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Abstract Reaming is a finishing process used to remove
a small amount of material from a predrilled hole. In low
speed cutting processes, it is the formation of lobed or multi-
cornered holes that is of concern, rather than tool chatter,
which occurs at high speed near the natural frequency of the
tool. Using a quasi-static model in the characteristic form
for the reaming process, a finite element modeling for the
low speed reaming process, based on the Euler–Bernoulli
beam model, was developed. Cutting and rubbing forces were
applied as concentrated and distributed forces on a variable
engagement length of the reamer. The variable engagement
length is considered to simulate the actual applied forces
length as the reamer advances to the workpiece. The time
dependant changes in the bending stiffness of the reamer
were included in the governing equation of the equilibrium
of the reamer, and its stability analysis was performed at
different time steps. Using this model, the vibration dam-
ping effect of uneven spacing of reamer teeth was investi-
gated. The results demonstrate that uneven spacing of rea-
mer teeth reduces the tool vibration, and therefore leads to
a more stable condition. Finally, the optimum configuration
of uneven tooth pitch angles for a six-flute reamer, in order
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to have the highest vibration decay rate during the reaming,
was presented.
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Introduction

Reaming is a cutting process used for enlarging and the
precise sizing of predrilled holes. It is widely used in manu-
facturing processes as well as biomedical applications. Sta-
bility and hole quality during reaming is of great interest
in the manufacturing process as it reduces fatigue, spindle
wear, high loads and production cycles. An improvement
in the hole quality can lead to a decrease in the process
costs, and this has led to careful consideration of tool dyna-
mics and vibration (Bayly, Lamar, & Calvert, 2002; Bayly,
Metzler, Schaut, & Young, 2001b; Bayly, Young, Calvert,
& Halley, 2001a; Bayly, Young, & Halley, 1998; Metzler,
Bayly, Young, & Halley, 1999; Sakuma & Kiyota, 1968a,b).

Vibration leading to tool instability during reaming is
divided into two categories: (1) regenerative chatter (self-
excited) vibration and, (2) low frequency vibration (Bayly
et al., 2002). In regenerative chatter, the vibration develops
itself in subsequent revolutions through the generation of the
waviness on the surface of the hole, and occurs when the
tool rotates near its natural frequency under certain cutting
conditions. In the low frequency vibration case, low speed
cutting leads to the formation of multi-cornered profiles with
periodicity.

Tool dynamics was initially investigated for turning and
milling applications. Based on the concept of time-delayed

123



648 J Intell Manuf (2007) 18:647–661

regenerative cutting forces causing chatter (Koenigsberger &
Tlusty, 1970; Tlusty, 1985; Tlusty & Polacek, 1963; Tobias,
1965), the linear theory of chatter was introduced and the
stability boundary predictions for turning and milling were
discussed. A theoretical analysis of milling dynamics was
subsequently conducted by Sridhar, Hohn, and Long (1968a,
b). Sridhar developed a method to study the system’s stability
by examining the eigenvalues of the system’s state transition
matrix at one revolution period of the tool. Budak and Altintas
(1993, 1995) later analytically predicted stability lobes for
milling in a more accurate way.

A simplified model of the reamer which included cutting
forces and rubbing forces on the clearance face and sides
of the reamer was proposed by Young et al. (1998). Metzler
et al. (1999) found analytical stability boundaries for drilling
and reaming at high cutting speeds without process dam-
ping, by developing a general time-domain simulation. The
drilling analysis was based on a boring model by Li, Ulsoy,
and Endres (1998) and the reaming analysis was based on the
method proposed for milling by Budak and Altintas (1998).

At low cutting speeds, reamer vibration is associated with
tooth passing frequency, rather than the natural frequency in
chatter. It causes the formation of a lobed-hole profile instead
of a perfect hole. Low frequency vibration in reaming was
experimentally investigated by Sakuma and Kiyota (1968a,
1968b). Their research showed that a deviation from the pre-
bored hole axis and the manufacturing tolerances in tool mar-
gins resulted in multi-corner profiles. They observed that for
reamers of N teeth, the numbers of lobes or corners in the
hole profile would be N + 1 or N−1.

Bayly et al. (2001a) introduced an analytical method to
determine the fundamental solutions of the equations of
motion for reaming at low cutting speed. They established a
quasi-static model for reaming in which the inertia and dam-
ping forces were assumed negligible in comparison to the
stiffness forces, and regenerative cutting forces as well as
rubbing (friction) forces on the clearance faces were inclu-
ded. These forces were assumed as concentrated loads at the
tip of the tool. The formulation led to an eigenvalue pro-
blem with solutions that included oscillatory and unstable
modes.

In the present paper, finite element modeling is used to
model the reaming process using the cutting and rubbing
force formulation proposed by Bayly et al. (2001a). The finite
element method is used to obtain an approximate solution for
the continuous system of the reamer and to study the flexi-
bility effect of the reamer on the vibrations. A new model
of applying the loads on the tool is presented to make the
simulations more realistic. Instead of a concentrated force
at the reamer tip, we assume a uniform distributed force on
a variable engagement length of the reamer which are tape-
red with small angles. This model thus includes the effect of
the changing length over which the forces are applied while

the reamer proceeds to the workpiece. Because the effective
bending stiffness changes with time, a solution to the eigen-
value problem was sought at different time steps.

In order to improve the hole quality; i.e., avoiding the
multi-cornered holes resulting from low frequency vibra-
tions, both modifications to the reaming tool and the reaming
process parameters can be made. We consider the former,
by modifying the geometry of the reaming tool, in order to
improve the stability, resulting in smoother holes. Irregular
tooth spacing has been considered in the past as an effec-
tive method in reducing the roundness error (Bayly, 1997;
Varterasian, 1974). In the present work, the effects of dif-
ferent orientations for irregular tooth spacing on resulting
stability were compared. All possible orientations for a group
of teeth spacing within an acceptable margin were compa-
red, and the best combination for a six-flute reamer giving
the most stable condition is presented.

As the rubbing coefficient depends on the particular pro-
perties of the two materials in contact, and has not been inves-
tigated in previous works, a range for rubbing coefficient was
considered, and its effects on stability are presented for 2D
and 3D hole profiles.

Process modeling

Reaming process modeling includes the modeling of both the
reaming tool and the applied forces. The reaming tool was
modeled as a cantilevered beam using Euler–Bernoulli beam
elements, discussed in section “Finite element discretiza-
tion.” Cutting and rubbing force models described in sections
“Cutting force model” and “Rubbing force model” are taken
from the model proposed by Bayly et al. (2001a) for low cut-
ting speeds up to 500 RPM on a 2D plane of cross section of
the reamer.

The governing equation of equilibrium of the reamer leads
to an eigenvalue problem that yields the frequency and nature
of different modes of vibrations. For simplicity, we only
consider each mode behavior separately for bending vibra-
tions and neglect torsional vibrations. In addition, the model
is quasi-static in the sense that inertia and damping are consi-
dered negligible compared to stiffness. Common termino-
logy used for various parts of a reamer can be found in Fig.1.

Cutting force model

The cutting force in drilling operations was shown to be a
function of chip load, as tested by drilling tubular aluminum
specimens on a CNC vertical milling machine (Cincinnati
Arrow 750) (Bayly et al., 2001b). A similar proportionality
for reaming was proposed by Bayly et al. (2001a), and is used
herein. In that assumption, the chip load was defined as the
product of width of cut times feed per tooth.
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Fig. 1 Reamer geometry

Fig. 2 Schematic diagram of
the reaming process showing:
(a) the nominal chip load (b)
The effect of radial and axis tool
displacement on chip load. The
dotted line shows the chip area
without displacement and the
hatched area shows the chip area
after tool displacement. Adapted
from Bayly et al. (2001a)

The chip load nominal area can be obtained from A =
Hnominal × Rnominal, where Hnominal is feed per tooth and
Rnominal is width of cut (Fig. 2a). Vibration of the tool causes
displacement of the tool with respect to the workpiece. The-
refore, the nominal chip area changes to:

A′ = (Rnominal + R − Rprevious)

(Hnominal + H − Hprevious) (1)

where R−Rprevious is the radial and H −Hprevious is the verti-
cal displacement of the tool center (Fig. 2b). For small deflec-
tions and a typical reamer chamfer angle of 45◦
(R − Rprevious = H − Hprevious), the change in the chip
area can be written as:

�A = A′ − A = (Rnominal + Hnominal)(R − Rprevious) (2)

The difference in cutting force can be assumed to be roughly
a linear function of changes in radial depth of cut:

�F = kc(R − Rprevious) (3)

where kc = ks(Rnominal +Hnominal) is the cutting coefficient
or stiffness, and ks is the specific cutting pressure for different
materials.

The coordinate system chosen is the x − y system, which
rotates at the tool speed of � with its center fixed at the cen-
ter of the hole (Fig. 3b). As this axis system is parallel to
the x′−y′ system (i.e., the local axis attached to the reamer
rotating with �), the components of the cutting force diffe-
rence in both axes are the same. Therefore, the components
of the cutting force difference on each tooth (Fig. 3a) can be
written as:

F (i)
cx = kc

[
Ri(t) − Ri+1(t − τi)

]
cos

(
φi − π

2
− α

)
(4a)

F (i)
cy = kc

[
Ri(t) − Ri+1(t − τi)

]
sin

(
φi − π

2
− α

)
(4b)

where Ri(t) is the radial depth of cut for the ith tooth at
the time t and Ri+1(t − τi) is the radial depth of cut for the
proceeding tooth at the time t − τi , and τi = (φi+1−φi)

2π
· T is
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Fig. 3 (a) Cutting forces acting
on the tool (b) Tool axis motion
and radial displacement of each
tooth

Fig. 4 (a) Distributed forces on reamer as a cantilever beam. (b) Distributed forces replacement

the period between successive tooth engagements. The angle
between the total cutting force direction and the direction
tangent to the tool is the cutting angle, α, and is assumed
constant during cutting.

The radial position of each tooth can be written in terms
of displacement of the center.

Ri(t) = cos φix(t) + sin φiy(t) (5)

When the time is normalized; then τi = τ0 = 2π
N

for an even
spacing of teeth. Substituting Eq. 5 into Eqs. 4a and 4b, and
adding the forces for all teeth, the total cutting force in the
case of even spacing of teeth is
[

Fcx

Fcy

]
= Kc0

[
x(t)

y(t)

]
− KcN

[
x(t − τ0)

y(t − τ0)

]
(6)

where

KcN = kc

N∑

i=1

[
Cici+1 Cisi+1

Sici+1 Sisi+1

]
(7)

Kc0 = kc

N∑

i=1

[
Cici Cisi
Sici1 Sisi

]
(8)

with ci = cos φi, si = sin φi, Ci = cos(φi − π
2 − α), and

Si = sin(φi − π
2 − α).

For a generalized spacing of teeth, τi = φi+1 − φi , and
the total cutting force in vector form becomes

�Fc =
[

Fcx

Fcy

]
= Kc0

[
x(t)

y(t)

]
−

N∑

i=1

Kci

[
x(t − τi)

y(t − τi)

]
(9)

where

Kci = kc

[
Cici+1 Cisi+1

Sici+1 Sisi+1

]
(10)

Rubbing force model

The reamer rubbing force is a force on the cutting edge caused
by rubbing against the newly removed material. This force
has tangential as well as radial components, the main portion
of which is applied at the clearance face of the reamer (Bayly
et al., 2001b). It can be formulated in a manner similar to the
cutting force:

�Fr =
[

Frx

Fry

]
= Kr

[
x(t)

y(t)

]
− Kr

[
x(t − τr )

y(t − τr )

]
(11)

where:

Kr = kr

N∑

i=1

[
Crici Crisi
Srici1 Srisi

]
(12)
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Table 1 Experimental data
from Bayly et al. (2001a) Material Aluminum

Reamer specifications:
N Number of teeth 6

� Spindle speed 250 RPM

L0 Length of the reamer 159 mm

d Diameter of the reamer 12.7 mm

ks Specific cutting pressure 2.4 × 103 N/mm2

f Feed 0.152 mm/rev

Rnominal Width of cut 0.254 mm

Hnominal Feed per tooth 0.25 mm/rev

kc Cutting stiffness 663 N/mm

kr Rubbing stiffness 0.211–211 N/mm

kxx = kyy Bending stiffness for the one element model and

concentrated force where K =
[

kxx 0
0 kyy

]
16.9 N/mm

µ Friction coefficient 0.2

α Cutting angle π
6

θr Angular width of radial margin 2 degrees

Cri = cos
(
φi − π

2
− β

)
, Sri = sin

(
φi − π

2
− β

)
,

ci = cos φi, si = sin φi (13)

and τr = θr

2π
·T . θr is the angular width of radial margin, and

kr is the rubbing coefficient. The friction angle,β = arctan µ,
where µ is the coefficient of friction.

Finite element discretization

In order to study the deformation of the reamer which is
a continuous system caused by cutting and rubbing forces,
the reamer was divided into a number of elements length-
wise, based on the Euler–Bernoulli beam model. This model
assumes a small ratio of depth to length of the beam (<0.1)
and negligible shear deformation and rotary inertia. Finite
element modeling was used to consider the flexibility of the
reamer on vibrations and to approximate a solution for the
continuous system of the reamer. First the reamer was mode-
led as a cantilevered beam with one element and its behavior
was studied under concentrated and distributed forces. Sub-
sequently, a similar analysis was performed on the reamer
using more elements.

The concentrated force model

For the one element model of the reamer, cutting and rub-
bing forces were applied as concentrated nodal forces at the
reamer tip. The first node was fixed and the second node was
the tool tip. The dependence of the bending force on the tool

center displacements and rotations was assumed to be linear.
Each node has four degrees of freedom: displacements in the
x and y direction, and rotations about the x−y axis. Imposing
the boundary conditions of a cantilever beam yields:

EI

L3

⎡

⎢
⎢
⎣

12 0 0 −6L

0 12 6L 0
0 6L 4L2 0

−6L 0 0 4L2

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

u2
v2
φ2u

φ2v

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

Fx2
Fy2
Mx2
My2

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

Fx

Fy

0
0

⎫
⎪⎪⎬

⎪⎪⎭
(14)

Fx, Fy are concentrated forces applied at node 2 (the tool
tip), defined as

Fx = −(Fcx + Frx) (15)

Fy = −(Fcy + Fry) (16)

where Fcx, Fcy and Frx, Fry are the cutting and rubbing force
components in the x and y directions, respectively. The cor-
responding Eqs. 9 and 11 are substituted into Eqs. 15 and
16 and, subsequently into Eq. 14. Simplifying the resulting
equation, solving for u2, v2, and setting u2 = x(t), v2 =
y(t), gives:

EI

L3

[
3 0
0 3

]{
x(t)

y(t)

}
=
{

Fx

Fy

}
= �FB (17)

where EI is the flexural rigidity of the reamer material and
L is the length of the beam element. Therefore, the ben-
ding stiffness matrix for the concentrated force model can be
written as:
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Fig. 5 Real part values of four
modes for (a) 32 different
orientations of teeth in four
groups (b) five different
orientations (b = 1 in Mode1,
b = 5 in Mode2, b = 7 in Mode3
and b = 11 in Mode4)

K = EI

L3

[
3 0
0 3

]
(18)

For the multi-element beam model, the first node is fixed

and other nodes are numbered toward the tool tip. Similar
to the one element model, the concentrated rubbing and cut-
ting forces are applied at the tool tip. After imposing the
boundary conditions and solving the resulting equation for
the x(t), y(t) displacements of the node at the reamer tip, an
identical relation to Eq. 18 is obtained.

The distributed force model

The use of a distributed force along the reamer length is consi-
dered to make the simulation of the process closer to the real
situation. This is because commonly used reamers that are
tapered with an angle at least 0.5 degrees result in forces being
applied on the reamer not only at the tip, but also along the

engagement length of the reamer. In the present work, a dis-
tribution of applied forces on the reamer was assumed along
the engagement length, rather than a concentrated force on
the tool tip. The force distribution was assumed uniform for
simplicity, but other forms of the force distribution yielding
higher forces at the tool tip are also feasible. Thus, for the
one element model of the reamer, cutting and rubbing forces
are applied as a uniform distributed forces along the engage-
ment length, h, measured from the tool tip (Fig. 4a). As the
reamer advances, the engagement length changes with time
h(t) = f ·�

60 · t , where f is the feed, � is the spindle speed,
and t is the time. In this scheme, distributed forces are repla-
ced by nodal forces (Fig. 4b). Using Euler–Bernoulli beam
theory, the displacement of the beam in x−z and y−z planes
can be represented by a cubic function of z along the length
of the reamer (Cheung & Leung, 1991). Therefore, the nodal
force replacements of distributed forces were derived from
Logan (1999), as
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Table 2 Real part of
eigenvalues, a, for tooth spacing
orientations yielding the
minimum values for each of the
first four modes

Pitch angle combinations (◦) Min for Mode1 Mode2 Mode3 Mode4

mode (b = 1) (b = 5) (b = 7) (b = 11)

φ = [0 70 145 210 255 310] 1 −0.0041 −0.6776 −0.6750 −1.1668

φ = [0 45 95 160 235 305] 2 −0.0041 −0.7115 −0.8108 −0.9625

φ = [0 45 95 160 215 290] 3 −0.0041 −0.4780 −0.8763 −0.7288

φ = [0 50 125 180 245 290] 4 −0.0041 −0.6645 −0.5716 −1.5020

Table 3 Frequency values b

(imaginary part of eigenvalue)
and associated type of vibration
(Backward; d = −1, Forward ;
d = 1)

Values Mode1 Mode2 Mode3 Mode4

Frequency (cyc/rev) 1 5 7 11

Type Backward Forward Backward Forward

Table 4 Real part of eigenvalue,
a for kr = 0.211 N/mm in
concentrated force case for
regular and irregular spacing of
teeth

Regular spacing Irregular spacing

Mode1 Mode2 Mode3 Mode4 Mode1 Mode2 Mode3 Mode4

(b = 1) (b = 5) (b = 7) (b = 11) (b = 1) (b = 5) (b = 7) (b = 11)

−0.0041 −0.0041 −0.0040 −0.0042 −0.0041 −0.7115 −0.8108 −0.9625

Table 5 Real part of
eigenvalue, a for
kr = 211 N/mm in concentrated
force case for regular and
irregular spacing of teeth

Regular spacing Irregular spacing

Mode1 Mode2 Mode3 Mode4 Mode1 Mode2 Mode3 Mode4

(b = 1) (b = 5) (b = 7) (b = 11) (b = 1) (b = 5) (b = 7) (b = 11)

0.0020 −0.0383 0.0297 −0.0868 0.0020 −0.7258 −0.7639 −0.9392

{Q} =
l∫

l−h

[N ]T {P } dz (19)

where {Q} = {
Fx1, Fy1,Mx1,My1, Fx2, Fy2,Mx2,My2

}T ,
and [N ] is the shape function. The uniformly distributed force
is:

{P } =
{

Px

Py

}
= 1

h (t)

{
Fx

Fy

}
(20)

where Fx and Fy are as in Eqs. 15 and 16. The force repla-
cement vector of the tool tip is related to the displacements
and rotations of that point by the stiffness matrix. Therefore,
the relation between external forces (Fx, Fy) and nodal dis-
placements of the tip becomes:

EI

[
24

h3(t)+8L3−6L2h(t)
0

0 24
7h3(t)+8L3+6L2h(t)−16Lh2(t)

]

×
{

x(t)

y(t)

}
=
{

Fx

Fy

}
(21)

Consequently, the revised bending stiffness matrix for the
distributed force model on the variable engagement length
of the reamer for the one element model is written as:

K (t) = EI

[
24

h3(t)+8L3−6L2h(t)
0

0 24
7h3(t)+8L3+6L2h(t)−16Lh2(t)

]

(22)

where h(t) is the length of applied forces that changes with
time, and L is the length of the beam element.

For the multi-element model of the reamer, the revised
bending stiffness is obtained after assembling the stiffness
and force replacement matrices, imposing the boundary
conditions, and solving for the last node displacements. The
stiffness matrix derived in the same manner as in Eq. 22, will
be used in the equilibrium equations that follow.

Equilibrium equations and solution

Regarding the assumptions made to get the quasi-static
model, the equilibrium of forces in a plane normal to the
axis of the tool is written as �FB + �Fc + �Fr = 0.
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Fig. 6 Results for eigenvalues,
a in x(t) = Aue(a+ib)t versus
time for variable engagement
length case for applied force,
when regular spacing of teeth,
θr = 2 degrees and (a)
kr = 0.211 (b) kr = 211 (1
element: solid line, 2 elements:
dash-dot line and 4 elements:
dotted line)

For general spacing, replacing �FB, �Fc and �Fr from Eqs.
17, 9 and 11, respectively, yields (Bayly et al., 2001)

K �x + Kc0 �x −
N∑

i=1

Kci �x(t − τi) + Kr

[�x − �x(t − τr )
] = 0

(23)

For even spacing, replacing �FB, �Fc and �Fr from Eqs. 17, 6
and 11, respectively, giving (Bayly et al., 2001):

K �x + Kc0 �x − KcN �x(t − τ0) + Kr

[�x − �x(t − τr )
] = 0

(24)

To solve this equation, �x is replaced in the characteristic
form (�x = A�ueλt ), and an eigenvalue equation is obtained
as follows (Bayly et al., 2001):

⌊
K + Kc0 − KcNe−λτ0 + Kr

(
1 − e−λτr

)⌋
A�ueλt = 0

(25)

where λ = a + ib is the eigenvalue and �u =
[

c + id

1

]
is the

eigenvector. The imaginary part of λ shows the frequency of
oscillation, and the real part describes the growth or decay
rate. The value of A, the amplitude of a specific mode, is
determined by the initial conditions in the experiments.

Equation 25 has a non-trivial solution only if the determi-
nant of the matrix on the left-hand side is set to zero (Bayly
et al., 2001):

det
⌊
K+Kc0−KcNe−(a+ib)τ0 +Kr

(
1−e−(a+ib)τr

)⌋
=0

(26)

This equation shows the eigenvalue equation for even spa-
cing. A similar equation can be derived for general spacing
(Bayly et al., 2001):

det

[

K+Kc0−
N∑

i=1

Kcie
−(a+ib)τi +Kr

(
1−e−(a+ib)τr

)]

=0

(27)
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Fig. 7 Displacement of the tool
axis in the x direction versus
time for the concentrated force
model (kr = 0.211 N/mm,
θr = 2 degrees, α = π

6 ). (a)
Regular (b) Irregular spacing

Equations 26 and 27 are non-linear systems of equations,
including imaginary and real parts, which must be solved
for a and b, the real and imaginary parts of λ, respectively.
In these equations, KcN,Kc0,Kci and Kr are replaced from
Eqs. 7, 8, 10 and 12, respectively, and the bending stiffness,
K is substituted from Eq. 18, for the case of the concentrated
force. For the distributed force model, the bending stiffness,
K is substituted from Eq. 22 at a specific time t = t0, and
Eqs. 26 and 27 are rewritten for even spacing as:

det
⌊
K(t0)+Kc0−KcNe−(a+ib)τ0+Kr

(
1−e−(a+ib)τr

)⌋
=0

(28)

and for general spacing as:

det

[

K(t0) + Kc0 −
N∑

i=1

Kcie
−(a+ib)τi

+Kr

(
1 − e−(a+ib)τr

)]

= 0 (29)

These equations were solved for a and b at t0 =
[
0, 60·L0

f ·�
]
,

where L0 is the length of the reamer and 60·L0
f ·� is the time

when the reamer reaches its end. With a and b determined, λ

is known and the eigenvector �u =
[

c + id

1

]
can be obtained

by solving Eq. 25 for even spacing in the concentrated force
model, and in similar equations for the other cases. Finally,
the axis tool vibration for each mode can be written as Bayly
et al. (2001a):

�x =
[

x(t)

y(t)

]
= Aeat

[
c cos bt − d sin bt

cos bt

]
(30)

Illustrative example and discussion

In this section, the stability of vibration and 2D and 3D hole
profiles is discussed for two different force models and dif-
ferent types of pitch spacing. The data used in this example
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Fig. 8 Displacement of the tool
axis in the x direction versus
time for the concentrated force
model (kr = 211 N/mm, θr = 2
degrees, α = π

6 ). (a) Regular
(b) Irregular spacing

are from the reaming of aluminum in the aircraft industry
(Bayly et al., 2001), and are summarized in Table 1. Regar-
ding the model of forces and type of tooth spacing, the appro-
priate one of the equations of 26–29 was solved for eigenva-
lues using the Newton–Raphson iteration method and subse-
quently eigenvectors were sought. Results were obtained for
two cases of regular/irregular placement of teeth and for two
assumptions of forces applied on the reamer:

1. Concentrated nodal forces on the tip of the tool
2. Distributed forces on variable engagement length of the

reamer.

The vibrations of first four modes are considered here
because of their importance. All modes are expected to be
present and the prevalence of each mode is determined
by the initial conditions and the rate of decay or growth. Here
each mode behavior is considered separately for simplicity.

Regular and irregular spacing of teeth

In previous investigations (Bayly, 1997; Varterasian, 1974),
uneven tooth spacing has been introduced as an effective
way to reduce vibrations. Here, combinations of irregular
tooth angles for a six-flute reamer in a range of 5–15 degrees
deviation from even spacing, with 5 degree increment and
decrements, is investigated below. For more details one can
refer to Towfighian (2006).

To determine the best tooth placement which yields the
most negative real part of the eigenvalue, λ, 32 combinations
of tooth angular positions based on the four groups of tooth
spacing listed below were considered:

1 − [60 60 55 65 50 70]
2 − [60 60 55 65 45 75]
3 − [60 60 50 70 45 75]
4 − [55 65 50 70 45 75]
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Fig. 9 Tool Axis trajectory and
hole profiles for the distributed
force model on the variable
engagement length for 16
elements (kr = 0.211 N/mm,
θr = 2 degrees, α = π

6 ). (a)
Regular (b) Irregular spacing

Eigenvalue results are shown for the case of concentrated
force; for each group of angles, eight sets of orientations
were considered (Fig. 5a). Each group is shown with a
specific line style and different placements are shown with
different markers. The comparison between four different
placements, each from a spacing group of Fig. 5a and even
spacing, is shown in Fig. 5b. As can be seen, in the case
of even spacing, a, the real part of the eigenvalue, λ, is
near zero, which shows periodic motion. In contrast, une-
ven pitch spacing results in negative values or damping
vibrations.

Among the groups shown in Fig. 5a and b, the fourth group
appears to give the highest decaying rate values. Therefore,
for the fourth group of pitch spacing ([55 65 50 70 45 75]),
720 different possible orientations in a circle were considered
and those that yielded the smallest real part value for each
mode are listed in Table 2. Among the orientations in Table
2, the second orientation [0 45 95 160 235 305] that gives
values closest to minimum for all modes has been chosen for
the irregular tooth spacing in the following results.

Stability analysis

The stability analysis was performed by obtaining the eigen-
value and eigenvectors. For the case of the forces being
concentrated forces at the tip of the reamer, values for a

(real part of the eigenvalue) for the first four modes are given
in Tables 4 and 5, and values for eigenvalue b (imaginary
part) and eigenvector d are shown in Table 3. In all cases, the
eigenvector c equals zero (Eq. 27). The results are listed for
the one element model because in the case of a concentrated
force, the reduced bending stiffness is the same regardless of
the number of elements (Eq. 18).

Eigenvalue and eigenvector results are shown in Tables 4
and 5 based on two rubbing coefficients proposed by Bayly
et al. (2001a). In regular spacing, increasing the rubbing coef-
ficient kr causes instability in the first and third modes and
stability in the second and fourth modes. For the irregular
case, it causes more stability only in the second mode of
vibration. Irregular spacing in both values of kr , in compari-
son to the regular case, resulted in higher damped vibrations
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Fig. 10 3D hole profiles for the
distributed force model on the
variable engagement length for
16 elements (kr = 0.211 N/mm,
θr = 2 degrees, α = π

6 ). (a)
Regular (b) Irregular spacing

for all modes other than one, although it did not change the
vibration mode 1 (Tables 4, 5).

In practice, the applied force on the reamer is a distributed
force on a length that increases as the reamer advances. The
second assumption for the forces is therefore that the forces
are distributed on a variable engagement length, as discussed
in section “The distributed force model.”

The revised stiffness matrix is given in Eq. 22 for one
element, and in the multi-element model, the stiffness matrix
is derived in the same way. Equations 28 and 29 were solved
for the eigenvalues and subsequently the eigenvectors were

obtained for the time interval of t0 =
[
0, 60·L0

f ·�
]
. Results of

the decaying rate variations with time are shown in Fig. 6a
and b, for the first four modes and two different rubbing
coefficients. It is noted that the imaginary part of eigenvalue
or frequency remains unchanged over time.

As depicted in Fig. 6a, for small rubbing coefficient sys-
tems, the real part value shows large variations with time.
At t = 0, the decaying rate equals that of the concentrated

force model, which has been used to date in the literature. For
multi-element models (e.g., the 16 element model), the real
part value starts from a negative value for concentrated force,
approaching zero and showing a periodic motion as the time
and number of elements increase. Models up to 16 elements
are shown because the results converged at this number of
elements. Figure 6a demonstrates that the concentrated force
model yields very conservative eigenvalue results in compa-
rison to the distributed force model. With the concentrated
force model, tool vibration is completely damped while in
the distributed force model, tool vibration starts from a dam-
ped vibration but becomes periodic as time passes and the
reamer proceeds. In Fig. 6b, by increasing the rubbing coef-
ficient, the real part shows a small variation with time for
the first four modes. Furthermore, the difference in results
for different numbers of elements is not large. This shows
that for high values of rubbing coefficient, the assumption of
concentrated force yields very close results to those of the
distributed force model.
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Fig. 11 Tool Axis trajectory
and hole profiles for the
distributed force model on the
variable engagement length for
16 elements (kr = 211 N/mm,
θr = 2 degrees, α = π

6 ). (a)
Regular (b) Irregular spacing

To study the effect of tooth spacing, time series graphs are
shown in Figs. 7 and 8 for two different rubbing coefficients.
They are depicted based on the results listed in Tables 4 and
5. Stability effects of irregular spacing on modes 2–4 can be
seen from Figs. 7 and 8, although it did not change the first
mode of vibration.

2D and 3D hole profiles

In order to obtain the hole profiles and axis trajectories, the
16 element beam model with distributed forces on variable
engagement length was used for more accurate results. Hole
profiles and tool axis trajectories for regular and irregular
spacing are shown in Figs.9 and 11 for two kr and 3D pro-
files in Figs. 10 and 12. As presented, the frequency of tool
oscillation listed in Table 3 is associated with the number of
lobed holes in Figs. 9–11.

The positive effect of irregular spacing of teeth on disap-
pearance of lobed holes is depicted in Figs.9 and 11. 3D
profiles of even spacing can be seen in Figs. 10a and 12a,
and uneven spacing in Figs. 10b and 12b. Figures 10b and
12b show the 3D profile of the hole which is very close to the

perfect hole. The close movement of the axis to the center in
Figs. 9b and 11b confirms an accelerated damped vibration.

It can be concluded from Figs. 10b and 12b that irregular
spacing has stability effects on modes 2–4. For vibrations in
mode 1, keeping the rubbing coefficients low is shown to be
an effective way to damp the vibrations (Figs. 9b, 11b).

Conclusions

In this work, finite element modeling of the reamer was
applied in order to study the vibration of the tool at low cut-
ting speeds. The tool behavior was considered under a new
model of external force application. The cutting and rubbing
forces as external forces were applied as distributed forces
on a variable engagement length of common reamers that are
tapered with small angles. This assumption makes the simu-
lation closer to the real reaming process, in comparison to
point load assumption used in previous works.

The quasi-static reaming process formulation led to an
eigenvalue problem with solutions that included oscillatory
and unstable modes. Eigenvalue results that define oscillatory
and unstable modes were compared for both concentrated and
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Fig. 12 3D hole profiles for the
distributed force model on the
variable engagement length for
16 elements (kr = 211 N/mm,
θr = 2 degrees, α = π

6 ). (a)
Regular (b) Irregular spacing

distributed force models. It was shown that the concentrated
force model in previous works yielded more incautious
results than the distributed force model, which considered
variable engagement length. Specifically, for cutting sys-
tems with lower rubbing coefficients, the difference between
results of these two assumptions was more noticeable. In the
concentrated force model, tool vibration is completely a dam-
ped vibration, while in the distributed force model, vibration
starts as a damped vibration, but as the reamer advances,
it tends to become periodic. For high rubbing coefficient
systems, results of either concentrated or distributed force
assumptions are very close.

Geometry modification of the reamer leading to more
negative decaying rate or more stable conditions was inves-
tigated through uneven pitch spacing. For a six-flute reamer,
irregular tooth spacing was considered by slight changes in
pitch angle from the regular case. The irregular spacing pro-
posed introduced a considerable damping into the system
for modes of higher than one, leading to a perfect hole qua-
lity after the reaming process. The best combination of pitch
angles leading to the most stable condition was proposed for a

specific cutting condition. More accurate 2D and 3D hole pro-
files for irregular and regular spacing were presented through
the distributed force model on variable engagement length of
the reamer. It was observed that the geometry modification
had effects on modes other than the first mode of vibration.
For the first mode of vibration, lowering the rubbing coeffi-
cient was a proposed solution, the methods of which should
be investigated in the future.
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