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The problem of facility layout design is discussed, taking into account the uncertainty of

production scenarios and the finite production capacity of the departments. The uncertain
production demand is modelled by a fuzzy number, and constrained arithmetic operators are
used in order to calculate the fuzzy material handling costs. By using a ranking criterion, the
layout that represents the minimum fuzzy cost is selected. A flexible bay structure is adopted

as a physical model of the system while an effective genetic algorithm is implemented to search
for a near optimal solution in a fuzzy contest. Constraints on the aspect ratio of the
departments are taken into account using a penalty function introduced into the fitness

function of the genetic algorithm. The efficiency of the genetic algorithm proposed is tested in
a deterministic context and the possibility of applying the fuzzy approach to a medium-large
layout problem is explored.
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1. Introduction

The facility layout problem involves the location
of all manufacturing resources inside a working
area. The ideal approach should be to formulate a
close to reality model and to implement an algo-
rithm that permits us to obtain an optimal solution
so as to maximize the system’s efficiency in the
long term (the economic lifetime of the facility
layout). Such an approach is impossible because of
the complexity of the problem and the extensive
literature in this field can be classified according to
both the aspects of the problem analysed and the
resolution techniques adopted. The most common
approach to the problem considers, as a measure
of performance, the total cost of the material flow
per unit time period and, as a physical model a
planar region (workshop) which needs to be

subdivided into departments assigned by number
and area (block layout). In this context, the design
of the material handling system and the placement
of the machine tools within the departments are
required for a subsequent phase of the design.

The cost of material movement is assumed to be
an increasing function of the number and length of
product moves. The choice of this cost as the
objective function is justified considering its large
incidence on the total operative cost. Moreover, a
reduction of material movement involves a
reduction in space required for aisles, a lower WIP
and throughput time, and less congestion of the
system.

If we don’t explicitly consider the material
handling system and the position of work centres
in the model, we will end up with a solution which,
even if optimal according to the objective function
formulated, is not practical. Therefore, it is very
important to consider at least some of the*Author for correspondence.
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constraints deriving from the hypothesized mate-
rial handling system in the block layout model and
from the machine tools that must be placed within
the departments. Otherwise, the block layout must
be extensively modified in the next step of detailed
design, nullifying the positive nature of the result
obtained. The bay structure adopted in this paper
as a physical model for the system, allows us to
take the previous aspects into account.

The high computational difficulty related to the
layout problem is evident even in the simplest
model proposed in literature: departments of equal
area and square shape. This model can be for-
mulated as a quadratic assignment problem, but
the problem is NP-complete and cannot be solved
optimally for more than 15–20 departments. Dif-
ferent heuristic approaches have been proposed in
Operation Research literature with the aim of
finding good solutions to the problem.

From amongst the models that consider unequal
area departments, the first significant formulation
was proposed by Armour and Buffa (1963). This
approach was implemented into a commercial
software (CRAFT), which is still employed. An
improvement in respect to CRAFT was the
MULTIPLE algorithm (Bozer et al., 1994). Both
CRAFT and MULTIPLE are steepest descendent
algorithms, and so they converge on the first local
minimum encountered in the path. Moreover they
are largely affected by the initial solution
hypothesized and the shape of the departments of
the block layout obtained is often impractical.

An approach based on a mixed-integer pro-
gramming model was proposed by Montreuil
(1990). The author considered unequal area
departments of a rectangular shape but the algo-
rithm can solve only problems with six or less
departments.

Other approaches, as opposed to the minimiza-
tion of a flow-distance based cost function, con-
sider the maximization of the adjacencies between
departments, taking into account inter-depart-
mental closeness ratings. Among these approaches,
one, based on the graph theory, was developed
initially by Carrie et al. (1978); the cost of material
flow is not considered explicitly and the objective is
to maximise the adjacencies between those
departments which have a material interflow. A
review of graph theoretic heuristics is reported in
Hassan and Hogg (1987).

In order to overcome one of the problems of the
heuristic techniques, i.e. convergence to a first
local optimum (the facility layout problem gener-
ally exhibits many local minima), approaches
based on simulated annealing (Meller and Bozer,
1996) and genetic algorithms have recently been
proposed (Suresh et al., 1995; Tate and Smith,
1995; Kochar et al., 1998). In this paper a genetic
algorithm, which can be considered a further
development of the one proposed by Tate and
Smith (1995), is implemented. Its performance and
ability to take into account some constraints on
the placement and on the shape of the departments
will be shown in the next paragraphs.

A review of the different approaches to the
layout problem in a deterministic scenario can be
found in Meller and Gau (1996).

Another aspect that should be taken into
account in layout design is the variability and
uncertainty of production scenarios over time. In
fact, it is not possible to foresee neither the number
and the typology of the parts to be processed
exactly, nor, as a consequence, the material flows
between departments. As a consequence, layout
flexibility must be taken into account, that is to
say, the possibility of adapting the system to the
changes of scenario by means of layout rear-
rangement or the intrinsic ability of the system to
maintain good performances without any external
action. In the literature on the subject these two
aspects of flexibility have generally been consid-
ered separately. The first formulation of the
problem (dynamic plant layout problem) considers
successive time periods with different scenarios,
generally supposed to be certain. The best solution
is to minimize the total cost of material flow and of
the successive reconfigurations of the layout, in the
overall time horizon (Rosenblatt, 1986; Timothy,
1993; Afentakis et al., 1990). The second formu-
lation considers a single time period but the
required production is supposed to be uncertain.
In this case the objective is called robust layout,
which is a layout that has a good level of perfor-
mance for a wide variety of demand scenarios,
even though it generally will not be optimal under
any specific scenario (Rosenblatt and Lee, 1987;
Kouvelis et al., 1992).

Some authors approached the robust layout
problem using a stochastic model. Rosenblatt and
Lee (1987), for example, consider a scenario where

304 Enea et al.



negotiation contracts exist between the producer
and the customers, but order levels are not clearly
defined. In this situation, material flows between
the departments are uncertain, but an analytical
approach involving probability distributions of the
stochastic variables would be very complex (Shore
and Tompkins, 1980). In an interesting, robust
approach (Rosenblatt and Lee, 1987), the scenarios
corresponding to different levels of market demand
are considered: highest (H), most likely (M) and
lowest (L). The aforementioned authors measure
the robustness of a solution by the number of times
that it lies within a pre-specified distance from the
optimal solution for each scenario. This approach
does not take into account the departments’ pro-
duction capacity limitation. To take into account
this aspect of the problem, the combinations of
product demands that overcome the production
constraints must be considered unfeasible.

A different methodology to approach the
uncertainty in the layout problem is the fuzzy
theory, which can be formulated in terms of nested
bodies of evidence or in terms of fuzzy sets. This
approach has been investigated by several
researchers. A fuzzy linguistic approach (Evans
et al., 1987), based on fuzzy relations, was used in
order to specify the location of each department in
a manually generated layout and a fuzzy ranking
method is proposed to rank the different solutions.

The problem was approached using fuzzy
implication and fuzzy consistency (Grobelny,
1987). A grade of satisfaction was defined as an
optimality criterion and the aggregation of
experts’ assessments was studied.

The Analytical Hierarchy Process (AHP) was
applied (Dweiri and Meier, 1996) with the aim of
assigning a factor of importance and a decision-
making fuzzy procedure to generate the activity
relation chart. They also modified the commercially
available package CORELAP so that it could
handle the relation chart and generate the layout.

In the present paper a model that considers
fuzzy flows between limited production capacity
departments is resolved using a genetic algorithm.

2. The adopted model

The objective function expresses the total material
handling cost to be minimised:

cost ¼
X

i

X

j

fij � cij
� �

dij ð1Þ

where fij is the material flow between the depart-
ments i and j, cij is the unit cost (the cost to move
one unit load one distance from department i to
department j) and dij is the distance between the
centres of departments using a pre-specified met-
ric.

The physical model adopted is called a flexible
bay structure (Tate and Smith, 1995). The layout is
represented by vertical bays of varying width, each
containing one or more rectangular departments.
The layout obtained employing this physical
scheme is easy to transform into a detailed one.
The departments have rectangular form and, as
will be shown later, the genetic approach employed
allows us to impose constraints on the aspect ratio
of the departments in order to simplify the suc-
cessive placement of the machines in each depart-
ment. Moreover, the bay structure lets us
hypothesize a handling system which operates
around a perimeter of the bays where the input/
output stations are placed. The problem is to
identify the number of bays and the sequence of
the departments within each of them, which min-
imize material movement costs and respect the
aspect ratio constraints.

3. Genetic algorithms with deterministic flows

3.1. Introduction

Recently genetic algorithms (GA) have been used
with success on many NP-hard combinatorial
problems. GAs are characterized by a set (popu-
lation) of candidate solutions, a breeding mecha-
nism to create new solutions (children) by
recombination (crossover) of existing solutions
(parents) and a perturbation method (mutation) to
avoid a too rapid convergence with a local opti-
mum. Tate and Smith (1995) developed a genetic
algorithm with an adaptive penalty function
applied to the shape-constrained unequal-area
layout problem modelled by the flexible-bay
structure.

In this paper a genetic algorithm employing the
concepts of evolutionary hybrid algorithms is
presented. Evolutionary Hybrid Algorithms
(EHA) are based on three general principles:
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improvement of the evolutionary process through
the dynamic modification of the control parame-
ters, utilization of heuristic operators to improve
the characteristics of the population and integra-
tion between traditional search operators and
standard genetic operators. EHAs modify the
control parameters during the evolution process
according to specific logical conditions, remove the
clones to maintain differentiation of the popula-
tion and employ search operators. Thus they find
local optima which are better than those found by
traditional genetic operators.

3.2. Genetic encoding

The encoding process utilizes two strings (chro-
mosomes) of integers: the first chromosome is a
permutation of the departments read from top left
to bottom right, and the second chromosome
(breakpoints identifies the number of the bays and
the number of the departments contained, as
shown in Fig. 1.

Given the chromosomes, knowing the area Ai of
each department and the fixed dimensions H and
W of the workshop, it is easy to calculate hi and wi,
respectively height and width of the department i,
and its centre (xi, yi).

3.3. Genetic operators

In the following the steps of the proposed algo-
rithm are briefly described. A flow-chart of it is
shown in Fig. 2.

3.3.1. Initialisation

The population consists of 20 elements that, dur-
ing the initial phase, are generated randomly. The

individuals in the population are decoded and
evaluated according to some predefined perfor-
mance criterion (fitness).

3.3.2. Evaluation

In order to minimize material movement costs, we
must convert the cost value into a fitness value, so
that the best individuals have the greatest fitness
value. This conversion can be easily obtained by
setting the fitness function as equal to the inverse
of the material movement cost.

Depending on the location of the bay divisions,
the resulting bay structure may create long, nar-
row departments. To avoid this situation a con-
straint on the departments’ shape must be
introduced. Each department j is characterised by
its aspect ratio defined as:

cj ¼
max hj;wj

� �

min hj;wj

� �

and a parameter ccr sets the admissible upper
boundaries of the aspect ratio. For the generic
solution i, let ni be the number of departments with
aspect ratio cj>ccr. By taking this constraint into
account in the optimisation process, the adaptive
penalty function is adopted (Tate and Smith,
1995):

penaltyðiÞ ¼ nki � ðcostfeas � costminÞ ð2Þ

where

• costfeas is the value of the objective function
for the best feasible solution (ni=0) in the
current population;

• costmin is the value of the objective function
for the best solution in the current popula-
tion;

• k is a severity parameter.

Permutation: (3, 5, 2, 6, 1, 4)
Breakpoints: (2, 3) 

4

1

2 6

5

3

Fig. 1. Flexible-bay structure.
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The fitness function will be:

FðiÞ ¼ 1

costðiÞ þ penaltyðiÞ½ �

¼ 1

costðiÞ þ nki � ðcostfeas � costminÞ
� � ð3Þ

This approach allows initially infeasible solu-
tions (ni>0) but, as the search goes on, penaliza-
tion will increase. The values of costfeas and costmin

will be modified during the evolutionary process
and the penalty function will guide the genetic
search to the feasible region.

Inizialization

Search
applied to entire population

Crossover

Search

I     U (0,1)
I < = pm

I ∝ U (0,1)
I < = ps

Mutation new best individual in the
population ?

new best individual in the
population ?

Search
applied to new best individual

Search
applied to new best individual

N = Nis

Population control
number of clones

> D max?

Mutation
applied to clones in excess

Exit test

End

Search
applied to mutated

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

∝

Fig. 2. Flow-chart of the genetic algorithm.
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3.3.3. Crossover

The crossover operator is applied to each iteration
and consists of the following four steps.

1. Two parents G1 and G2 are selected from the
population with a probability proportional
to their relative fitness.

2. A binary string, with a length equal to the
permutation chromosome, is randomly gen-
erated.

3. The children F1 and F2 are constructed by
copying the genes of a parent G1 in a child
F1, when the corresponding value of the
binary string is equal to 1. To complete F1,
and avoiding duplication of genes, i.e. the
wrong coding, the lacking genes are intro-
duced according to their sequence in G2.
Analogously for F2.

4. The breakpoints chromosome of F1 is that of
G1 or G2, chosen at random. Analogously
for the other child F2.

Then the fitness of the four elements is evaluated
and the best two will enter the population. Figure
3 shows such an operator applied to an example
with 12 departments.

3.3.4. Mutation

For each generation, the mutation operator is
applied, with probability pm, to a randomly
selected element of the population. The value of pm
increases within an input fixed range (pM1)pM2) if
there is no improvement in the best solution after
Mit iterations. The mutation consists of three
separate operators, each one randomly activated
with a fixed probability. The first operator acts on
the permutation chromosome: it swaps couples of
randomly selected genes. The number of couples is
the input parameter ncouple. The two others act on

the breakpoints chromosome. The second deletes
or inserts a gene (randomly selected) into the
breakpoint while the last increases or decreases a
unit of a gene (randomly selected).

3.3.5. Population control

This operator searches for clones in the population
and, if the number of clones exceeds a fixed value
Dmax, the mutation operator will be applied to
the excess clones.

3.3.6. Search

The search operator is a heuristic developed to
explore local optimum points. It acts only on the
permutation chromosome, swapping a gene with
all the others and evaluating the resulting fitness.
The best element found will enter the population.
The search operator is applied:

– to the entire population after the initialisation
phase;

– after the crossover and the mutation, only to the
new best element in the population, if generated;

– to the entire population every Nis iterations;
– to the mutated clones, if generated, with a

probability ps, in the population control phase.

3.3.7. Updating the fitness

Each time a new element is introduced in the
population, the fitness of all the individuals must
be updated.

3.3.8. Exit test

The end of the evolution process is determined by
a double logic condition: the algorithm ends when
the iterations counter is equal to nitmax or to nit.

G1 5 10 11 2 4 1 9 8 3 7 12 6 2 6 8
G2 9 5 10 1 6 7 4 12 11 8 3 2 1 2 5 9

Binary string 1 1 1 0 1 1 0 0 1 0 0 1
F1 5 10 11 9 4 1 7 12 3 8 2 6 1 2 5 9
F2 9 5 10 4 6 7 1 8 11 3 12 2 1 2 5 9

Fig. 3. Crossover order based operator; generation of children F1 and F2 from parents G1 and G2.
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The value of nitmax is constant while the initial
value of nit is lower than nitmax and is modified
during the process to avoid early convergence.
When the algorithm finds a new better solution, nit
is increased to nit+Dit.

3.4. Experimental tests

The algorithm was tested against the classical
problem of Armour and Buffa (20 departments),
which is the most commonly benchmarking
problem used in literature.

The values of the control parameters previously
described are reported in table 1. They are the
same employed by Tate and Smith (1995) for the
common parameters. The best results of 10 runs
for each value of ccr (as in Tate and Smith) are
shown in Table 2.

The comparison between our results and those
obtained by Tate and Smith, shows the effective-
ness of the algorithm proposed.

4. A fuzzy approach to the layout problem.

In this paper the uncertainty associated with each
product demand is represented by fuzzy numbers.
Consequently the flow between the departments Fij

is a fuzzy number that could be derived by sum-
ming all the fuzzy requests (expressed in unit
loads) of the products that are transferred from
department i to department j. However, a limited

production capacity of the departments restricts
the possible scenarios only to the ones that respect
such constraints. This aspect of the problem in a
fuzzy layout model can be approached by ‘‘fuzzy
arithmetic with requisite constraints’’.

In particular, triangular fuzzy numbers are
considered. The membership function of a trian-
gular fuzzy number A is A(x):R fi (0,1]:

AðxÞ ¼
ðx� lÞ=ðm� lÞ when x 2 ½l;m�
ðu� xÞ=ðu�mÞ when x 2 ½m; u�
0 otherwise

(

Let A=(l,m,u) be a shorthand symbol representing
this special form.

4.1. Fuzzy arithmetic with requisite constraints

Fuzzy arithmetic is based either on the a-cut rep-
resentation, in terms of arithmetic operations on
closed intervals of real numbers, or on the exten-
sion principle (Klir, 1995). The results obtained by
the mere application of these principles are some-
times meaningless. Traditional mathematic oper-
ators applied to fuzzy numbers, in fact, do not take
into account the meaning of the operands and the
context the operators are referred to. To overcome
this inconsistency, a ‘‘fuzzy arithmetic with requi-
site constraints theory’’ was formulated (Klir,
1997).

Employing the a-cut representation, the four
basic arithmetic operators for fuzzy numbers are
defined for all a 2 (0,1] by:

a A� Bð Þ ¼ a� bj a; bh i 2 ðaA�a BÞf g ð4Þ

Table 2. Results for Armour and Buffa test problem

ccr Best result GA

Tate and Smith

Best result

EHA

Improvement

(%)

1000 1638.5 1638.5 0.00

50 3009.5 3009.5 0.00
25 3635.9 3535.1 2.77
15 4296.1 4140.5 3.62

10 4633.3 4440.7 4.16
7 5255 4793.5 8.78
5 5524.7 5397.6 4.11

4 5743.1 5370.9 6.48
3 5832.6 5594.3 4.09
2 6171.1 6023.2 2.40

1.75 7205.4 6453.1 10.44
1.70667 6662.9 6029.3 4.58

Table 1. Control parameters of the genetic algorithm

Control Parameter Value

nit 500000
nitmax 700000
Dit 50000

k 3
Nis 5000
ps 0.3

Dmax 2
ncouple 3
pM1 0.2

pM2 0.4
Mit 25000
pm1 0.2
pm2 0.25

pm3 0.25
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where � denotes any of the basic arithmetic
operators and · the Cartesian product.

On the contrary, employing the extension prin-
ciple, by:

A� Bð Þ cð Þ ¼ sup
8a;bjc¼a�b

min AðaÞ;BðbÞf g ð5Þ

for all c 2R,
The information known about the results which

must be returned by the arithmetic operators, can
be expressed by a relation between the operands.
This relation can be either fuzzy or crisp. By calling
such a relation R, a constrained operator can be
defined. This operator will be named constrained
arithmetic operator and expressed by:

a A� Bð ÞR¼ a� bj a; bh i 2 ðaA� aBÞ \ ða; bÞ
n o

g ð6Þ

which is the generalization of (4), or by:

A� Bð ÞR cð Þ ¼ sup
8a;bjc¼a�b

min AðaÞ;BðbÞ;Rða; bÞf g ð7Þ

which is the generalization of (5).
An in-depth explanation of equations (6) and (7)

can be found in Klir (1997).
In order to explain the meaning of such an

operator, let us consider two triangular fuzzy
numbers A=[lA,mA,uA] and B=[ lB,mB,uB] and the
fuzzy arithmetic expression A/(A+B). In this
operation we have an application of the fuzzy
arithmetic which is affected by an equality con-
straint. This constrained operation on the two
fuzzy numbers A and B may conveniently be
expressed as follow (E denotes the relation repre-
senting the equality constraint):

aA=ðAþ BÞ�E ¼ a=ðaþ bÞjha; bi 2a A�a Bf g

For example, let us consider the two triangular
fuzzy numbers A=[1,2,3] and B=[2,3,4]. If we do
not consider the equality constraint, the a-cut,
with a=0, of the operation A/(A+B) is the
interval [1/(3+4), 3/(1+2)]=[1/7, 1]. On the con-
trary, if we take the equality constraint into ac-
count, the result is the interval [1/(1+4), 3/
(3+2)] = [1/5, 3/5].

When the constraint is considered, therefore, a
smaller fuzzy interval is obtained which does not
contain meaningless values and, as a consequence,
expresses less vagueness because we are using a
larger amount of information.

4.2. The fuzzy constrained layout model

Let Fij be a fuzzy number that represents the flow
between departments i and j. Knowing the fuzzy
demand Qk with a membership function of Qk(qk)
(where qk is the demand value of product k in
terms of unit loads), we can easily evaluate Fij

using equations (4) or (5), summing the fuzzy
demands for each product that is transferred from
department i to j in the manufacturing process.
Nevertheless, in this way, the resulting fuzzy
number Fij could have a non zero membership
value in correspondence with flow values that
exceed the production capacity of the departments.
Therefore the constrained arithmetic operator
needs to be employed.

Let skj be the maximum capacity of department j
to process product k, and so the qk/ skj ratio is the
percentage of production capacity of department j
taken up to process the product k. Let Yk

j be a
boolean variable equal to 1, if product k is man-
ufactured in department j, or otherwise equal to 0.
The production capacity constraint can be
expressed by the following relation:

XN

k¼1

qk � Yk
j

skj
� 1 8j ð8Þ

Hence, from all possible qk, the only admissible
ones are the qk 2 <þ that satisfy the equation (8).

This constraint can be expressed by means of the
crisp relation:

Rðq1; q2; q3; . . . ; qNÞ ¼ 1 if
PN

k¼1

qk�Yk
j

Skj
� 1 8j

Rðq1; q2; q3; . . . ; qNÞ ¼ 0 otherwise

ð9Þ

Equations (6) and (7) respectively become:

aFijðqÞ ¼
(
XN

k¼1
qkX

k
ijj q1; q2; q3; . . . ; qNh i

2 aQ1 � aQ2 � aQ3 � . . . aQNð Þ\

aR q1; q2; q3; . . . ; qNð Þ
)

ð10Þ

Fij qð Þ ¼ sup

8qk jq¼
PN
k¼1

qk�Xk
ij

min Q1 q1ð Þ;Q2 q2ð Þ; . . .QN qNð Þ;R q1; q2; q3; . . . qNð Þ½ �
ð11Þ
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where Xk
ij is an element of a matrix Xk that rep-

resents the times in which product k is transferred
from department i to department j during its
production cycle.

Using these equations, the fuzzy flows between
the departments are compatible with the capacity
of the facilities. These flows cannot, however, be
used in the optimisation model because we cannot
be sure that for each aFijðqÞ the upper bounds set
are compatible with the production capacity con-
straints. For this reason the constraints expressed
by relation R must be considered in the fuzzy
function of the cost.

As a consequence the total cost of material
movement is expressed, in fuzzy form, by (10), as:

aC cð Þ ¼
(
XM

i¼1

XM

j¼1

XN

k¼1
qkX

k
ij

 !
cijdijj q1; q2; q3; . . . ; qNh i

2 aQ1 � aQ2 � aQ3 � � � � aQNð Þ \ a

R q1; q2; q3; . . . ; qNð Þ
)

ð12Þ

or, by means of (11), as:

C cð Þ ¼ sup

8qk jc¼
PM
i¼1

PM
j¼1

PN
k¼1

qk �Xk
ij

� �
cijdij

min Q1 q1ð Þ;Q2 q2ð Þ; . . .QN qNð Þ;R q1; q2; q3; . . . qNð Þ½ �
ð13Þ

Since the cost related to the generic layout is a
fuzzy number, it is necessary to define a ranking
criterion in order to select the best solution.

4.3. Ranking fuzzy numbers

Although several researchers have approached the
ranking problem, there is no fully reliable proce-
dure that can be applied to all the possible cases.

IfA andB are two fuzzy numbers defined for x2<.
Let aa ¼ infx2<fxjAðxÞ � ag and a�a ¼ supx2<

fxjAðxÞ � ag, we will define A ‡ B (B ‡ A) (strong
relation) when, for each a-cut, the following two
relations are both satisfied

aa �a b and aa � ab ðab � aa and ab � aaÞ ð14Þ

When these relation are not satisfied, i.e. MAX
(A,B) „ A (MAX(A,B) „ B), a weak ranking
relation must be established to determine whether
A is weakly bigger or equal to B or vice versa. A

ranking method based on the integral value was
suggested by Tian-Shy and Mao-Jiun (1992). This
method is related by Fortemps and Roubens
(1996) to the ranking method based on area
compensation (Roubens, 1990).

The genetic approach employed in this paper,
requires not only population ranking, but also the
assignment of a fitness value to each element of
the population. Since this value is related to the
material movement cost, it is necessary to express
this fuzzy cost by a crisp number. For this pur-
pose, a method based on the integral value is
adopted to express the defuzzification function:

FðAÞ ¼ 1

2

Z1

0

½aaþa a�da ð15Þ

Moreover, by means of this formulation and by
employing a coefficient b2[0,1], we can consider
the grade of pessimism/optimism of the decision
maker as being:

FðAÞ ¼
Z1

0

½b � aaþ 1� bð Þ �a a�da ð16Þ

The value b=0.5 obviously identifies the neutral
decision maker.

The value of the defuzzification function F(A) is
the centre of the mean value of the fuzzy number
A, in terms of the Dempster–Shaffer theory (For-
temps and Roubens, 1996). Moreover function
(16) has a robustness property, according to:

f8A;A0 2 <jdðA;A0Þ < eg ) FðAÞ � FðA0Þj j < ef g
ð17Þ

where:

dðA;A0Þ ¼ max
a2ð0;1�

max
n

aa�a a0j j; aa� aa0Þj j
o
ð18Þ

This robustness property ensures that if A and A¢ are
close in terms of (18), the values of the defuzzification
function are also close and therefore the use of this
function in the calculation of the fitness is justified.

Another aspect developed in this paper is the
consideration of an acceptable risk level in the
layout design. This can be obtained by inte-
grating equation (16) between a chosen value h
and 1. In fact, in reference to a fuzzy-set inter-
pretation of the possibility theory (Zadeh, 1978),
reconsidered by Klir and Wierman (1999), if da
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is the basic probability of nesting set aA, then

h ¼
Rh

0

da is an upper bound of the probability of

set: SA={x|0 < A(x) £ h }. Therefore h can be
seen as an accepted grade of risk. So equation
(16) can be written:

FðAÞ ¼ 1

h

Z 1

h

½b � aaþ 1� bð Þ � aa�da ð19Þ

Equation (19) can be used to compare the fuzzy
cost of the layout solutions, taking into account
the grade of pessimism/optimism for the decision
maker and the accepted risk.

5. Genetic algorithms with fuzzy flows

For each individual generated by the genetic
algorithm (Fig. 2), the fuzzy cost and the related
fitness value are determined by employing the
procedure shown in Fig. 4.

As in the deterministic case, the fitness function
can be expressed by:

FðiÞ ¼ 1

costðiÞ þ penaltyðiÞ½ �

¼ 1

costðiÞ þ nki � ðcostfeas � costminÞ
� � ð20Þ

where cost(i) is the cost of material flow which, in
the fuzzy contest, is obtained by applying defuzz-
ification function (19) to fuzzy cost expression (12).

In a practical way, in order to obtain fuzzy cost
C, it is necessary to determine the lower and
upper bounds for each a-cut. It has been assumed
that the production capacity is not saturated in
correspondence to the lower values of the request
for each a-cut.

Therefore the calculation of the lower bound is
trivial, because relation (9) is always equal to one
for all combinations of aq

k
8k and so:

ac ¼
XM

i¼1

XM

j¼1

XN

k¼1

aq
k
Xk

ij

 !
cijdij

( )
ð21Þ

The calculation of the upper bound is carried out
using the following model of Linear Programming:

ac ¼ max
XM

i¼1

XM

j¼1

XN

k¼1
qk � Xk

ij

 !
� cij � dij ð22Þ

subject to:

XN

k¼1

qk � Yk
j

skj
� 1 j ¼ 1; . . . ;M ð23Þ

aq
k
� qk � aqk k ¼ 1; . . . ;N ð24Þ

In this way, for each a-cut, it is possible to obtain
the maximum cost relating to the combination of
the material flows which respect the capacity
constrains.

Once the ac and ac values for each a-cut have
been calculated, the fuzzy cost C obtained is
defuzzificated by numerical integration of equation
(19) and this constitutes the value of cost(i) in the
fitness function (20).

6. Test problems

A first test, without considering the constraints on
the departments’ production capacity, was carried
out simply to verify the correctness of the genetic
algorithm in the fuzzy context. The test was derived
from the original crisp problem (par. 3.4), repre-
senting the flows using a triangular membership
function with the centre value equal to the crisp
value, and spreads of ±20%. The departments’
aspect ratio, ccr, was set equal to 3 and no con-
straints on the departments’ capacity were imposed.
The layout configuration obtained, as expected,
is the same as the crisp problem: Permutation
(11,16,15,13,17,14,10,9,12,3,19,5,1,2,4,7,8,6,18,20),
Breakpoint (2,5,9,12,18).

The fuzzy cost of the solution is shown in Fig. 5.
The cost (5594.30) corresponding to value one of
the membership function is equal to the cost
obtained for the original (crisp) problem: thus the
correctness of the software is confirmed.

In order to apply the previously described fuzzy
constrained layout model, a new problem with
requisite constraints was formulated. The number
of departments (20) and their areas are set equal to
the ones of the crisp problem (par. 3.4) and the
aspect ratio is imposed equal to 3. The production
cycles of nine typologies of products are shown in
Table 3. The fuzzy demand of the generic product k
is expressed by a trapezoidal fuzzy number. The
related membership function is defined by the four
values reported in Table 4, corresponding to Qk
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(a)=0, Qk(b)=1, Qk(c)=1, Qk(d)=0. All cost
coefficients cij are fixed equal to 1. The departments’
production capacities (skj) are fixed equal to 800.
This value has been chosen in order not to saturate
the departments’ production capacity in corre-
spondence with the lower request values; this situa-
tion is realistic, as already noted in paragraph 5.

By employing the procedure described in the
previous paragraphs, the solution obtained was:
Permutation (11,15,14,10,1,20,2,4,5,3,18,9,7,6,13,

19,8,12,16,17), Breakpoint (5,10, 14, 18). The re-
lated fuzzy cost is shown in Fig. 6.

The effect of the capacity production constraints
on the right spread of the fuzzy cost (corre-
sponding to the greatest flows) is evident. In fact,
as Table 4 shows, the trapezoidal fuzzy numbers
representing the product demand, have a right
spread greater than the left spread. On the con-
trary, when the constraints are applied, the fuzzy
cost has a lower right spread.














= ∑∑ ∑ ijij

M M
k
ij

N

k=1
k

dcXqcijij

N

k=1

k=1

k
ijk

M

i=1

M

j=1
i=1 j=1

dcXqmaxc ⋅⋅




 ⋅= ∑∑∑

M.,..1,1 =≤
⋅∑ j

s

YqN

kj

k
jk

New individual generated by 
the genetic algorithm

-cut=0

Evaluation

Distance-Matrix

Fitness Evaluation

Defuzzification

Fuzzy Cost

Next -cut

Calculation of upper bound of C(c)

subject to: 

Calculation of lower bound of 
C(c)

YES

NO

-cut=1?

Fig. 4. Procedure for fuzzy cost evaluation.
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Conclusions

A valid approach to the layout problem should be
to formulate a model which is capable of maxi-
mizing the systems efficiency over the long term
(the economic lifetime of the facility layout),
taking the uncertainty of input data and, in par-
ticular, market demand into account. Moreover,
the block layout solutions must be easily convert-
ible to a detailed layout. The aim of this work has
been to obtain a robust layout, which is to say a
layout that performs well in a wide variety of
demand scenarios. The element of uncertainty
associated with each product demand is modelled
as a fuzzy number, leading to a fuzzy material
handling cost. The facility layout problem is a
NP-hard problem, and it is further complicated by
the introduction of uncertainty which adds new
dimensions to the search space. In order to solve
such an enhanced model with near real instances
and in reasonable time, the choice of a powerful

Fig. 5. Fuzzy cost for the problem with fuzzy flows represented by triangular membership function.

Table 3. Working sequences

Product Sequence

A 1-2-3-6-4-7-8-13-14-11-15-17-19-18-5-20
B 1-3-9-2-7-10-12-15-14-18-6-5-4-20—16-13
C 1-10-11-12-4-18-7-5-2-19-8-6-9-15-20

D 1-11-16-17-12-6-7-14-9-4-19-3-10-15-20-18-13
E 1-14-3-10-2-4-5-8-20-7-15-11-16-6-12-17
F 15-5-10-14-2-20-19-16-8-12-3-17-6-11-18-9

G 8-19-12-3-6-9-15-18-20-11-13-16-10-14-17-7-5
H 9-17-18-12-10-15-19-20-2-4-5-3-11-8-7-6-1
I 19-10-15-13-16-20-11-2-3-5-12-6-7-9-4-14

Table 4. Fuzzy requests of nine products expressed by
trapezoidal membership function

A B C D E F G H I

a 20 40 30 30 20 40 30 30 30
b 90 80 80 80 60 80 60 60 70

c 110 120 120 120 140 120 140 140 130
d 170 180 230 200 180 230 180 300 290

Fig. 6. Fuzzy cost for the constrained test problem.
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meta heuristic is required. Genetic algorithms are
employed nowadays in many fields, thanks to their
ability to perform parallel search in complex
spaces avoiding premature convergence to local
optima. A key aspect in genetic algorithms is re-
lated to the data structures employed. In the
context of facility layout, the flexible bay structure
(Tate and Smith, 1995) is particularly suited to a
chromosome representation and allows the deci-
sion maker to control the department shape, using
an adaptable penalty function.

To evaluate the fitness function of solutions
generated by the proposed algorithm, the fuzzy
material handling cost has to be defuzzified, thus
allowing the implementation of a ranking crite-
rion. The defuzzification function employed allows
us to take the decision maker’s degree of pessi-
mism/optimism and his accepted degree of risk
into account.

In addition to this, each department has a lim-
ited capacity, so that particular combinations of
product demands may exceed capacity and lead to
infeasible scenarios. This aspect is dealt with using
a fuzzy constrained arithmetic operator, which
evaluates the fuzzy material handling costs con-
sidering only the possible flows between the
departments which are compatible with the
capacity constraints.

The facility layout model proposed has allowed
to structure an effective genetic algorithm for the
optimization of medium-large layout problems,
taking into account the element of uncertainty
related to product demands, the finite production
capacity of the departments and some constraints
on their shape and location, leading to a realistic
and robust layout.
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