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Abstract Supply chain is a complex system that
involves many system elements from various functional
areas. Performance of a supply chain heavily depends
on the effectiveness of communication and coordina-
tion among these system elements and functional areas.
However, a large and complex supply chain usually
makes it difficult to coordinate and thus degrades its per-
formance. This paper focuses on the development of a
systematic approach with the following objectives: (1) to
identify and quantify the interactions among the system
elements in a supply chain; (2) to decompose the large
interdependent group of system elements into smaller
and manageable sub-groups; and thus (3) to improve
the structure of the supply chain system. A supply chain
system is first decomposed into subsystems and system
elements from which the interactions (i.e., independent,
dependent and interdependent relationships) are stud-
ied and documented by design structure matrix (DSM).
Next, the interaction strengths among the related sys-
tem elements are quantified. Cluster analysis is used to
decompose the large interdependent group into smaller
ones in order to provide a better supply chain system
structure. The effectiveness of this systematic approach
is demonstrated by an illustrative example. The result
shows that it is able to improve the system structure of
a supply chain that will be useful for the supply chain
reengineering.
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Introduction

In the modern manufacturing industry, supply chain
management has become a critical issue for most man-
ufacturing organizations to gain their competitive edge
in today’s market. Supply chain is a complex system that
involves many system elements from various functional
areas. Performance of a supply chain heavily depends
on the effectiveness of communication and coordination
among these system elements and functional areas. Due
to the increasing complexity and size of supply chain
in manufacturing industry, it is common that a system
element is related or inter-related with dozens of the
other elements within a supply chain. The effectiveness
of communication decreases as the number of related
elements increases. In addition, a large and complex
supply chain usually makes it difficult to coordinate and
thus degrades its performance. This motivates this study
to develop a systematic approach that helps improve the
system structure of a supply chain. The objectives of this
research are three folds: (1) to identify and quantify the
interactions (i.e., independent, dependent and interde-
pendent relationships) among the system elements in a
supply chain, so that the supply chain system designers
and managers will have a clear view of the entire system;
(2) to decompose the large interdependent group of sys-
tem elements into smaller and manageable sub-groups
that allow the closely related elements to communicate
efficiently and efficiently; and thus (3) to improve the
structure of the supply chain system.
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Related literature review

Supply chain system

Nowadays, more and more companies have become to
realize that the efficiency of their supply chain manage-
ment (SCM) is the key to survive in the competitive
market. Supply chain today is not simply “chains” any
more. With the fierce competition, increasing uncertain-
ties, and market globalization, supply chain becomes a
network with much more complexity than a chain (Srini-
vasan & Moon, 1999).

Although supply chain has gained much more atten-
tion than before, research in some areas of supply chain
is still limited. O’Neil and Iveson (1992) noted that in the
supply chain management literature, analytical models
that incorporate many dimensions of a logistics strategy
are rare. It was also noted that most of analytical models
existing for logistics strategy evaluation include a focus
on only one dimension of the logistics strategy. With the
current development of supply chain and the increasing
complexity in supply chain network, researchers begin
to realize that they need to study the interaction of
more dimensions of supply chain from a more systematic
perspective. Some models with aggregate consideration
were developed. Cohen and Lee (1998), in an analy-
sis of integrated production–distribution systems, cate-
gorized four different modeling approaches using sto-
chastic, deterministic and cost based models. However,
these approaches were more descriptive than analyti-
cal and were not general approaches to be easily used
in other circumstances. Beamon (1998), in a compre-
hensive analysis of various logistic chains, developed a
list of decision variables to demonstrate the complexity
of a general supply chain. Yan, Yu, and Cheng (2003)
proposed a strategic production–distribution model for
supply chain architecture with the consideration of bills
of materials (BOM) and the relationships were formu-
lated as logical constraints in a mixed integer-program-
ming (MIP) model. Of particular interest was the model
proposed by Scott, Mauricio, Farris, and Kirk, (2003) to
integrate the distribution planning functions of supply
chain and to examine the total cost benefits achieved
through the increased global visibility provided by an
integrated system. Experimental results demonstrated
the potential for this integrated paradigm to improve
customer service, save costs, and reduce lead-time var-
iability. Cetinkaya & Bookbinder (2003) indicated that
most studies on supply chain management have taken
an inventory point of view, thus neglecting the issues of
dynamics in logistics and missing important opportuni-
ties for cost savings, as cost is one of the most important
performance measures in supply chain. From a

systematic perspective, the coordination of distribution
planning becomes imperative for cost reduction (Burley,
2002). Several other researchers have also recognized
the need to integrate the logistic systems and developed
theories and tools for integration (Cohen & Lee, 1989;
Cooper, Ellram, Gardner, & Hanks,, 1997a; Cooper,
Lambert, & Pagh, 1997b). The Supply Chain Operations
Reference (SCOR) Model released by Supply Chain
Council (SCC) in Supply Chain Council (1996) has been
widely studied and used in research and industry.
Researchers and practitioners have found the SCOR
Model a good reference that integrates most of the busi-
ness processes of an organization in a cross-functional
framework. SCOR is based on five distinct manage-
ment processes, namely Plan, Source, Produce, Deliver
and Return. These five processes form the top level of
the SCOR model. Each process is further decomposed
into lower levels. Level two is called configuration level
where a company implements its strategy by configura-
tions. Level three is the process elements level to fine-
tune the detailed operations. Level four is the imple-
mentation level that directly deals with the practices
and activities. Recent research and models in supply
chain reviewed above, as Burley (2002) remarked, have
focused on the performance, design and analysis of sup-
ply chain as a whole. Romano (2003) commented that
various literatures on supply chain have emphasized the
importance of coordination and integration mechanisms
to manage logistics processes across supply networks.

The systematic view of supply chain enables research-
ers to explore the weak links or the source of competi-
tiveness of a network. From our literature review, it has
been found that most research in supply chain and distri-
bution systems can be improved by systems analysis, so
that the organizational structure of a supply chain net-
work and the interactions among system elements in the
network can be better understood and thus enhanced.
The computational model by Chandra and Fisher (1994),
which examines the value of coordinating production
and distribution planning, claimed the need for orga-
nizational changes in order to achieve effective coor-
dination. Olsmats, Edghill, and Towill, (1988) utilized
the input–output technique to build a simulation model
to help integrate production and distribution systems.
Stock, Greis, & Kasarda, (2000) augmented the need
for integration by remarking that the emergence of glob-
ally dispersed and strategically aligned organizations has
brought the new attention to how organizations coordi-
nate the flows of information, materials, functions and
products across the supply chains. The authors used a
configuration approach to test whether the globally dis-
persed network organizations that adopted the practice
of enterprise logistics are able to achieve a higher
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Fig. 1 A binary design
structure matrix

Task A B C D E F G H I J K L Task B C A K L J F I E D H G 
 A • ×         B •
 B  •          C × •
 C  × •         A × •
 D    • × × × K × × •
 E     • × × ×  L × × • × ×
 F  × • × J × × × × • ×
 G  × • ×  F × × •
 H × × • × ×  I × × × •
 I   × × • ×   E × • ×
 J  × × × • × D × × •

K × × •  H × × × × •
 L × × × × • G × × •

 (a) Original binary matrix (unpartitioned)   (b) Reordered binary matrix (partitioned) 
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organizational performance. The results indicated that
enterprise logistics is a necessary tool for the coordina-
tion of supply chain operations. Chopra (2003) explored
the possibilities in the design and selection of distribu-
tion network for a supply chain that contains various
products with manufacturer storage, distributor stor-
age, and retailer storage allowing for different types
of delivery options. The results demonstrated that the
integrated paradigm is able to improve efficiency and
reduce lead-time variability. In addition, systems anal-
ysis also helped improve the flexibility and agility for
supply chain network (Tsay, 1999; Chandra, 2001; Das
& Abdel-Malek, 2003; Garavelli, 2003).

The recent Internet development has made it pos-
sible to improve the structure and effectiveness of sup-
ply chain management. Cetinkaya & Bookbinder (2003)
pointed that e-commerce and the associated business-
to-business have changed the way that a supply chain
operates. The fast growth of the web-based technologies
has shown researchers the perspective of changing sup-
ply chain structure by the new technologies. While tech-
nologies provide convenient access to the data through
which we are able to control and monitor our sup-
ply chain network, applying such technologies without
a systematic planning and integrated functionality can
greatly increase the complexity of the flows within the
network. The improper flows of information, materi-
als and functions in supply chain can lead to excess
inventory, increased lead-time, and decreased agility in
responding customer demands.

Design structure matrix (DSM)

Design structure matrix (DSM) is a useful tool that
is suitable for engineers to analyze a complex system
by providing a clear view of the system as well as the
interdependencies between its system elements. DSM is
first introduced by Steward (1981) to analyze the pro-
cess of engineering design. Figure 1 shows an example
of DSM that is a square matrix with n rows and col-
umns, and m non-zero elements, where n is the number

of nodes, tasks or system elements and m is the num-
ber of edges or links of dependencies in the network of
the system. If there is an edge from node i to node j,
the value of element ij is a unity or a marked sign in
the matrix, otherwise the value of the element is zero
or empty. In DSM, information links among tasks are
clearly revealed by the systematic mapping. For exam-
ple, in Fig. 1(a), the non-zero elements in row D repre-
sent that task D will receive information input from task
E, task F and task L before task D is started. Likewise,
the non-zero elements in column A represent that task
A will provide information output to task H and task L
after task A is completed. According to Steward’s parti-
tioning algorithm, the task sequence on the row and on
the column can be rearranged and then turn the origi-
nal DSM into a well-organized manner in which three
basic task types (independent, dependent, and interde-
pendent tasks) are clearly revealed as shown in Fig. 1(b).

There are various research in the past regarding the
systems decomposition and architecture for product
design and development. Alexander (1964) described
the design process by decomposing designs into
minimally coupled groups. Base on the DSM technique,
Steward (1981) and Eppinger, Whitney, Smith, and
Gebala (1990)analyzed parameter-level interactions to
create design parameter groupings that must be solved
iteratively. Kusiak and Wang (1993) focused on the
decomposition of DSM to structure tasks and param-
eters in the detailed design stage. Ulrich and Eppinger
(1995) developed a method for product architecture,
but interactions are considered only after the archi-
tecture is chosen. They defined several types of prod-
uct architecture in terms of how functional elements
are mapped onto physical components and related the
strategic importance of architecture choice to firm
performance. Smith and Eppinger (1997a,b) described
decomposition as a fundamental approach to handling
complexity in engineering design. Kusiak and wang (1993)
used binary interactions to develop physical design lay-
outs. Lovejoy (1992) related design decomposition to
the organizational structure of complex product design



288 J Intell Manuf (2007) 18:285–299

processes. The author noted that an approach to solv-
ing complex problems lies in controlling the interac-
tions between the elements. The author also proposed
that interactions between elements in a design vary in
strengths that relate to the speed of the development
process. McCord and Eppinger (1993) used interactions
between components to structure system teams in a
development project. Chen and Lin (2002, 2003) quan-
tified the task coupling strengths for the interdependent
task group decomposition in a notion to simultaneously
consider various downstream activities throughout the
entire product life cycle. The authors further concluded
that numerical DSM is more appropriate and efficient
than binary DSM at revealing the interrelationships
among system elements. From the research reviewed
above, DSM is good at capturing the interactions or
interrelationships among the system elements and
grouping them according to their coupling strengths.

Pimmler and Eppinger (1994) analyzed the decompo-
sition of product design by understanding the complex
interactions between components of a design, which
helps define the product architecture and organize the
development teams. The authors proposed four types
of interactions among the design tasks, such as spa-
tial, energy, information and material interactions. Mul-
tiple DSMs were constructed based on each of these
interaction types. Systems analysis can be performed
either aggregately by combining different interaction
types of DSMs together or separately on each inter-
action type of DSM, so that the underlying structure
for a complex system will be better understood and
revealed.

As for the purpose of decomposing large size of
numerical coupling DSM, cluster analysis is useful to
help cluster the strongly coupled tasks into the same
group. Cluster analysis has been widely used by many
researchers in clustering similar objects or data into
groups that ensure the objects within a group are similar
to one another (Chu, 1989; Duran & Odell, 1974; Everitt,
1980; Gordon, 1981; Hartigan, 1975; Kusiak, 1990). Chen
and Lin (2003) provided a comprehensive review of clus-
tering methods and proposed an approach to cluster-
ing a large coupling DSM into smaller and manageable
sizes based on numerical coupling strengths. The authors
compared two types of clustering methods (i.e., similar-
ity coefficient methods and sorting-based algorithms)
and concluded that similarity coefficient methods are
more appropriate for clustering the numerical coupling
DSM. The authors also introduced a performance mea-
sure, numerical interaction density (NDd) that measures
the total coupling strength outside the block diagonal of
DSM, to select the best solution from several alterna-
tives after the clustering process.

In summary, the previous research in DSM has
inspired a new way to effectively manage the large-scale
systems such as supply chain. DSM helps identify the in-
terdependencies within the supply chain network. Mul-
tiple dimensions of a given supply chain system can be
characterized by several DSMs with different interac-
tion types. Numerical DSM with quantifiable measures
shows the various degrees of interactions among system
elements in supply chain. Finally clustering technique
helps to decompose a complex supply chain system into
smaller and manageable components or sub-systems.

Methodology

Due to many interactions among system elements,
designers and engineers of a supply chain system often
have troubles with knowing which functional depart-
ments and members are involved in these interactions
and how important these interactions are. What makes
the problem even more difficult is that these interactions
are hidden in different forms. From a system designer’s
perspective, these interactions must be understood
before the structural design or improvement for a supply
chain system can start. From the engineer’s perspective,
knowing the interactions will help understand the job
relationships among a complex supply chain system.

In this paper, a systematic approach using DSM to
capture the complex interactions, understand the under-
lying relationships among the system elements, and
finally improve the supply chain structure is developed.
Figure 2 provides an overview of the research frame-
work. In the framework, a supply chain system is first
decomposed into subsystems and system elements from
which the interactions are studied and documented in
a binary DSM, therefore the underlying structure of a
complex supply chain can be better understood and ana-
lyzed. However the binary DSM assumes that all the
interaction (or coupling) strengths between the related
system elements are either “0” or “1”, which provide
only limited information. The related system elements,
especially in a complex supply chain system, usually
carry various degrees of coupling strengths. Therefore,
the coupling strengths among the related system ele-
ments are quantified in the next. Different interaction
types of DSMs (i.e., information, material and functional
interactions) are each assigned a weight and then are
combined into an aggregated numerical DSM. Cluster-
ing technique is applied to search for a better struc-
ture for the supply chain system, based on the Numeri-
cal Interaction Density (NDd) performance measure, so
the strongly related subsystems or elements in the sup-
ply chain will be clustered into the same group. Results
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Fig. 2 The research
framework

from this framework will be useful for the supply chain
reengineering and improvement because the position of
each system element in the supply chain and its relation-
ships with the other elements are clearly shown.

Step 1: Define system and scope

Supply chain networks are complex systems that often
consist of many enterprises or organizations. Studying
and optimizing the interactions among organizations
will greatly improve the performance of the entire net-
work. Each organization has to handle both the inbound
interactions among different functional departments
within its own small-scaled supply chain system and
the outbound interactions with the other entities in the
entire supply chain network. The organizational struc-
ture of supply chains can be different from one to
another. This paper focuses on the study of the inbound
interactions of a supply chain system using DSM in order
to improve the system’s structure from the organiza-
tional perspective.

Step 2: List subsystems

Subsystems of an organization are always closely related
with the organizational structure. Although there are
different organizational structures, functional organiza-
tion is the most common organizational structure used
in businesses and projects (Badiru & Pulat, 1995). The
structure of functional organization in terms of func-
tional departments can usually be a good starting point
for the list of subsystems, such as Plan, Source, Pro-
duce, Deliver and Return based on the top level of the

SCOR model. In addition to these five functional areas,
systems engineers also have to consider the other impor-
tant resource constraints such as warehouse layout and
personnel-related work. It is noted that the functions
of warehousing are geographically separated from the
other activities and are primarily performed in the ware-
house. A considerable personnel-related work is spent
on taking care of the customer orders. Therefore, the list
of subsystems also includes Warehouse and Order.

Step 3: Decompose subsystems into elements

System elements are components of subsystems. For
example, Sourcing Department has three major tasks
in a business cycle: (1) schedule the arrival of raw mate-
rials; (2) choose suppliers from the available candidates
in terms of price, quality, capacity, service and relation-
ship; and (3) manage the material inventory. Therefore,
the “Sourcing” subsystem can be decomposed into three
key elements (or components): “Delivery Scheduling”,
“Supplier Selection” and “Inventory Management”. To
select a supplier, a list of qualified and available sup-
pliers is made out and the price, quality, capacity and
service of each supplier are evaluated for decision-mak-
ing. Thus “Supplier Selection” can be further decom-
posed into several sub-components in the next lower
level such as “Price Comparison”, “Quality Control”,
“Capacity Evaluation” and “Service Level”, etc. Any
component from a subsystem can also be another sub-
system to its lower level of sub-components. The level
of details in the decomposition is system-dependent and
is determined by the system scope in Step 1.
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Step 4: Study interactions between elements

A supply chain can be viewed as a system that con-
tains different types of input/output flows (i.e., busi-
ness strategies, customer needs, information, materi-
als/parts/products deliveries, functional requirements,
management hierarchies, etc.). The business cycle and
logistics of a supply chain system can be represented by
various flows that link subsystems and elements
together. The system elements of a supply chain interact
with each other to facilitate the flows. For example, the
three system elements “Delivery Scheduling”, “Supplier
Selection” and “Inventory Management” not only work
closely together to meet the functional requirements by
the Sourcing Department, they also interact with the
other elements from different departments. “Supplier
Selection” has to work with “Delivery Scheduling” and
“Inventory Management” in the same “Sourcing” sub-
system in order to obtain the required/scheduled order
release for the arrival times of incoming materials and to
ensure the required materials are available. At the same
time,
“Supplier Selection” also needs to interact with the
element of “Business Strategy” from the “Planning”
subsystem to help determine the required quality and
service level for choosing a better pricing strategy. Three
important types of interactions/flows among system ele-
ments in a supply chain are information, material and
functional interactions. Information interactions spec-
ify customer needs, pricing information, system status,
and/or other information that is required to maintain the
functionality of a supply chain element. Material inter-
actions are the physical flows and processes from raw
materials to finished parts/products. Functional inter-
actions are the communication and coordination flows
among different functional departments (e.g., to
determine or change task due date, supplier, quality
requirements, product design, material usage or other
specifications). Functional interactions can be as general
as setting a strategic goal for business or as detailed as
making a slight change for product design. These inter-
actions can be identified by interviewing managers and
experts from different functional areas and task groups.
In this step, the purpose is to identify the interactions,
such as what elements are related to each other and what
type of interactions it is between the related elements.

Step 5: Document interactions by DSM

The DSM technique is used here to document the inter-
actions among system elements. Each system element is
represented by one row and one corresponding column
in DSM. An entry of “1” or “x” in the matrix at row i and

Fig. 3 Documenting interactions

column j means that element i requires an input from
element j, while no entry means the two elements are
not related to each other. The interactions of different
types are recorded by three binary DSMs in terms of
information, material and functional interactions. Fig-
ure 3 shows a simple DSM example for documenting
the information interactions among three system ele-
ments under the subsystem “Source”. The two entries
“1” in row X3 represent the system element X3 needs
information inputs from the elements X1 and X2 before
X3 can start. Similarly, the two entries “1” in column X1
represent the system element X1 has to provide infor-
mation outputs to the elements X2 and X3 after X1 is
completed.

Step 6: Determine interaction strengths

In this step, the strengths of interactions are studied in
terms of frequency, effect and magnitude of dependen-
cies. Each interaction is assigned a strength ranging from
0.0 to 1.0 by managers and experts based on their expe-
rience and expertise of the related elements. The scales
shown in Fig. 4 help managers and experts to determine
the ratings. A “complete” interaction receives a score
of 1.0 and a 0.0 score is given if there is no interaction
between the elements. A strong interaction is considered
important or critical between the two-related elements,
while a weak interaction may be considered optional.
When all the interaction strengths are determined for
each of the three interaction types (i.e., information,
material and functional interactions), the numerical val-
ues of interaction strengths replace the marks (i.e., “1”
or “x”) in each of the three binary DSMs developed in
Step 5 accordingly.

Step 7: Assign weights

A weighted average DSMi,j combining the three interac-
tion types of DSMs is calculated by the equation below:

DSMi,j = Wa ∗ Ai,j + Wb ∗ Bi,j + Wc ∗ Ci,j (1)

Where:
Ai,j, Bi,j, and Ci,j is the three numerical DSMs rep-

resenting each of the following three interaction types
respectively: information, material and function.
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Fig. 4 Scales for determining
the interaction strength

Wa, Wb, and Wc is weights for information, material
and functional interactions respectively.

Wa + Wb + Wc = 1.0.

The weights will be assigned by a group of systems
managers and designers after a heavy discussion and
brainstorming. The weights to be assigned are depen-
dent on each organization’s focus area in the supply
chain system. For example, in a manufacturing organi-
zation, the group may decide to assign a higher weight to
the material interaction, while information interaction
may be more important to a distribution organization.
This step results in an integrated numerical DSM repre-
senting the aggregated interactions from three interac-
tion types.

Step 8: Cluster DSM

Now that DSM has recorded the relationships among
system elements, partitioning algorithm proposed by
Steward (1981) can be performed to identify the
interdependent groups of system elements. Research
has concluded that the effectiveness of communication
depends on the number of communication links among
the related tasks or system elements. Therefore an effec-
tive and efficient communication will be difficult to
achieve as the size of the interdependent group increases
(Johnson & Johnson, 1991; Clark & Wheelwright, 1992;
Carmel, 1994; Chung & Guinan, 1994; Lanigan, 1994).
Chen and Lin (2002, 2003) realized that the large inter-
dependent task groups usually make it difficult for task
coordination and team organization and thus delay the
project completion. The authors developed a model to
decompose the large interdependent task group into
smaller and manageable sub-groups based on numer-
ical DSM and clustering technique. This decomposition
model with the following two procedures will be used in
this step (Chen & Lin, 2002, 2003):

(1) Symmetrical task interaction matrix: Since DSM is
a matrix that only offers the information of task
dependency for their ‘from-to’ descriptions, we
need to further understand the task interaction by
transforming numerical DSM into a symmetrical
task interaction matrix for clustering purposes in
the next step. If we assume that the input and out-
put connections carry the same weight, the amount
of interaction can be calculated by averaging each

pair of symmetrical elements in a numerical DSM,
because the interaction of any two tasks contain
both information input and output connections.
This symmetrical task interaction matrix,
Sym-DSMi,j, is expressed mathematically in the
following for each pair of row i and column j:

SymDSMi,j = (NumericalDSMi,j+NumericalDSMj,i)/2

(2)

(2) Decomposition of large interdependent group: A
large interdependent group is decomposed into
smaller sub-groups using clustering technique. The
key is to calculate the distance measures for the
matrix. Quantified interaction strengths in the sym-
metrical matrix, SymDSMi,j, are used to calculate
the distance measures using Squared Euclidean
Distance, which is able to handle both binary and
numerical measures and is appropriate for numer-
ical DSM. When clustering the elements, any two
elements with the lowest distance measure are first
grouped together before those elements with
higher distance measures. Using a robust approach,
the average-linkage method, clusters are formed
by evaluating the interactions between all elements
rather than only each pair of elements (i.e., the
case with the single-linkage method). This method
is robust to outliers, hence small changes of the
coupling values in the matrix do not affect the clus-
tering results.

Step 9: Evaluate cluster performance by Numerical
Interaction Density (NDd)

For an n × n matrix, there are n-1 possible clustering
results. To select the best solution from all possible
clustering results, we need a performance measure to
evaluate the clustering performance from each result
and determine the final groups. Chen and Lin (2003)
developed a performance measure, Numerical Inter-
action Density (NDd), to help select the best cluster-
ing result. NDd, measuring the numerical interaction
strengths outside the block diagonal of the clustered
matrix, is formulated as follows:

NDd = Ne/Outer − Cells (3)

Where, Ne is the total coupling strengths outside the
block diagonal of the clustered matrix.
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Fig. 5 A simple example for the NDd calculation

Outer-Cells is total number of cells outside the block
diagonal of the clustered matrix.

For example, a clustered matrix in Fig. 5 shows that ele-
ments X1 and X2 are clustered in the same group while
elements X3 and X4 are in another group. The value
of Ne is calculated by (0.1 + 0.8 + 0.5 + 0.5) = 1.9 and
the number of Outer-Cells is 8, so that NDd is equal to
(1.9/8) = 0.2375.

Step 10: Analyze and improve the supply chain system

DSM is easy to understand and can represent the
important characteristics of a supply chain system both
qualitatively and quantitatively. Steps 1–7 study and doc-
ument three different types of interactions of a
supply chain system, and then transform and combine
the three binary DSMs into an integrated numerical
DSM. Steps 8 and 9 cluster the large interdependent
group into smaller and manageable sub-groups where
the system elements with strong interaction strengths
can work closely together.

The quantitative study of this paper can improve a
supply chain system in several ways. First, the restruc-
tured DSM after clustering (Steps 8 and 9) provides a
better and efficient scheme for organizing the functional
departments and the supply chain elements. The system
elements within the same cluster have stronger inter-
actions and require much attention on communication
and coordination among each other, so the supply chain
designers may deploy these strongly related elements in
the same department or as close as possible. In addition,
since DSM is easy to understand and suitable to express
the complex interactions among system elements, the
use of DSM will help provide managers and engineers
not only with a better understanding of the system inter-
actions, but also with a clear view for the entire supply
chain structure.

An illustrative example

This section shows the effectiveness of our research
framework by an illustrative example.

System scope, sub-systems, and system elements

This section covers steps 1, 2 and 3 in the framework.
The example uses a general supply chain model of a
manufacturing organization with its own warehouse and
distribution system. Considering the business cycle and
the functional organization structure, the supply chain
system is divided into 7 subsystems: Plan, Source, Pro-
duce, Warehouse, Deliver, Order and Return.

Planning is to provide a macro-view of the organi-
zation and to establish long-term and mid-term strat-
egies and guidelines. Sourcing deals with acquisition,
transportation and storage for raw materials. Produc-
tion consists of design, manufacturing, subassembly and
work-in-process management. Warehousing considers
inventory control, procurement, carrier selection, capac-
ity and operations. Delivery includes channel selection,
scheduling and routing. Order involves quotes, order
processing, back order handling and invoice. Returning
is responsible for receiving and verifying the defects,
and then reworking or disposal of the defects. Although
any system elements under a subsystem can be further
decomposed into sub-elements (or sub-components),
this example focuses on one level of system elements
instead of multiple levels for the illustrative purpose.
There are 22 system elements (see Fig. 6) under 7
subsystems in this example.

Determine interactions and interaction strengths

Steps 4, 5 and 6 in the research framework are car-
ried out by interviewing managers and experts from
each specific area to identify the interactions between
elements and to determine the interaction strengths
based on the scales developed in Step 6 of the frame-
work. Managers from different functional departments
(i.e., planning, sourcing, manufacturing, warehousing,
delivering, order and return management, etc.) have
experience and knowledge about their functional area.
Their jobs mainly involve in coordinating tasks within
their department and cooperating with the other depart-
ments. They know how the flows of information, mate-
rial and functional work in their functional department
and how they interact with the others. The experts are
the system designers and engineers. They understand the
entire big picture of the supply chain system. Their opin-
ions serve as the direction or “future state” of the supply
chain improvement. The outcomes are documented by
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Fig. 6 Documenting the
three types of interactions
with numerical DSMs
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DSM with numerical interaction strengths. For example,
Fig. 6(a) shows that the element “Source: Supplier Selec-
tion (X5)” requires “complete” information input from
the element “Source: Delivery Scheduling (X4)” with a
1.0 interaction strength, while the element “Warehouse:
Procurement (X12)” only needs “very week” informa-
tion input from the element “Warehouse: Capacity &
Operation (X14)” with a 0.1 interaction strength. Fol-
lowing the same way, the interactions among system
elements in the forms of information, material and func-
tion are recorded by three DSMs, respectively. Figure 6
shows the results of these three numerical DSMs after
each type of interactions and the corresponding inter-
action strengths are identified and determined by the
managers and experts.

Assign weights

In this step, the three numerical DSMs from Fig. 6 are
combined into an aggregated DSM by assigning a weight
to each interaction type. For example, the DSM with
information interactions is given a 0.5 weight because
the managers and experts consider the information flows
are to be more important than the other two interac-
tion types in the supply chain system. The other two
interaction types, material and functional interactions,
are assigned weights of 0.3 and 0.2 respectively in this
example. With the weights assigned, the value of each
row i and column j in the aggregated numerical DSM is
calculated by Eq. (1):

AggregateDSMi, j = InformationDSMi, j ∗ 0.5

+Materiali, j ∗ 0.3

+FunctionDSMi, j ∗ 0.2

For example, the value of row X1 and column X2 in
the aggregated DSM is calculated by (0.4 × 0.5 + 0.0 ×
0.3 + 0.0 × 0.2) = 0.2. Figure 7 shows the aggregated
numerical DSM.

Partition, cluster system elements and evaluate

According to the partitioning algorithm (Steward, 1981),
system elements in the aggregated numerical DSM are
rearranged to a partitioned DSM shown in Fig. 8 where
the independent, dependent, and interdependent ele-
ments are revealed. Handling independent elements is
easy because the elements can be completed in any order
without affecting each other. Dealing with dependent
elements is also straightforward since they can be per-
formed sequentially. The most challenge to managers
and engineers arises from the interdependent elements
due to iterations.

The partitioned DSM results in two interdependent
groups shown by the shaded areas in Fig. 8. One of the
groups contains 15 elements, which is large and complex
to handle. Further decomposition of this large interde-
pendent group into smaller and manageable sizes is rec-
ommended. The decomposition follows two procedures
(Chen & Lin, 2002, 2003):

1) Symmetrical task interaction matrix: Figure 9 shows
the result of the first procedure that converts the 15-
element large interdependent group of numerical
DSM into a “symmetrical matrix” based on Eq. (2).
For example, the value in SymDSM2,3 is equal to
(NumericalDSM2,3+NumericalDSM3,2)/2 = (0.5+
0.8)/2 = 0.65.

2) Decomposition of large interdependent group:
Squared Euclidean Distance and the average-
linkage method are used to help decompose the
15-element large interdependent group into smaller
ones. The average-linkage method clusters the ele-
ments hierarchically, beginning with each element
in an individual cluster and continues to join clusters
until all 15 elements have been joined into one clus-
ter. Figure 10 shows the “Dendrogram” containing
14 possible clustering results generated by Minitab.
The higher the similarity measure (or the lower the
distance measure) between two elements, the more
likely they should be put in the same cluster.

Since there are 14 possible clustering results, to select
the best one, the NDd performance measure using
Eq. (3) helps evaluate the clustering performance from
each of the 14 results. For example, Fig. 11 shows one
possible clustering result (NDd = 0.0708) with 2 clus-
ters where three elements X4, X5 and X6 are put in the
first cluster and the rest of 12 elements are in the second
cluster. Consequently, the 15-element interdependent
group is decomposed into three smaller groups shown
in Fig. 12 that yields the lowest NDd value, 0.0681.

Analyze the results and improve the supply chain
system

According to our research framework, the original sup-
ply chain system in the example is documented by differ-
ent interaction types of DSMs (Fig. 6), which are then
combined into an aggregated numerical DSM (Fig. 7).
The aggregated numerical DSM is partitioned to reveal
the interdependent groups in the matrix. Finally this sup-
ply chain system example is restructured and improved
by decomposing the large interdependent group into
smaller and manageable sub-groups as shown in Fig. 13.
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Fig. 7 The aggregated numerical DSM

Fig. 8 The aggregated numerical DSM after Partitioning

Fig. 9 The symmetrical DSM for the 15-element large interdependent group
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Fig. 10 Dendrogram of the
clustering results by Minitab

Fig. 11 One possible clustering result with 2 clusters

Fig. 12 The best clustering result with the lowest NDd value

Numerical DSM reveals and records the interactions
and their strengths for the related system elements that
can be helpful for the supply chain system in several
perspectives:

(1) DSM is easy to learn and understand. Managers
and engineers can easily detect the related and/or
interdependent elements for a supply chain

system by looking at the DSM matrix. Therefore
the system can be better understood and the system
improvement can focus on those closely related
elements.

(2) For a supply chain business cycle, DSM is useful to
identify the flows or sequences of the system ele-
ments. As shown in Fig. 13, the elements near the
bottom of DSM will need inputs from those related
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Fig. 13 The restructured numerical DSM

elements above them in the matrix. Therefore the
upper elements in DSM should be given higher pri-
ority for the business cycle in order to provide the
required inputs for the lower elements.

(3) For those strongly interdependent elements, the
decision makers may like to locate these elements
into the same functional department or to place
them closer by changing the physical layout of the
supply chain. The restructured DSM in Fig. 13 sug-
gests a better organizational and layout structure
for the supply chain system in the example. For
example, Fig. 13 shows that the element “Deliver:
Distribution Channel (X15)” relates to more ele-
ments under the “Warehouse” sub-system than the
“Deliver” sub-system. Although the element X15
originally is a system element belonging to the
“Delivery Department”, the managers may wish
to restructure their supply chain system by switch-
ing X15 to “Warehousing Department” for better
communication and coordination.

(4) Research has indicated that team size should
have limit due to effective and efficient commu-
nication among team members Johnson and John-
son (1991); Clark and Wheelwright (1992); Carmel
(1994); Chung and Guinan (1994); Lanigan (1994).
Successful supply chain implementation and
integration rely on effective and efficient commu-
nication. In our research framework, any large
interdependent groups are further decomposed
into smaller and manageable sub-groups so that the
personnel will be able to work closely together for
the strongly related system elements in the same
sub-group.

Conclusions

From our literature reviews, it is clear that a systematic
and analytical tool will be needed to integrate the mul-
tiple dimensions of supply chain, and to better under-
stand, improve and model the structure of supply chain.
Therefore the goal of reducing complexity, improving
flexibility and agility, and saving cost for supply chain
management will be achieved. It is also desirable that
such systematic and analytical tool is easy to understand
and is able to represent the behavior and characteristics
of a supply chain system without neglecting the inter-
relationships among system elements. The major con-
tribution of this study is that our systematic approach
using DSM is able to analyze three important types of
interactions in supply chain (i.e., information, material
and functional interactions) with quantifiable measures
and to understand the underlying structure among the
system elements for supply chain improvement.

This paper focuses on the interactions among the sup-
ply chain system elements. The increased complexity of
modern supply chain systems makes system
managers and designers more difficult to understand the
system interactions and hard to obtain a clear picture
for the entire system structure. To solve the problem,
this study develops a systematic approach to identify
and quantify the system interactions, and to decompose
the large interdependent group of system elements into
smaller and manageable sub-groups, therefore the man-
ufacturing system managers and designers will be able
to improve their supply chain systems intelligently and
objectively where not only the flows or sequences of sys-
tem elements are clearly identified, but also the strongly
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related elements are able to work closely together within
each sub-group. This research has also shown that design
structure matrix (DSM) is able to capture the com-
plex interactions and their quantifiable strengths in a
straightforward manner. Using the multi-layer DSMs to
document different interaction types (i.e., information,
material, and functional interactions) and then combin-
ing them into an aggregated DSM allow the system
managers to integrate the entire supply chain system
with different forms of interactions. Moreover, based on
partitioning algorithm (Steward, 1981) and the decom-
position model (Chen & Lin, 2002, 2003), large inter-
dependent groups of system elements in a DSM are
decomposed into smaller sub-groups where the related
elements hold stronger interactions among each other.
The outcomes help the system managers and designers
to restructure or reengineer the entire supply chain sys-
tem since the position of each system element in the sup-
ply chain and its relationships with the other elements
are clearly shown.

In this research, the outcomes of supply chain
improvement are evaluated qualitatively. Our future
research extension will focus on developing a computer
simulation model to quantitatively evaluate the supply
chain performance (i.e., time and cost) between the
original structure versus the new structure suggested
by the research framework in this paper. Some other
issues in supply chain (e.g., inventory policies and trans-
portation) will be considered as well. Furthermore, the
current DSM approach is able to capture the system
“interactions” but no consideration for the supply chain
system “constraints”, which are also important when
carrying out the supply chain reengineering. Another
future research can focus on improving and extending
the DSM method that allows DSM to handle the system
“constraints”.
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