 tasks, and Miltenburg (2002) used problems with the
size of 45 and 83 tasks. Generally, we noted that the computa-
tional time increases with the size of the problem, indicating
the fact that the performance of the GAs is affected by the
complexity of the problem.

As for the comparative studies for performance evalua-
tion (see Table 4), the GAs developed for ALBP either out-
performed or matched comparative heuristics, such as rank
positional weight heuristic, Kilbridge and Wester’s heuris-
tic and Hoffmann precedence matrix procedure. Note that,
in these comparative studies, only a few number of heu-
ristics was used as benchmark and also little attention has
been given to recently introduced heuristics. For compari-
son, only, Ajenblit and Wainwright (1998) used both dynamic
programming and various heuristic algorithms, which were
proposed in Miltenburg and Wijngaard’s research (1994).
In this study, the proposed GA is found to give the same
results in 42 problems, superiorin 11 problems and worse in 1
problem.



J Intell Manuf (2008) 19:49-69 65
Table 4 Performance specifications of literature in chronological order
Year Researcher(s) Performance specifications
Experimental settings Comparison Computation Implementation
time language
Real world Hypothetical Methods Results
compared
1992 Falkenauer and - One problem Heuristic Better 300s -
Delchambre
1994 Leu et al. - Benchmark Heuristics Better 13.33s -
1994 Anderson and - Randomly - - - -
Ferris generated
1995 Rubinovitz and - Randomly MUST Better - -
Levitin generated
1995 Tsujimuraetal. — One problem - - - -
1996 Kim et al. - Benchmark Heuristics Promising Shorter C++
1996 Suresh et al. - Benchmark Versions of GA Better - -
1997 Falkenauer - Randomly - - 600s  120s -
generated 1200s
1998 Ajenblit and - Benchmark Dynamic prog. & Same in 49, - LibGA
Wainwright Heuristics superior in 11
and worse in 1
1998 Chan et al. Clothing industry - Greedy Outper- GA trials run -
Algorithm formed for 5000
heuristic
1998a  Kimetal. - Benchmark Three heuristics Mostly  out- - C++
& another GA performed
1999 Rekiek et al. - One problem - - 120s at most -
2000 Bautista et al. - Randomly Heuristics, Better - -
generated GRASP&
GRWASP
2000 Kim et al. - Benchmark Integer prog & - Shorter -
heuristics
2000 Ponnambalam - Benchmark Heuristics Better Longer C++
etal.
2000 Sabuncuoglu - Benchmark Six heuristics & Performs bet-  Shorter -
etal. some known ter than four
optimal solutions  and matches
two
2001 Carnahan et al. - Benchmark Two heuristics Better - -
200la  Simaria and - One problem - - - -
Vilarinho
2002 Chen et al. - Various problems  Heuristics Better - LibGA
2002 Goncalves and - Benchmark Heuristics Outper- - Visual basic 6
De Almedia formed
2002 Miltenburg - Benchmark Versions of GA Good 130s  300s  Visual Basic 6
300s
2002 Valente et al. Automotive - - Reduction of 0.85s ANSIC (based on
industry time by 28.5% GALOPPS)
2004 Brudaru and
Valmar
2004 Martinez and - One problem Heuristics - - -
Duff
2004 Simaria and - Randomly - - Acceptable Visual C++
Vilarinho generated
2004a, Stockton et al. - One problem RPW same - -
2004b
2005 Brown and - Benchmark Standard GA same Shorter -
Sumichrast
2006 Levitin et al. - Randomly Branch and better Shorter -
generated Bound
2006 Noorul Haq - Randomly Modified RPW better Shorter C++
etal. generated

@ Springer



66

J Intell Manuf (2008) 19:49-69

‘We noted that the computation time (i.e. CPU time), which
indicates the efficiency of the proposed GA, was reported by
a few researchers; most of them preferred to state it verbally.
Based on the reported CPU times, we can state that except
for Ponnambalam et al. (2000), who reported an increase
in CPU time due to the increased number of generations,
most of the researchers obtained a solution in shorter CPU
time. In Falkenauer (1997), the optimal solution was found
in 600s for a problem with 30 tasks, five resources/task and
10 workstations, 120s for a problem with 30 tasks, four
resources/task and 10 workstations, and 1200s for a prob-
lem with 40 tasks, four resources/task and 10 workstations,
but it must be noted that no precedence relations existed for
these randomly generated problems. Among the research-
ers surveyed, Miltenburg (2002) gave detailed information
regarding the performance of the proposed GA; in this study,
the average computation times per instance were found to be
130s when the proposed GA employed two point crossover,
300s when the proposed GA involved cycle crossover and
300s when the proposed GA included randomly generated
solutions.

Lastly, as seen in Table 4, most of the researchers preferred
C++ as an implementation language. This can be attributed
to the advantages of C++ in increasing the speed of execu-
tion of the programs, and using the memory more effectively
by employing various object oriented programming (OOP)
concepts, constructors, call by reference, pointers, dynamic
memory allocation (new and delete) functions. Falkenaure’s
GGA (Falkenauer, 1998) was used to develop a commer-
cial software package, i.e. Optiline, which optimizes the line,
yielding a detailed assignment of tasks to workstations and
operators. It must be noted that except for Falkenaure’s GGA
(Falkenauer, 1998), all other GAs reported in this survey
study were employed for research purposes.

Results and discussion

Genetic algorithms are increasingly being used to solve man-
ufacturing optimization problems. A well-known manufac-
turing optimization problem is the assembly line balancing
problem, which deals with the allocation of the tasks among
workstations so that a given objective function is optimized.
As GAs have established themselves as a useful optimization
technique in the manufacturing field, the application of GAs
to assembly line balancing has expanded a lot. Considering
the growing number of publications in this area, we thought
that this review article will help both the researchers and prac-
titioners to comprehend the current research issues and also
provide them with a guideline about future research direc-
tions. To identify the current research issues, in particular, we
summarized the main specifications of the problems studied,
and discussed the proposed GAs with respect to chromosome

@ Springer

representations, genetic operators and the fitness functions
used for performance evaluation.

From the assembly line balancing perspective, we noted
that most of the researchers focused on a simple version of
problem with single objective and ignored the multi-objec-
tive nature of the problem. As for the GA perspective, it is
noted that two important issues have been extensively stud-
ied. One is how to encode a solution of the problem into a
chromosome and the other is reproduction of new individuals
by using genetic operators.

Because of the existence of complex constraints inherent
in the problem, a simple binary string does not work at all,
since it certainly yields to infeasible or even illegal solutions.
The early efforts of most researchers have been devoted to the
invention of a new and efficient representation scheme, (i.e.
task based, workstation based, grouping based and heuristic
based), for the problem. Somewhat surprising, the population
initialization has not received much attention so far.

Some researchers proposed new genetic operators to
ensure the feasibility of individuals for a certain represen-
tation scheme. Another group of researchers claimed that
infeasible solutions have to occupy a certain space in the pop-
ulation; hence they used standard genetic operators, which
may resultin infeasible individuals of a certain representation
scheme. An appropriate chromosome representation scheme
in conjunction with carefully designed genetic operators and
fitness function is essential for GA design.

Besides the ease in adapting to the ALBP, the efficiency
of the proposed GAs depends greatly on various control
parameters such as the population size, the probability of
crossover and mutation. It is noted that most of the research-
ers did not give enough attention to optimization of param-
eters to control evolutionary process effectively. Since the
information about the control parameters is not published in
detail, it is difficult to compare the performance of the var-
ious techniques. Moreover, because of the lack of clear and
consistent reporting of parameters, procedures, and results,
it is unlikely that other researchers could reproduce these
works.

In most of the published literature, GAs are found to be
competitive to the best known constructive methods. How-
ever, the findings of these researches are limited to a narrow
scope, since the computational testing of the reported GAs
has been done by ignoring existing test beds and state-of-the-
art solution methods or by using the most simple test data
available. Moreover, based on the published researches, it is
impossible to make a global comparative evaluation of the
different GAs proposed for assembly line balancing, since
the evaluations are partial, the parameters are not included
and the problems used are not standard, therefore the results
are not reproducible.

We could state the future research directions in this area
as follows:



J Intell Manuf (2008) 19:49-69

67

e To demonstrate the effectiveness of GAs in solving com-
plex manufacturing system design problems, ALBPs can
be extended to include features such as parallel work-
stations, two-sided workstations, U-shaped line layout,
mixed model production, assignment restrictions, and
stochastic processing times.

e Besides capacity oriented objectives, such as Type-1 and
Type-2, the cost or profit oriented objectives can be used
to reflect the long-term effects of balancing decisions.

e More effort can be given to study the ALBP as a multi-
objective problem.

e Inordertoimprove the performance of a GA, the problem
specific knowledge in the form of an additional heuristic
optimization algorithm can be included.

e The values of control parameters can be set experimen-
tally over different instances that range in size.

e The comparative studies for performance evaluation can
include CPU time as a criterion.

e Standardized, realistic benchmark problems and state-
of-the-art solution methods are required for testing and
comparing methodical enhancements of GAs.

e A trend in the genetic assembly line balancing practice
is to incorporate local search techniques into the main
loop of the GA. The main ground for GAs is in areas
where improvements can be made by hybridizing meth-
ods. Therefore, an interesting future pursuit may be the
hybridization of GA.

e A great majority of the researches has been implemented
on simple artificial test problems. To draw the attention
of practitioners and also to receive more realistic results
regarding the performance of the proposed GAs, more
effort can be spent on solving real-world complex ALBP
using GAs.

e Despite the availability of many effective GAs for differ-
ent types of ALBPs, their use in practice is limited due
to the lack of GA based software. To fill in the perceived
gap, the GA based software, which can be easily used by
practitioners, can be developed.

With the growth of the published literature, we believe that
the use of GAs for solving ALBPs will continue to attract the
interest of researchers. We hope that more research involv-
ing the implementation on real-world complex line balanc-
ing problems will lead to an increased acceptance among
the practitioners and thereby, the evolutionary computation
methods will be widely accepted as a sound alternative to
solve real-life manufacturing optimization problems.

References

Ajenblit, D. A., & Wainwright, R. L. (1998). Applying genetic
algorithms to the U-shaped assembly line balancing problem. In The

proceeding of the 1998 IEEE international conference on evolution-
ary computation (pp. 96—-101). Anchorage, Alaska, USA.

Anderson, E. J., & Ferris, M. C. (1994). Genetic algorithms for combi-
natorial optimization: The assembly line balancing problem. ORSA
Journal on Computing, 6, 161-173.

Aytug, H., Khouja, M., & Vergara, F. E. (2003). Use of genetic algo-
rithms to solve production and operations management problems: A
review. International Journal of Production Research, 41(17),3955—
4009.

Baudin, M. (2002). Lean assembly: The nuts and bolts of making assem-
bly operations flow. Productivity, New York.

Bautista, J., Suarez, R., Mateo, M., & Companys, R. (2000). Local
search heuristics for the assembly line balancing problem with
incompatibilities between tasks. In The proceedings of the 2000 IEEE
international conference on robotics and automation (pp. 2404—
2409). San Francisco, CA.

Baybars, I. (1986a). A survey of exact algorithms for the simple assem-
bly line balancing problem. Management Science, 32, 909-932.
Baybars, I. (1986b). An efficient heuristic method for the simple assem-
bly line balancing problem. International Journal of Production

Research, 24(1), 149-166.

Becker, C., & Scholl, A. (2006). A survey on problems and methods
in generalized assembly line balancing. European Journal of Oper-
ational Research, 168, 694-715.

Bowman, E. H. (1960). Assembly line balancing by linear program-
ming. Operations Research, 8(3), 385-389.

Brown, E. C., & Sumichrast, R. T. (2005). Evaluating performance
advantages of grouping genetic algorithms. Engineering Applica-
tions of Artificial Intelligence, 18, 1-12.

Brudaru, O., & Valmar, B. (2004). Genetic algorithm with embryonic
chromosomes for assembly line balancing with fuzzy processing
times. The 8th international research/expert conference trends in the
development of machinery and associated technology, TMT 2004,
Neum, Bosnia and Herzegovina.

Carnahan, B. J., Norman, B. A., & Redfern, M. S. (2001). Incorporating
physical demand criteria into assembly line balancing. I/E Transac-
tions, 33, 875-887.

Chan, C. C. K., Hui, P. C. L., Yeung, K. W., & Ng, F. S. F. (1998). Han-
dling the assembly line balancing problem in the clothing industry
using a genetic algorithm. International Journal of Clothing Science
and Technology, 10(1), 21-317.

Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic
algorithm approach on multi-objective of assembly planning
problem. Engineering Applications of Artificial Intelligence, 15,
447-457.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial sur-
vey of job-shop scheduling problems using genetic algorithms:
part I representation. Computers & Industrial Engineering, 30(4),
983-997.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of
job-shop scheduling problems using genetic algorithms, part II:
Hybrid genetic search strategies. Computers & Industrial Engineer-
ing, 36(2), 343-364.

Coley, D. (2003). An introduction to genetic algorithms for scientists
and engineers. Singapore: World Scientific Press.

Dar-El E. M. (1973). MALB-A heuristic technique for balancing large
single-model assembly lines. AIIE Transactions, 5(4), 343-356.
Dar-El, E. M., & Rubinovitch, Y. (1979). MUST-A multiple solutions
technique for balancing single model assembly lines. Management

Science, 25, 1105-1114.

Dimopoulos, C., & Zalzala, A. M. S. (2000). Recent developments
in evolutionary computation for manufacturing optimisation: Prob-
lems, solutions and comparisons. IEEE Transactions on Evolution-
ary Computation, 4(2), 93-113.

Erel, E., & Sarin, S. C. (1998). A survey of the assembly line balancing
procedures. Production Planning and Control, 9, 414-434.

@ Springer



68

J Intell Manuf (2008) 19:49-69

Falkenauer, E. (1991). A genetic algorithm for grouping. In The pro-
ceedings of the fifth international symposium on applied stochastic
models and data analysis. Granada, Spain.

Falkenauer, E. (1997). A grouping genetic algorithm for line balanc-
ing with resource dependent task times. In The proceedings of the
fourth international conference on neural information processing
(pp. 464-468). New Zealand.

Falkenauer, E. (1998). Genetic algorithms for grouping problems. New
York: Wiley.

Falkenauer, E., & Delchambre, A. (1992). A genetic algorithm for bin
packing and line balancing. In The proceedings of the 1992 IEEE
international conference on robotics and automation (pp. 1189—
1192). Nice, France.

Ghosh, S., & Gagnon, R. J. (1989). A comprehensive literature review
and analysis of the design, balancing and scheduling of assem-
bly systems. International Journal of Production Research, 27,
637-670.

Goldberg, D. E. (1989). GAs in search, optimization and machine learn-
ing. Reading, Massachusetts: Addison-Wesley.

Goncalves, J.F., & De Almedia, J. R. (2002). A hybrid genetic algorithm
for assembly line balancing. Journal of Heuristic, 8, 629-642.

Held, M., Karp, R. M., & Shareshian, R. (1963). Assembly line balanc-
ing-dynamic programming with precedence constraints. Operations
Research, 11, 442-459.

Helgerson, N. B., & Birnie, D. P. (1961). Assembly line balancing using
the ranked positional weight technique. Journal of Industrial Engi-
neering, 12(6), 394-398.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann
Arbor, Michigan: The University of Michigan Press.

Iyer, S. K., & Saxena, B. (2004). Improved genetic algorithm for the per-
mutation flow shop scheduling problem. Computers & Operations
Research, 31(4), 593-606.

Jackson, J. R. (1956). A computing procedure for a line balancing prob-
lem. Management Science, 2, 261-272.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R.
E. Miller & J. W. Thatcher (Eds.), Complexity of computer applica-
tions (pp. 85-104). New York: Plenum Press.

Kim, Y. K., Kim, Y. J., & Kim, Y. H. (1996). Genetic algorithms for
assembly line balancing with various objectives. Computers & Indus-
trial Engineering, 30(3), 397-409.

Kim, Y. J., Kim, Y. K., & Cho, Y. (1998a). A heuristic-based genetic
algorithms for workload smoothing in assembly lines. Computers &
Operations Research, 25(2), 99-111.

Kim, Y. K., Kim, Y., & Lee, T. O. (1998b). Two-sided assembly line
balancing models. Working Paper, Department of Industrial Engi-
neering, Chonnam National University, Korea.

Kim, Y. K., Kim, Y., & Kim, Y. J. (2000). Two-sided assembly line
balancing: A genetic algorithm approach. Production Planning and
Control, 11(1), 44-53.

Leu, Y. Y., Matheson, L. A.,, & Rees, L. P. (1994). Assembly
line balancing using genetic algorithms with heuristic generated
initial populations and multiple criteria. Decision Sciences, 15,
581-606.

Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for
robotic assembly line balancing. European Journal of Operational
Research, 168, 811-825.

Martens, J. (2004). Two genetic algorithms to solve a layout problem
in the fashion industry. European Journal of Operational Research,
154(1), 304-322.

Martinez, U., & Duff, W. S. (2004). Heuristic approaches to solve the
U-shaped line balancing problem augmented by genetic algorithms.
In The proceedings of the 2004 systems and information engineering
design symposium, pp. 287-293.

Miltenburg, J. (2002). Balancing and sequencing mixed-model U-
shaped production lines. International Journal of Flexible Manu-
facturing Systems, 14, 119-151.

@ Springer

Miltenburg, J., & Wijngaard, J. (1994). The U-line line balancing prob-
lem. Management Science, 40(10), 1378-1388.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge:
The MIT Press.

Noorul Haq, A., Jayaprakash, J., & Rengarajan, K. (2006). A hybrid
genetic algorithm approach to mixed-model assembly line balanc-
ing. International Journal of Advanced Manufacturing Technology,
28, 337-341.

Optiline. www.optimaldesign.com/OptiLine/OptiLine.htm.

Peterson, C. (1993). A tabu search procedure for the simple assembly
line balancing problem. In The proceedings of the decision science
institute conference (pp. 1502—1504). Washington, DC.

Ponnambalam, S. G., Aravindan, P., Naidu, G., & Mogileeswar, G.
(2000). Multi-objective genetic algorithm for solving assembly line
balancing problem. International Journal of Advanced Manufactur-
ing Technology, 16(5), 341-352.

Rekiek, B. (2000). Assembly line design (multiple objective grouping
genetic algorithm and the balancing of mixed-model hybrid assembly
line). PhD Thesis, Free University of Brussels, CAD/CAM Depart-
ment, Brussels, Belgium.

Rekiek, B., de Lit, P., Pellichero, F., Falkenauer, E., & Delchambre,
A. (1999). Applying the equal piles problem to balance assembly
lines. In The proceedings of the ISATP 1999 (pp. 399-404). Porto,
Portugal.

Rekiek, B., Dolgui, A., Delchambre, A., & Bratcu, A. (2002). State of art
of optimization methods for assembly line design. Annual Reviews
in Control, 26, 163—174.

Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly
line balancing. International Journal of Production Economics, 41,
343-354.

Sabuncuoglu, 1., Erel, E., & Tanyer, M. (2000). Assembly line balanc-
ing using genetic algorithms. Journal of Intelligent Manufacturing,
11(3), 295-310.

Salveson, M. E. (1955). The assembly line balancing problem. Journal
of Industrial Engineering, 6, 18-25.

Scholl, A. (1999). Balancing and sequencing of assembly lines. Hei-
delberg: Physica-Verlag.

Scholl, A. & Becker, C. (2006). State-of-the-art exact and heuristic
solution procedures for simple assembly line balancing. European
Journal of Operational Research, 168, 666—693.

Simaria, A. S., & Vilarinho, P. M. (2001a). A genetic algorithm approach
for balancing mixed model assembly lines with parallel workstations.
In The proceedings of the 6th annual international conference on
industrial engineering theory, applications and practice, November
18-20, 2001. San Francisco, USA.

Simaria, A. S., & Vilarinho, P. M. (2001b). The simple assembly line
balancing problem with parallel workstations-a simulated anneal-
ing approach. International Journal of Industrial Engineering, 8(3),
230-240.

Simaria, A. S., & Vilarinho, P. M. (2004). A genetic algorithm based
approach to mixed model assembly line balancing problem of type
1. Computers and Industrial Engineering, 47, 391-407.

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004a). Use of genetic algo-
rithms in operations management Part 1: Applications. Proceeding
of the Institution of Mechanical Engineers-Part B: Journal of Engi-
neering Manufacture, 218(3), 315-327.

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004b). Use of genetic algo-
rithms in operations management Part 2: Results. Proceeding of the
Institution of Mechanical Engineers-Part B: Journal of Engineering
Manufacture, 218(3), 329-343.

Suresh, G., & Sahu, S. (1994). Stochastic assembly line balancing using
simulated annealing. International Journal of Production Research,
32(8), 1801-1810.

Suresh, G., Vinod, V. V., & Sahu, S. (1996). A genetic algorithm for
assembly line balancing. Production Planning and Control, 7(1),
38-46.


www.optimaldesign.com

J Intell Manuf (2008) 19:49-69

69

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A compara-
tive evaluation of heuristic line balancing techniques. Management
Science, 32, 430-454.

Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assem-
bly line balancing using genetic algorithms. Computers & Industrial
Engineering, 29(1-4), 543-547.

Valente, S. A., Lopes, H. S., & Arruda, L. V. R. (2002). Genetic algo-
rithms for the assembly line balancing problem: A real-world auto-
motive application. In R. Roy, M. Képpen, S. Ovaska, T. Fukuhashi,
& F. Hoffman (Eds.), Soft computing in industry - recent applications
(pp. 319-328). Berlin: Springer-Verlag.

@ Springer



	A review of the current applications of genetic algorithmsin assembly line balancing
	Abstract 
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


