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Abstract This research shows the development of an
in-process surface roughness adaptive control (ISRAC) sys-
tem in turning operations. An artificial neural network (ANN)
was employed to establish two subsystems: the neural net-
work-based, in-process surface roughness prediction (INNS-
RP) subsystem and the neural network-based, in-process adap-
tive parameter control (INNAPC) subsystem. The two sub-
systems predicted surface roughness and adapted feed rate
using data from not only cutting parameters (such as feed rate,
spindle speed, and depth of cut), but also vibration signals
detected by an accelerometer sensor. The INNSRP subsystem
predicted surface roughness during the finish cutting process
with an accuracy of 92.42%. The integration of the two sub-
systems led to the neural-networks-based surface roughness
adaptive control (INNSRAC) system. The 100% success rate
for adaptive control of the test runs proved that this proposed
system could be implemented to adaptively control surface
roughness during turning operations.

Keywords Surface roughness · Turning operations ·
Adaptive control · Neural-networks

Introduction

An automatic manufacturing process that includes aspects
of artificial intelligence, such as the capacity to learn and
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reason, is classified as possessing an advanced level of auto-
mation (Degarmo, Black, & Kohser, 1997). Developing a
CNC turning machine at this level of automation has been an
industry goal for many years. During the past decade, several
researchers have attempted to manufacture artificially intelli-
gent machine tools (Risbood, Dixit, & Sahasrabudhe, 2003).

Surface roughness of a part produced in turning opera-
tions is an important quality indicator since it may affect
the aesthetic appeal of machined parts and the fatigue stress,
economic cost, etc., of assembled parts. An excessively fine
surface finish usually involves advanced equipment, manu-
facturing procedures, and skilled labor, all which increase
the cost of manufacturing. However, the dynamic and non-
linear nature of turning operations means that surface rough-
ness can be influenced by a number of factors, such as feed
rate, spindle speed, depth of cut, workpiece material char-
acteristics, tool geometry (tool nose, tool angle), tool con-
ditions (such as the amount of wear), cutting forces, and
cutting vibrations (Fang & Yao, 1997; Ho, Lee, Chen, & Ho,
2002; Kopac, Bahor, & Sokovic, 2002; Risbood et al., 2003;
Beauchamp, Thomas, Youssef, & Masounave, 1996; Yang
& Tarng, 1998). Small variations in any of these factors may
cause scrap in the finishing turning process, which could,
in turn, result in unnecessary waste, especially when quite a
few manufacturing processes have already been completed
on the part. Thus, there is a need for a system that enhances the
intelligence of CNC turning machines, giving the machines
the ability to detect machining process conditions and even
adjust them in real time to avoid defects.

Traditionally, surface roughness monitoring depends
heavily on stylus instruments (Ho et al., 2002). However,
measuring surface roughness through stylus devices is a post-
process, off-line quality monitoring approach as turning
operations must be paused; therefore, it does not allow users
to take full advantage of the CNC machines.
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Since the 1980s, the industry has started with the devel-
opment of non-contact, on-line surface roughness prediction
during the finishing process through pneumatic, electrical,
or optical approaches, instead of measuring surface pattern
directly (Yan, Cheng, Popplewell, & Balakrishnan, 1995). In
order to overcome the limitations of these methods caused by
measuring range, poor resolution, instability, or heavy reli-
ance on empirical modeling, Yan et al. designed a laser mea-
suring system that employs a linear charge-coupled device
sensor to capture the light pattern scattered from the work-
piece surface. Such measurements are more accurate than
conventional stylus measurements.

The estimation of roughness using computer vision has
also received a great deal of attention (Al-kindi, Baul, &
Gill, 1992; Hoy & Yu, 1991; Kiran, Ramamoorthy, & Rad-
hakrishnan, 1998; Lee & Tarng, 2001; Mainsah & Ndumu,
1998), but a major drawback of the computer vision-based
technique is that the modeling of the relationship between
the actual surface roughness of the workpiece and the sur-
face images is not accurate enough due to the involvement
of empirical approaches (Ho et al., 2002). To improve the
accuracy of on-line surface roughness prediction, Ho et al.
enhanced their computer vision system by incorporating a
fuzzy neural network, which is a more powerful learning tool,
to solve the problem. However, the computer vision-based
surface roughness prediction system and the laser measur-
ing system reviewed above require an extra light source to
operate.

Another alternative approach to controlling surface rough-
ness in real time involves the modeling of surface rough-
ness by incorporating a variety of machining parameters and
machining process signals. Applying an artificial neural net-
works (ANN), Lee and Chen (2003) developed an on-line
surface roughness recognition system including vibration
signals. Also applying ANN, the surface roughness predic-
tion system created by Risbood et al. (2003) included cutting
forces and vibrations signals in the turning process. Although
these systems can recognize surface roughness without stop-
ping the machining operation and with reasonable accuracy,
they do not possess adaptive control strategies to correct sur-
face finish defects. Therefore, there is a need to move the
research regarding on-line surface roughness recognition to
a new stage of implementing adaptive control. This paper
proposes an in-process surface roughness adaptive control
(ISRAC) system able to automatically avoid defects by rec-
ognizing the surface finish of a part and adjusting process
parameters based on real-time information from the cutting
process.

In order to develop such an in-process surface roughness
adaptive control ISRAC system, two important components
must be in place: a real-time sensor for collecting cutting pro-
cess signals related to surface profile, and a decision-making
mechanism.

A number of studies proved that vibration plays an impor-
tant role in influencing surface finish in turning operations.
Jang et al. (1996) found that the workpiece surface profile
and a specific vibration frequency have strong a correlation
in hard turning. Lin and Chang (1998) found that the vibra-
tion frequency ratio is an important factor influencing the
characterization of the surface finish profile. L. Huang and
J. C. Chen (2001) reported that the multiple regression model
including vibration signals for predicting in-process surface
roughness showed significantly improved accuracy in com-
parison to the one without. Abouelatta and Madl (2001) also
confirmed the impact of vibration signals. Therefore, the cur-
rent study employed an accelerometer sensor to detect turn-
ing vibration signals.

With respect to the decision-making mechanism, B. Huang
and J. C. Chen (2001) and other researchers have proved
ANN to be an effective tool not only for dealing with
the non-linear and multivariable turning processes to predict
surface roughness, but also for monitoring other industrial
applications (Elanayar & Shin, 1995; Fang & Yao, 1997;
Zuperl & Cus, 2003). Thus, this study employed ANN as
the decision-making mechanism in the proposed (ISRAC)
system. A great deal of research has shown that feed
rate is the most significant factor affecting surface
finish (Abouelatta & Madl, 2001; Ho et al., 2002; Lee &
Chen, 2003; Risbood et al., 2003). Thus, the adaptive con-
trol system was designed to alter the feed rate as the adap-
tive control variable to control the production of surface
finish.

In summary, this study shows the development of an in-
process neural network-based surface roughness adaptive
control (INNSRAC) system by incorporating real-time 3D
vibration signals collected through an accelerometer. This
system is designed to evaluate the surface quality of turned
parts and adaptively control changes in feed rate in order to
consistently produce parts that meet specifications.

Artificial neural networks system

An ANN is a parallel, distributed information processing
structure that mimics the human brain to learn from examples
or mistakes (Freeman & Skapura, 1991). Neural networks,
based on their biological counterparts, attempt to model the
parallel, distributed nature of processing in the human brain.
Since this concept was introduced in 1950s, ANN technology
has been adapted in many applications that are complex and
non-linear in nature, with an unknown and hard-to-identify
algorithm (Lippmann, 1999).

The mathematical model of an artificial neuron’s behav-
ior is the simplification of the biological brain neuron shown
in Fig. 1. Various inputs x(n) to the network multiplied by
weights w(n) are sent to a neuron. Performing accumulation
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Fig. 1 The behavior of an artificial neuron

Fig. 2 Artificial neural network

and threshold, the neuron sums the weighted inputs, passes
the result through a non-linear transfer function and provides
an output Yi

Yi = f

(
n−1∑
i=0

wi xi − θ

)
, (1)

where the inputs of xi in this study corresponds to feed rate,
spindle speed, depth of cut and vibration signals; θ is the
internal threshold or offset of a neuron; and f is the non-lin-
ear transfer function. The most commonly used f is defined
by the sigmoid logistic function as:

f (x) = 1

1 + e−x
. (2)

A neural networks provides a networking structure in which
artificial neurons are interconnected, as shown in Fig. 2. Each
neuron in a layer receives weighted inputs from the neurons
in the previous layer. The output of the neuron in the previous
layer is in turn connected as the input to several other neu-
rons in the following layer, which forms a complete network.
Beyond the input and output layers, several other layers of
neurons in the middle, called hidden layers, might be needed
to build an effective neural network that is capable of solving
problems.

The principle underlying neural networks is pattern rec-
ognition. Among the variety of neural network algorithms,
back-propagation (BP) is the most commonly used due to
BPs superior strength in pattern recognition and reasonable
speed (McClelland & Rumelhart, 1988). The training proce-

dure for a back-propagation network (BPN) is usually itera-
tive and involves a trial-and-error approach that consists of
the following steps (Lippmann, 1999):

Step 1: Initialize weights and offsets, starting from a small
random value.
Step 2: Present inputs and desired outputs to the neural net-
work model.
Step 3: Calculate actual outputs,ym .
Step 4: Calculate the error between the output from the neural
network and the desired output by E

E = 1

nm

∑
m

∑
n

(ym,n − dm,n)2, (3)

where m is the number of neurons in the output layer (in this
study m = 1), and n is the number of training data set. If E
is smaller than the required accuracy, then no other learning
procedures are needed.
Step 5: If E is larger than the required accuracy, adjust the
weights of the networks. The weights are adjusted by

wi j (t + 1) = wi j (t) + ηδ j x ′
i , (4)

where x ′
j is either the output of neuron i or an input, η is a

gain term, and δ j is an error term for neuron j .
Step 6: Repeat steps 3–6 until the error of the entire set is less
than the required accuracy.

Structure of the INNSAC system

The INNSAC system in Fig. 3 includes two subsystems: an
in-process neural-networks-based surface roughness predic-
tion (INNSRP) subsystem and an in-process neural networks-
based adaptive parameter control (INNAPC) subsystem. As
the turning process proceeds, the accelerometer sensor simul-
taneously records the vibration in the X , Y , and Z directions.
The INNSRP subsystem is able to predict the surface rough-
ness of the workpiece (RP

a ) while the turning operation is in
process, based on cutting parameters and the changing trends
in cutting vibration. If the predicted value is better than the
desired surface roughness (RD

a )(RP
a < RD

a ), the turning pro-
cess will continue. If it is worse (R P

a > RD
a ), the detected

surface roughness difference �Ra will trigger the INNAPC
subsystem to function.

�Ra = RP
a − RD

a . (5)

As feed rate is the most significant cutting parameter influ-
encing surface roughness, which is also confirmed in the first
stage of this research, the adaptive degree of feed rate change
(�Fr) is selected to be the output of the INNAPC subsystem.
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Fig. 3 The structure of the
INNSAC system
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Methodology

This section describes the experimental setup and design for
the proposed INNSAC system. The procedure employed to
build the system is also included.

Experimental setup and design

The experimental hardware setup shown in Fig. 4 includes a
Storm CNC lathe (Fanuc Series 21i-T), a VNE Versa Turning
insert (VNE Corp.), a workpiece (6061 aluminum �1.5′′ ×
2.25′′), a 3-axis accelerometer sensor (PCB Piezotronics,
Inc.), a battery power supply, PCB amplifiers, a DBK11A
Screw Terminal Expansion Card (IOtech, Inc), a DaqBook
100 data acquisition system (IOtech, Inc), an A/D board for
converting data from analog to digital and a PC for saving
data. A stylus profiler (Federal PocketSurf) is used for mea-
suring roughness offline. The surface roughness is measured
four times at different spots around the turned surface, and
the average value is taken as the surface roughness.

The software in this system consists of the following com-
ponents:

1. An NC program that directs the CNC turning machine
to cut the workpiece.

2. DaqView 11.8 (IOtech, Inc.), which records vibration
signals detected by the 3D accelerometer sensor. This
software is a Windows-based data acquisition program
that can be automatically trigged. It produces a data out-

Y
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A/D BoardPersonal Computer

Accelerometer

X

Tool holder 

Workpiece Z

Fig. 4 Experimental setup for the MRISAC system

put file compatible with Microsoft Excel. The simulta-
neously acquired data can be displayed in real time.

3. JMP (SAS Institute) statistical program for correlation
analysis between surface roughness and the explanatory
variables.

4. Microsoft Excel, which prepares the data for training the
neural network model.

5. PCN Neural network training software package.

Design of experiment

A full factorial design is used in the experimental design
listed in Table 1. Spindle speed, feed rate and depth of cut
(full cutting parameters) are the experimental factors. Spindle
speed is set at three levels (2,500, 3,000, and 3,500 revo-
lutions per minute (RPM)), feed rate at eight levels (0.002,
0.0034, 0.0048, 0.0062, 0.0076, 0.009, 0.0104, and 0.0118 in
per revolution (IPR)), and depth of cut at three levels (0.006,
0.012, and 0.018 in). The turning parameters are determined
by recommendations of machinist’s literature (Oberg, Jones,
Horton, & Ryffel, 1996), the cutting tool manufacturer (VNE
Corp., 1999), and previous experience with this machine.
The feed rate and depth of cut are selected from the range
of parameters for finish turning (Harig, 1978). The spindle
speeds, while slightly lower than those normally used for
turning aluminum workpieces (Harig, 1978), are chosen for
safety reasons, due to the limitations of the machine being
used. Each experimental combination is conducted twice.
A total of 144 raw data sets were collected in the experi-
ment. One turning insert is used throughout the experiment
to restrict variation created by different tools. The cutting
sequence of samples was randomized in order to eliminate the
systematic bias incurred by tool wear conditions on surface
roughness.

Development of the INNSRP subsystem

This section describes how the vibration is selected as an
input to the INNSRP subsystem, how the data set is prepared,
how the INNSRP subsystem is trained, and how this subsys-
tem is tested.
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Table 1 Design of experiment
S P(rpm) 2,500 3,000 3,500

Fr (IPR) DC(in) .006 .012 .018 .006 .012 .018 .006 .012 .018

.002

.0034

.0048

.0062

.0076

.009

.0104

.0118

Table 2 Pearson correlation analysis of cutting parameters with the
response

Variable Pearson correlation coefficient*

S P −0.0213
Fr 0.9516 **
DC −0.0010
V x 0.7637 **
V y 0.7369 **
V z 0.8488 **

*Response = Ra
**Significantly different from 0, with α = 0.01

Determine the input variables in the vibration signals

The output of this subsystem is the predicted surface rough-
ness. Besides the cutting parameters such as spindle speed,
depth of cut, and feed rate, the inputs of this subsystem also
include significant vibration signals. As shown in Table 2, all
the vibration signals have significant correlation coefficients.
An informal analysis of the trends in the data also indicated
that depth of cut and spindle speed affect vibration in all
three directions. To avoid multi-linearity, only the vibration
with the highest correlation coefficient, V z, is selected as
an input. In summary, the training data including feed rate,
spindle speed, depth of cut, and vibration in the Z direction,
expressed as:

[Fri , S Pi , DCi , V zi ; Rai ], for i = 1 to 144.

Scale the training data set

Some pre-processing procedures are needed to obtain good
training and prediction results. In this process, all the input
and output values are scaled within the interval of [0, 1]. In
this study, the simple linear mapping method is applied and
expressed as:

U ′ = U − Umin

Umax − Umin
, (6)

Table 3 Comparison of the neural network structure

Structure RMS error for training

4-10-10-1 0.03440
4-9-9-1 0.03663
4-8-8-1 0.03525
4-7-7-1 0.03642
4-6-6-1 0.03530
4-9-8-1 0.03646
4-8-9-1 0.03562
4-8-7-1 0.1858
4-7-8-1 0.03616

where U ′ is the scaled value, Umax and Umin are the max-
imum and minimum value of each factor. For example, the
data set of [3.4, 2500, 0.06, 0.2826, 33.50] can be scaled as
[0.143, 0, 0, 0.0788, 0.1637].

Train the INNSRP subsystem model

The neural networks model for the surface roughness pre-
diction subsystem was trained following the training proce-
dure as described in Section “Artificial neural network sys-
tem”. In the training process, the “trial-and-error” method is
employed to determine the number of hidden layers, the neu-
rons in each hidden layer, the learning rate, and the momen-
tum factor in the neural networks model. A few neural net-
works structures with varied numbers of hidden neurons are
compared (listed in Table 3) and the structure of 4-8-8-1 that
creates the least RMS errors is selected as the INNSRP sub-
system model. By following the same procedure, the learning
rate is set as 1 and the momentum factor is set as 0.5. As a
result, the architecture of the INNSRP subsystem is specified
as 4-8-8-1, as shown in Fig. 5.

After the training procedure, the weights between each
neuron and the bias of each neuron were obtained and listed
in Appendix 1. This neural networks model can be used for
predicting surface roughness in real time.
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Test the INNSRP subsystem

After establishing the surface roughness prediction model, an
additional 24 samples are produced to test the performance
of the INNSRP subsystem. The model’s accuracy is defined
by the average accuracy of the tested samples (ARa) as:

ARa =
⎡
⎣1 − 1

n

n∑
i=1

∣∣∣RP
a,i − Ra,i

∣∣∣
Ra,i

⎤
⎦ × 100% (7)

where ARa is the average accuracy of surface roughness pre-
diction; RP

a is the predicted surface roughness by the INNRSP
subsystem;Ra is the actual surface roughness (as measured
by the profilometer), and n is the number of testing samples.

All the cutting conditions were set within the experimen-
tal range, but they differed from those in the experimental
runs. The testing results are displayed in Table 4. The aver-
age prediction accuracy is 92.42%, with a 0.22% standard
deviation.

Development of the INNAPC subsystem

Although the INNSRP subsystem is able to predict surface
roughness (RP

a ) when finishing turning is in-process, this
subsystem alone cannot provide a corrective function when
RP

a is worse than RD
a . In order for the CNC machine to be

able to detect defects and further adjust the cutting condi-
tions to prevent defects, an adaptive control strategy must
be in place. The INNAPC subsystem is designed to generate
an adaptive feed rate change while the finishing turning is
in-process if the surface roughness is larger than the desired
surface precision. In other words, if RP

a > RD
a , then the IN-

NAPC subsystem will perform its function by:

�Fr = f (�Ra, S P, F R, DC, V z). (8)

This equation shows that the output of the INNAPC subsys-
tem is the adaptive degree of feed rate change and inputs
include spindle speed, depth of cut, feed rate, vibration sig-
nals in the Z direction, and the recognized surface rough-

ness difference. When training the model, similar training
procedures to those applied in the INNSRP subsystem are
employed. Since �Fr and �Ra cannot be obtained directly
from the experiment, the desired training data must be pre-
pared as follows:

Step 1: Organize the raw data to form subgroups.
In the experiment, 72 cutting combinations are conducted

twice. One of the combinations is used for training the IN-
NAPC subsystem. As the goal of the INNAPC subsystem is to
generate the adaptive degree of feed rate change, the selected
72 combinations are reorganized in such a way that within
each subgroup, data sets have the same spindle speed and
depth of cut, but different feed rates. In this way, a total of nine
subgroups are formed as 2,500 rpm×0.06 in. . ., 3500 rpm×
0.018 in, with each subgroup containing eight data sets. The
elements of each data set are feed rate, spindle speed, depth
of cut, vibration in the Z direction and actually measured sur-
face roughness. Using the scaled data, one of the subgroups
is listed in Table 5.
Step 2: Obtain �Ra and �Fr .

Within each subgroup, every two samples are compared
to generate the surface roughness difference (�Ra), and the
corresponding response variable of the adaptive feed rate
change (�Fr). Between the two-sample combination, the
larger, actual Ra is assumed as the predicted surface rough-
ness from the INNSRP subsystem and the smaller value is
assumed as the desired surface specification (RD

a ). For exam-
ple, compare sample 1 and sample 2. Sample 2 has the greater
actual surface roughness (0.1525), which is used as RP

a , while
sample 1 has the smaller value (0.0605), which is used as RD

a .
Thus, �Ra is obtained as 0.092 by plugging the identified
RD

a and R P
a values into Eq. (5). At the same time, �Fr is

obtained by:

�Fr = FrP − FrD, (9)

where FrP and FrD are the feed rate settings corresponding
to the RP

a and RD
a selected above, respectively. In the exam-

ple above, FrP is 0.143 and RD
a is 0.000. Therefore, �Fr is

generated as 0.143. The full data set is listed as Table 6.
According to this strategy, each subgroup generates C8

2 =
28 data sets and a total of 252 (9 × C8

2) data sets for training
the INNAPC subsystem. Due to natural variability, four out
of the 252 data sets show a predicted surface roughness that
is less than the actual surface roughness. Therefore, 248 data
sets are employed to construct the INNAPC subsystem.

After the training data are prepared, a similar method
to the one stated in Section “Train the INNSRP subsys-
tem model” is employed to train the INNAPC subsystem.
By going through this trial-and-error procedure, the 5-5-5-1
neural networks is identified as the INNAPC subsystem model,
shown in Fig. 6. The learning rate is set as 0.95 and the
momentum factor is set as 0.5, respectively. The weight and
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Table 4 Testing results for the INNSRP subsystem

Testing # Feed (in/min) Speed (rpm) Depth of cut (in) Vz (mV) Ra RP
a ARa

1 4 2750 0.009 0.3784 29.00 25.68 88.56%
2 4 2750 0.015 0.3934 29.25 25.65 87.7%
3 4 3250 0.009 0.4219 22.00 24.61 88.13%
4 4 3250 0.015 0.4292 22.50 24.63 90.54%
5 7 2750 0.009 0.6136 43.25 46.29 92.97%
6 7 2750 0.015 0.6541 52.25 46.21 88.45%
7 7 3250 0.009 0.6467 49.25 44.29 89.93%
8 7 3250 0.015 0.7423 48.00 44.41 92.54%
9 9 2750 0.009 0.6850 78.75 76.44 97.06%
10 9 2750 0.015 0.8331 75.75 76.23 99.36%
11 9 3250 0.009 0.8299 77.00 78.36 98.24%
12 9 3250 0.015 0.9040 78.25 74.99 95.84%
13 4 2750 0.009 0.4056 31.25 26.04 83.32%
14 4 2750 0.015 0.4276 24.75 26.09 94.61%
15 4 3250 0.009 0.4437 28.25 24.86 87.99%
16 4 3250 0.015 0.4384 21.25 24.74 83.58%
17 7 2750 0.009 0.6656 43.25 48.01 89.00%
18 7 2750 0.015 0.6578 42.75 46.32 91.65%
19 7 3250 0.009 0.6731 47.00 45.15 96.06%
20 7 3250 0.015 0.7620 46.00 45.02 97.89%
21 9 2750 0.009 0.7430 77.50 79.14 97.89%
22 9 2750 0.015 0.8699 83.75 77.85 92.96%
23 9 3250 0.009 0.8159 74.00 77.68 95.02%
24 9 3250 0.015 0.9250 75.00 75.95 98.73%

Table 5 Data sets of the
subgroup #1 Fr S P DC V z Ra

0.000 0.000 0.000 0.0000 0.0605
0.143 0.000 0.000 0.1044 0.1525
0.286 0.000 0.000 0.1959 0.0852
0.429 0.000 0.000 0.2702 0.1480
0.571 0.000 0.000 0.3048 0.3341
0.714 0.000 0.000 0.4173 0.4910
0.857 0.000 0.000 0.5487 0.7422
1.000 0.000 0.000 0.6031 0.9552

Table 6 Sample of the
INNAPC subsystem data set

Fr S P DC V z �Ra �Fr

0.143 0.000 0.000 0.1044 0.0919 0.143

Sp

D

F r

Ra

V b

∆

∆ Fr

Fig. 6 Structure of INNAPC subsystem

bias of each neuron are listed in Appendix 2. So, the IN-
NAPC subsystem model can be used for predicting feed rate
change.

Integration and testing of the INNSAC system

After the INNSRP and INNAPC subsystems are established,
the INNSAC system can be established through the integra-
tion of the two subsystems, as shown in Fig. 7. These two
subsystems are connected by the triggering variable of the
INNAPC subsystem, surface roughness difference (�Ra).
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Second half

First half

Fig. 7 Testing workpiece

This system enables the CNC turning machine to adjust the
feed rate when detecting surface roughness error while turn-
ing is in-process.

When testing the INNSAC system, the same hardware
setup is used, except for a brand new tool insert. The soft-
ware setup consists of a NC program and the INNSAC sys-
tem, which can predict the surface roughness and the adap-
tive degree of feed rate change when the predicted surface
roughness is worse than the required quality. First, half of
the total length of the cut on workpiece is turned. Within this
half-length cutting, the INNSAC system is activated. Based
on the cutting parameters and the Z vibration, the INNSAC
predicts the surface roughness (RP

a ). Then, according to the
surface roughness requirement (RD

a ), the INNSAC system
generates the adaptive feed rate change, �Fr . The feed rate
in the NC program is updated by typing in this feed rate
change. The second half of the workpiece is cut under the
new feed rate conditions. After the entire workpiece is turned,
the surface roughness in the second half of the piece is mea-
sured in order to determine if the surface quality is equal
to or better than the surface requirement. In all, 15 testing
samples were carried out. The testing results are listed in
Table 7.

Once the system is developed, testing runs are conducted
to examine whether the proposed system is able to adaptively
control surface roughness while the finish turning is in pro-
cess. First, the testing workpiece is turned for the first half of
the cut and its roughness is measured (Ra). The INNSRP sub-
system then provides a predicted surface roughness based on
the cutting conditions and sensed vibration signals. Accord-
ing to the surface roughness requirement, the INNAPC sub-
system will generate the adaptive feed rate change �Fr . By
using �Fr , cutting parameters are reset and the remaining
half of the workpiece is cut. Its surface roughness is then mea-
sured to see if it meets the requirement. The overall success
rate is then evaluated by the percentage of successful tests out
of the total number of test runs. Testing only has been done in
the specified turning center in this study. Surface roughness
potentially can be impacted by multiple variables that are not
considered in the ANN models developed in this study, and
different types of equipment may have different character-
istics affecting surface roughness; however, the ANN train-
ing approach used in study can be applied for other CNC
turning machines to adaptively control surface roughness
quality.

Conclusions and recommendations for future study

This research integrated an accelerometer sensor and the BP
neural networks in order to develop an ISRAC system. A few
conclusions can be drawn from this study:

1. The vibration signal detected by the accelerometer
employed in the proposed system was a good indicator
of surface roughness. This result is consistent with the

Table 7 Testing runs of the INNSRAC system

# Machine setting V z (mV) RP
a (µin) RD

a (µin) Trigger �Fr �Ra �Fr New Fr New RM
a Success (RM

a ≤ RD
a )

Fr (IPR) S P (rpm) DC (in)

1 7.5 3200 0.007 1.0851 49.1 32 Yes 17.1 3.1 4.4 19 Yes
2 10.9 3300 0.007 1.1930 116.2 63 Yes 53.2 3.8 7.1 46 Yes
3 8.5 3200 0.008 1.0589 80.3 32 Yes 48.3 4.7 3.8 21 Yes
4 8.3 3200 0.011 1.1326 71.6 32 Yes 39.6 4.4 3.9 20 Yes
5 8.8 2700 0.014 0.9304 796.8 25 Yes 51.8 5.3 3.5 17 Yes
6 9.8 2900 0.007 0.9901 100.1 63 Yes 37.1 3.7 6.0 32 Yes
7 8.8 2500 0.007 0.7462 78.6 25 Yes 53.6 5.4 3.4 18 Yes
8 11.3 3300 0.008 1.2611 119.5 63 Yes 56.5 3.7 7.6 53 Yes
9 9.7 3000 0.011 1.0876 96.8 32 Yes 64.8 5.3 4.4 20 Yes
10 10.3 2500 0.014 0.8971 103.0 30 Yes 73.0 6.3 4.0 30 Yes
11 11.5 2600 0.006 0.8221 119.3 80 Yes 39.3 3.5 8.0 57 Yes
12 12 3200 0.006 1.1717 122.9 80 Yes 42.9 3.3 8.6 77 Yes
13 10.8 2800 0.01 0.9550 112.3 50 Yes 62.3 4.5 6.3 37 Yes
14 8.3 2900 0.01 1.0088 71.2 32 Yes 39.2 4.4 3.8 20 Yes
15 8.6 3200 0.009 1.1455 78.5 40 Yes 38.5 4.1 4.5 25 Yes
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conclusions proposed by Jang et al. 1996 and Risbood
et al. (2003).

2. The data analysis in this study confirmed again that feed
rate is the most significant factor impacting the surface
quality of turned products.

3. The proposed neural networks-based ISRAC system
predicted surface roughness at an average accuracy of
92.42% and adapted feed rate with a 100% success rate
in order to control surface roughness to meet customer
requirements in real cutting processes. Testing results
suggested that the BP-ANN was effective in model-
ing the decision-making mechanism of adaptive
control.

4. The cutting parameters in the testing stage were
randomly set but different from the original experimental
design and the desired surface roughness was
set following industrial norms. The success of being
able to perform in-process adaptive surface roughness
control indicated that the proposed system was
flexible enough to meet cutting conditions in industry
settings.

Appendix

Indeed, the proposed INNSAC system was successful in
controlling surface roughness in real time by suggesting an
adapted feed rate, when the predicted value was recognized
as worse than the desired value. This research found 15 test-
ing samples in which adapting the feed rate resulted in actual
surface roughness values that were generally far less than the
desired values. This variation might lead to further research in
identifying the cause of surface roughness and even optimiz-
ing the current algorithm to ensure surface roughness quality
while maintaining productivity.

In this study, tool wear conditions were controlled using a
brand new tool and randomizing the cutting sequence. How-
ever, tool wear situation is a very important factor related to
surface quality. Future study is therefore also necessary to
develop a model that includes cutting tool conditions. After
the decision-making algorithm is fully enhanced in future
studies, it will be possible to develop a controller that inte-
grates the INNSRAC system with the CNC machine control-
ler in order to fulfill the proposed in-process surface rough-
ness adaptive control ISRAC system on the actual manufac-
turing floor.

Appendix 1 The weights and biases between each neuron for INNSRP subsystem

Inputs

Fr S P DC V z θ

Hidden layer 1 1 1.2920 −0.3775 0.2046 0.4539 0.6382
2 3.4620 0.0381 −0.3931 0.5650 3.6520
3 1.4500 −0.3090 −0.0791 0.7578 0.8803
4 0.1497 −0.3999 0.0061 0.7299 −0.3441
5 2.6880 −0.3150 −0.1711 0.3993 2.7180
6 1.9600 0.1378 −0.0169 0.2103 1.6030
7 2.5160 −0.1563 0.0782 0.1366 2.3600
8 1.3650 −0.3786 0.1032 0.4553 0.8158

Hidden layer 1

1 2 3 4 5 6 7 8 θ

Hidden layer 2 1 −0.8112 −1.0790 −0.8288 0.0356 −1.2180 −0.3911 −0.6464 −0.6896 0.1692
2 0.0616 −3.2680 −0.1426 1.3900 −2.1640 −1.0380 −1.9470 −0.2820 −3.4710
3 −0.3524 −0.8167 −0.7157 −0.2989 −0.9251 −0.4064 −0.7213 −0.5057 0.8289
4 −0.3471 −1.0590 −0.8589 −0.2946 −0.7406 −0.4555 −0.7276 −0.7765 0.5105
5 −0.4411 −1.6870 −0.3058 −0.1779 −1.2800 −0.7065 −0.8606 −0.1822 −0.2844
6 0.4709 1.0200 0.2777 0.1963 0.4842 0.8366 0.8906 0.3247 −0.0023
7 −0.3102 −1.4540 −0.6583 −0.4624 −1.1410 −0.6398 −0.8317 −0.3083 −0.1030
8 −0.5043 −1.2530 −0.8789 −0.0342 −0.6925 −0.6436 −1.0360 −0.2812 0.4287

Hidden layer 2

1 2 3 4 5 6 7 8 θ

Output −1.1720 −4.4400 −0.5170 −0.7734 −1.7340 4.9440 −1.4160 −1.0960 0.0007
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Appendix 2 Weights and biases between each neuron for INNPAC subsystem

Inputs

F R S P DC V z �Ra θ

Hidden layer 1 1 2.7990 0.0413 −0.3940 2.9080 3.4730 1.1980
2 0.9100 −0.2643 0.4126 0.3180 −0.2643 0.1951
3 −3.5080 0.8376 0.4242 −0.5218 4.2210 1.4670
4 −2.4610 0.1229 −0.1218 −0.2537 3.1400 0.9758
5 2.1880 1.0360 −0.1854 0.2653 −2.1980 0.0850

Hidden layer 1

1 2 3 4 5 θ

Hidden layer 2 1 −1.1510 −0.0156 −1.5110 −1.6290 1.1560 0.0852
2 −2.2800 1.5600 −3.6200 −2.3950 3.0290 −1.0410
3 −1.3120 0.4256 −1.7500 −1.4250 1.4150 0.0209
4 −1.3730 0.3305 −1.9530 −1.6730 1.6730 −0.4546
5 2.1930 0.0401 1.1240 0.7169 −0.4006 −0.1629

Hidden layer 2

1 2 3 4 5 θ

−1.5990 −4.1410 −1.8200 −2.1260 5.7470 −0.0006
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