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This paper introduces a new fuzzy mathematical model based on the fuzzy parametric pro-

gramming (FPP) approach for the cellular manufacturing system (CMS) design. The aim of
the proposed model is to handle two important problems of CMS design called cell formation
(CF) and exceptional elements (EE) simultaneously in fuzzy environment. The model is
capable to express vagueness of all the system parameters and gives the decision-maker (DM)

alternative decision plans for different grades of precision. So, it is expected to provide a more
realistic CMS design for real life problems. To illustrate the model proposed here, an example
with fuzzy extension in data set is adopted from literature and computational results are

presented.
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1. Introduction

Cellular manufacturing (CM), is a philosophy and
innovation to improve manufacturing productivity
and flexibility since it allows small batch-type
production to gain economic advantages to those
of mass production and still retain the flexibility of
job-shop production. One of the first and most
important steps in designing CM Systems, called
cell formation (CF), is to create completely inde-
pendent machine cells and identify part families
and allocate part families to machine cells. CF
solutions often contain exceptional elements (EE).
The EE can be defined as machines required by

two or more part families or conversely as parts
that require processing on machines in two or
more cells. The EE create interactions between two
manufacturing cells. The interaction between cells
which is an important obstacle to reach the bene-
fits of CMS such as reduction in set-up time, work-
in-process inventory, material handling cost,
improvement in material flow, space utilisation
etc. ruin the objective of creating independent
cells. So CF and EE problems both have crucial
importance in the design of CMS.

In the existing literature, exceptional element-
problem is dealt with after cell formation and these
two problems are generally handled in crisp envi-
ronment. The former approach results with the
complete dependence of the solution effectiveness
on the technique used in the cell formation stage.
The latter is contradictory to the fuzzy nature of
the problem.
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In literature, there are a lot of studies and ap-
proaches, which can be found in the survey papers
(Moiser and Taube, 1985; Wemmerlöv and Hyer,
1986; Singh, 1993; Heragu, 1994; Offodile et al.,
1994; Cheng et al., 1995; Selim et al., 1998) dealt
with CF. In the first studies related with EE, since
researchers concentrated especially on the devel-
opment of CF procedures, treatment of EE was a
secondary objective. Although the other research-
ers such as Seifoddini (1989), Kern and Wei (1991)
and Shafer et al. (1992) have addressed elimination
of EE as their primary focus, the efficiency of their
solutions depended on the efficiency of the CF
technique used at the beginning.

CMS design problem, as a real life problem,
needs to be investigated in fuzzy environment due
to the fuzzy design parameters. The early studies of
fuzzy CMS are Chu and Hayya’s (1991), Zang and
Wang’s (1992) and Arieh and Triantaphyllou’s
(1992) studies some examples of the late studies
belong to Masnata and Settineri (1997), Gill and
Bector (1997), Güngör and Arıkan (2000). These
are generally focused on the fuzziness stemmed
from the part features and they used the traditional
solution methodologies developed for the CM. In
this study it is concentrated on the fuzzy mathe-
matical programming. While the CMS design lit-
erature is investigated in the context of fuzzy
mathematical programming, it is found two studies
interested CF and/or EE problem. First study
(Shanker and Vrat, 1999) presented two fuzzy lin-
ear programming models for ‘‘post clustering’’
stage and considered the fuzziness of part demand,
budgetary limit on purchase new machines and the
aspiration level of the objective function. The other
study (Tsai et al., 1997) proposed a mathematical
model which handle EE automatically during CF.
But in the model, only the aspiration level of the
objective function and the number of machine
types allowed in each cell are considered as fuzzy.
The fuzziness of some parameters such as demand,
capacity and financial data that have very impor-
tant role to attain the implementable solution as
well as optimal are not considered.

In this study, the proposed model handles the EE
problem during the clustering stage and considers
the fuzziness of part demand, machine capacity
and the fuzziness of EE’s elimination costs which
are coefficients of objective function instead of the
aspiration level attained to the objective function.

Since these fuzzy parameters constitute both
objective function and constraint coefficients, the
well-known fuzzy mathematical programming
(FMP) approaches such as fuzzy linear program-
ming (FLP) which only consider the fuzziness of
right-hand-side coefficients can not be used as the
way of solution for the proposed fuzzy model.
According to the classification of single objective
FMP approaches (Lai and Hwang, 1992) in the
literature, the fuzzy parametric programming
(FPP) (Carlsson and Korhonen, 1986) comes in
handy since it takes into consideration the fuzziness
of whole parameters in a single objective mathe-
matical model. So the fuzzy CMS problem inter-
ested in this study is modelled by the FPP.

By using the FPP approach, the study proposes
a FPP model that provides both implementable
and optimal solutions for different grades of pre-
cision of fuzzy parameters, which is demonstrated
with a numerical example.

In the remainder of the paper; first, the FPP
approach is reviewed with a brief theoretical
background. Then, under the heading of ‘‘the
proposed model’’, the model construction steps are
investigated. In Section 4, how the model works is
demonstrated with a numerical illustration. Fi-
nally, computational results, conclusions and fu-
ture directions are presented.

2. Fuzzy parametric programming

FPP, one of FMP approaches, proposed by
Carlsson and Korhonen (1986). FPP, separated
from other FMP approaches by being able to
consider all coefficients in a mathematical model
as fuzzy as being in real life, is reviewed briefly in
this section. Prior to the review, some basic defi-
nitions in FST (Zadeh, 1965) are introduced.

Definition:

A fuzzy subset ~A of a universe of discourse X
is defined by a membership function l~AðxÞ :
X ! ½0; 1� which associates with each element x of
X a number l~AðxÞ in the interval [0,1], where l~AðxÞ
represents the grade of membership of x in ~A.
Formally ~A can be written as

~A ¼ fðx; l ~AðxÞÞg; x 2 X ð1Þ
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Definition:

Intersection of two fuzzy subsets denoted ~A \ ~B:

~A\ ~B¼ fðx;l ~A\ ~BðxÞjx 2 Xg;
where l ~A\ ~BðxÞ ¼ ðl ~AðxÞ ^ l ~BðxÞÞ ð2Þ

Let consider the following mathematical model:

max z ¼ cx

s.t: x 2 X ¼ fxj � Ax � b; x � 0g
ð3Þ

where c is an n-vector, A is an (mxn)-matrix and b

is an m-vector. When a model of this type is ap-
plied to a practical problem, the parameters can-
not be known exactly and they are better or worse
estimate from existing data or subjective knowl-
edge. On the other hand, the solution of the model
is the optimal for the related parameter set which
however they are determined. But in real life, it is
important for a solution being optimal and ‘‘im-
plementable’’ at the same time. The implement-
ability grades of a solution are given by
membership functions, which, in turn, can be de-
rived from the grades of imprecision in the
parameters (Carlsson and Korhonen, 1986).

It is assumed that the intervals for possible
values of fuzzy parameters are specified by the user
as [c0, c1), [A0, A1), [b0, b1). The lower bounds
represent ‘‘risk-free’’ values in the sense that a
solution most certainly should be implementable.
The upper bounds, on the other hand, represent
parameter values which are most certainly unre-
alistic, ‘‘impossible’’ and the solution obtained by
using these values is not implementable. While
moving from ‘‘risk-free’’ toward ‘‘impossible’’
parameter values, it is moved from solutions with
a high grade to solutions with a low grade on
implementing. The purpose of FPP is to find and
optimal compromise ‘‘in-between’’ as a function of
grades of imprecision in parameters (Carlsson and
Korhonen, 1986).

The precision of an optimal solution, lS, is de-
fined by the intersection of membership functions
belong to imprecise parameters denoted by -
lC, lA, lb

lS ¼ lcj ^ lAij
^ lbi

� �
; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n

ð4Þ

The expression means that the inherited precision
in the optimal solution equals the precision of the
most ‘‘risky’’ of the parameters. In model (3) the

best value for the objective function at a fixed level
of lS is reached when

lS ¼ lcj ¼ lAij
¼ lbi

� �
; i ¼ 1; . . . ;m; j ¼ 1; . . . ; n

ð5Þ

Since model tends to use the ‘‘risky’’ values of the
parameters. The expression just above means that
the best value of the objective function, at a fixed
level of precision, can be found by using parameter
values of the same level of precision (Carlsson and
Korhonen, 1986).

2.1. FPP model formulation

For model (4), fuzzy parameters denoted by
p2[p0, p1) and it is assumed that they have linear
monotonically decreasing membership functions:

lp ¼ ½ðp�p0Þ=ðp0�p1Þ�;
where p2 ½p0;p1Þand lp ¼ 1 if p< p0; lp ¼ 0 if p> p1

ð6Þ

p parameter value is evaluated from the expression
above as p=p1 +lp(p

0 ) p1). Then by using this
structure for model (3), the FPP model is as fol-
lows:

max z ¼ ½c1 þ lðc0 � c1Þ�x
st: � ½A1 þ lðA0 � A1Þ�x � b1 þ lðb0 � b1Þ x � 0

where lc ¼ lA ¼ lb ¼ l

ð7Þ

In the model (7), it is assumed they are identical
for each parameter and linear in form. Of course
there can be many possible forms for a mem-
bership functions such as piece-wise linear (tri-
angular, trapezoidal), exponential, hyperbolic for
real life situations.

3. The proposed model

The model construction steps based on FPP ap-
proach are summarised in Fig. 1 as a flow chart.
The steps are explained in detail below.

Step 1. Problem Definition: Herein the cellular
manufacturing design (CMS) problem is considered
which is defined as the creation of manufacturing
cells and dealing with EE simultaneously. To be
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dealt with the EE during CF, the combination of
three alternative elimination strategies are consid-
ered, which are duplication of bottleneck machines,
intercellular transfer and/or subcontracting of
exceptional parts.

The special feature of the problem is the neces-
sity of being investigated in a fuzzy environment
because of fuzzy system parameters. So, sources of
the fuzziness are investigated as a second step of
the construction of the proposed model.

Step 2. Investigation of sources of the fuzziness:
In a mathematical model developed for designing
CMS, model parameters such as ‘‘satisfactory
profit’’, ‘‘satisfactory demand’’, ‘‘insufficient ma-
chine capacity’’, ‘‘approximate cost of subcon-
tracting an exceptional part’’, ‘‘reasonable budget
for machine duplication’’, are difficult to capture
by determinism. This is mainly because of three
reasons: (a) substantial time gap between design

and implementation, (b) high cost in acquiring
system parameters with precision, (c) lack of sta-
tistical observation at the design stage.

The imprecise parameters and the reasons of
impreciseness for the problem are given in detail
below (Table 1) (Shanker and Vrat, 1999). In
contrast to the reviewed literature the proposed
model considers the fuzziness of all parameters
mentioned in the table.

Step 3. Construction of membership functions:
To express the fuzziness mathematically, firstly the
membership functions for each fuzzy parameter
defined in step 2 should be constructed. While
choosing the types of membership functions, pos-
sible behaviours and trends of parameters in real
life and their risk trade-off in possible lower and
upper limits are considered.

In the following, for fuzzy parameters as costs of
EE elimination (Ai, Ij, Sj), machine capacities, Ci,
and part demands, Dj, fully trade-off membership
functions are constructed. In this study they are
assumed linear monotonically increasing, convex
exponential and piece-wise linear, respectively.
One of the aims of this assumption is to present the
modelling and solution ways when the member-
ship functions are different in form and have non-
linear structures as being in real life.

(a) Membership functions for EE elimination costs

The linear membership functions for fuzzy
parameters of machine duplication cost (Ai),
intercellular transfer cost (Ij) and subcontracting
cost (Sj) are denoted by lAi

, lIj, lSj
respectively.

The upper bounds in the intervals [Ai
0, Ai

1), [Ij
0, Ij

1),
[Sj

0, Sj
1) represent ‘‘risk-free’’ values. The mem-

bership functions defined as follows for"i and "j :

lAi
¼ ðA0

i � AiÞ=ðA0
i � A1

i Þ; where

Ai 2 ½A0
i ;A

1
i Þ and lAi

¼ 0 if Ai < A0
i ;

lAi
¼ 1 if Ai > A1

i ð8Þ

lIj ¼ ðI 0j � IjÞ=ðI 0j � I1j Þ; where Ij 2 ½I 0j ; I1j Þ and

lIj ¼ 0 if Ij < I 0j ; lIj ¼ 1 if Ij > I1j ð9Þ

lSj
¼ ðS 0

j � SjÞ=ðS 0
j � S1

j Þ; where Sj½S 0
j ;S

1
j Þ and

lSj
¼ 0 if Sj < S 0

j ; lSj
¼ 1 if Sj > S1

j ð10Þ

Step 2. Investigation of sources of the fuzziness
and determination of fuzzy parameters

Step 3. Construction of  membership functions
a) for cost parameters
b) for machine-capacities
c) for part-demands

Step 4. Evaluations of fuzzy parameter

Step 5. The proposed model

Step 6. Solution by a mathematical
programming package

Step 7. Presentation of the solutions for each
grade of precision as alternative decision plans to
the DM

Step 1. Problem definition

Step 8. Being carried out the plan selected by
the DM

Fig. 1. The steps of the proposed model construction.
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Since the lower bounds represent minimum cost
values, which cannot be implementable, of which
the grade of membership is zero (Fig. 2).

(b) Membership functions for machine capacity

The convex exponential membership function for
fuzzy parameters of available capacity for each
machine, Ci, is denoted by lCi

. The lower bound in
the interval [Ci

0, Ci
1) represents the ‘‘risk-free’’

value for each i. The membership function defined
as follows for "i:

lCi
¼ f1� exp½0:8ðCi � C1

i Þ=ðC 0
i � C1

i Þ�g=
½1� expð0:8Þ�; where Ci 2 ½C 0

i ;C
1
i Þ and

lCi
¼ 1 if Ci < C 0

i ;

lCi
¼ 0 if Ci > C1

i ð11Þ

The upper bound of the function represents the
full capacity of machine type i without any failure
which cannot be implementable, of which the
grade of membership is zero. (Fig. 3) Convex
exponential structure provides rapid changes in
the membership values while the fuzzy capacity of
the system close to the unimplementable and also
implementable capacity values according to the
interval considered as being in real life.

(c) Membership functions for part demand

The piece-wise linear membership function for
fuzzy parameters of part demand, Dj, is denoted

Table 1. Reasons for considering uncertainty in CMS design parameters (Shanker and Vrat, 1999, p. 2549)

CMS design parameter Reasons for considering uncertainty in parameter estimates

(1) Part demand (a) Time gap between design and implementation
(b) High cost in acquiring system parameters with precision

(c) Insufficient market survey at design stage
(d) Product specifications not yet finalised
(e) Unknown product mix

(f) Competitors’ competence and preparedness

(2) Subcontracting cost of EE (a) Time gap between design and implementation
(b) Market uncertainty due to competition
(c) Unwillingness of subcontractors to quote prices without order near future

(d) Inflation

(3) Purchase price of
bottleneck machines

(a) Time gap between design and implementation
(b) Changes in government policy

(c) Changes in import restrictions
(d) Unwillingness of suppliers to quote prices without order near future
(e) Inflation

(4) Intercellular transfer cost (a) Material handling equipment, yet undecided

(b) Likely changes in plant layout
(c) Inflation
(d) Location and size of stores

(e) Undecided process plans and sequence of operations

(5) Available capacity of machine (a) Undecided machine type
(b) Failure, location of faults and maintenance
(c) Duplication possibilities of machines

Ai

 1

Ai

0
Ai

1
Ai

m

Fig. 2. Membership function for machine duplication cost. Ai
1,

‘‘risk-free’’ value; Ai
0, ‘‘unimplementable’’ value.
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by lDj
. The function is defined in the interval of

[Dj
0, Dj

1, Dj
2) and [Dj

0, Dj
1] represents the ‘‘risk-free’’

value-interval for each j. The membership function
defined as follows for " j:

lDj
¼ 1 D0

j � ~Dj < D1
j

ðD2
j � ~DjÞ=ðD2

j �D1
j Þ D1

j � ~Dj < D2
j

( )

ð12Þ

Dj
2 values for each j represent the very high de-

mands that cannot implementable. (Fig. 4)
Step 4. Evaluations of fuzzy parameters: Fuzzy

parameter values are derived from the mathemat-
ical expressions (8)–(12) of membership functions
defined just above. Each parameter value can be
calculated by using the following formulations:

Ai ¼A0
i �lAi

ðA0
i �A1

i Þ; where Ai 2 ½A0
i ;A

1
i Þ for 8i

ð13Þ

Sj ¼ S0
j �lSj

ðS0
j �S1

j Þ; where Sj 2 ½S0
j ;S

1
j Þ for 8j

ð14Þ

Ij ¼ I 0j � lIjðI
0
j � I1j Þ; where Ij 2 ½I 0j ; I1j Þ for 8j

ð15Þ

Ci ¼ C1
i þ ð1=0:8Þ lnf1� lCi

½1� expð0:8Þ�gðC0
i � C1

i Þ;
where Ci 2 ½C0

i ;C
1
i Þ for 8i ð16Þ

Dj ¼D2
j �lDj

ðD2
j �D1

j Þ; where Dj 2 ½D1
j ;D

2
j Þ for 8j

Dj ¼ Dj where Dj 2 ½D0
j ;D

1
j Þ for 8j ð18Þ

Since the levels of precision are fully trade-off
(lAi

=lSj
=lIj=lCi

=lDj
=l), the expressions

(13)–(18) can be written as a function of l and
then each of them is used to built up the proposed
FPP model.

Step 5. The proposed model: After the definition
of the design problem and its features, the para-
metric model of the cell formation and exceptional
elements problem with fuzzy parameters is con-
structed as follows. Fuzzy parameters denoted by
using ~ in the model.

Index set: i: Machine index, j: Part index, k: Cell
index

Decision Variables

Xik 1 if machine i assigned to cell k; 0 other-
wise,

Yjk 1 if part j assigned to cell k; 0 otherwise,
Uijk 1 if Xik=1 ve Yjk=0, 0 otherwise,
Vijk 1 if Yjk=1 ve Xik=0, 0 otherwise,
Zijk number of intercellular transfers required

by part j as a result of machine type i not
being available within cell k,

Oijk units of part j to be subcontracting as a
result of machine type i not being avail-
able within cell k,

Rik number of machine type i to be purchased
for cell k (integer),

Qi number of machine type i needed to pro-
cess corresponding parts in a machine cell
(integer),

Mijk number of machine type i dedicated to cell
k for producing exceptional part j.

Parameters

aij 1 if part j needs to be processed by ma-
chine i; 0 otherwise,

~Ai purchase price of machine type i,
~Ci periodic capacity of machine type i,
~Dj periodic demand for part j,
~Ij incremental cost for moving a unit of part

j within two cells,

Ci

1

Ci
 Ci

0  Ci
1

m

Fig. 3. Membership function for machine capacity. Ci
1, ‘‘un-

implementable’’ value; Ci
0, ‘‘risk-free’’ value.

D j

1

Dj
0

Dj

Dj
1 Dj

2

m

Fig. 4. Membership function for part demand. Dj
2, ‘‘unimple-

mentable’’ value; [Dj
0, Dj

1], ‘‘risk-free’’ value-interval.
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NM minimum number of machine types al-
lowed in each cell,

MM maximum number of machine types al-
lowed in each cell,

Pij processing time of machine type i needed
to produce part j,

~Sj incremental cost of subcontracting a unit
of part j for an operation,

SP set of pairs (i, j) such that aij=1,
U ~Cij utilisation capacity of machine type I for

parts j (Pij
~Dj= ~Ci).

The Model
Objective function

min
X
k

X
i

ðA0
i � lðA0

i � A1
i ÞÞRik

þ
X
k

X
ði; jÞ2SP

ðI 0j � lðI 0j � I1j ÞÞZijk

þ
X
k

X
ði; jÞ2SP

ðS 0
j � lðS

0
j � S1

j ÞÞOijk

ð19Þ

st. Xc
k¼1

Xik ¼ 1 8i ð20Þ

Xc
k¼1

Yjk ¼ 1 8j ð21Þ

NM �
Xm
k¼1

Xik � MM 8k ð22Þ

Xik � Yjk þUijk � Vijk ¼ 0 8ði; jÞ 2 SP 8k ð23Þ

Zijk þOijk þ ððC1
i þ ð1=0:8Þ lnð1� lð1� expð0:8ÞÞÞ

�ðC 0
i � C1

i ÞMijk=PijÞ ¼ ~DjUijk8ði; jÞ 2 SP 8k ð24ÞX
ði; jÞ2SP

Mijk � Rik 8i 8k ð25Þ

Qi �
X

ði; jÞ2SP
U ~Cij 1�

X
k

Vijk

 !
þ 1 8i ð26Þ

X
k

X
ði;jÞ2SP

PijZijk=ððC1
i �ð1=0:8Þlnð1�lð1�expð�0:8ÞÞÞ

�ðC0
i �C1

i Þ�Qi�
X

ði;jÞ2SP
U ~Cij 1�

X
k

Vijk

 !
8j

ð27Þ

Xik;Yjk;Uijk;Vijk ¼ 0 or 1 ð28Þ

Rik; Qi integer ð29Þ

Objective function of the model (19), minimises
three types of fuzzy cost associated with EE. They
are bottleneck duplication cost, intercellular
transfer cost for EE and subcontracting cost,
respectively. Constraints (20) and (21) ensure that
each machine and part is assigned to only one cell.
Constraint (22) prevents the assignment of less
than NM and more than MM machines to each
cell. Constraint (23) ensures that an EE either is a
bottleneck machine or an exceptional part. Con-
straint (24) guarantees that the fuzzy demand of
exceptional part j can be shared by the duplicated
machine i, transfer within cells, or subcontracting.
Constraint (25) determines the number of machine
type i to be purchased for cell k as integer. Con-
straint (26) determines the number of machine type
i needed in each cell. Constraint (27) ensures that
the number of intercellular transfers between ma-
chines of type i do not exceed the available fuzzy
machine capacity. Equations (28) and (29) stand
for 0,1 integer and integer constraints, respectively.

Step 6. Model Solving: The proposed FPP
model is solved by a mathematical programming
package. While we solve the model, membership
functions’ structures determine our solution strat-
egy. If each fuzzy parameter has identical mem-
bership functions just like mentioned in model (7)
then the FPP model can be easily solved by using
the traditional way even if the membership func-
tions are non-linear. But in the proposed model,
membership functions for each fuzzy parameter
are different in form. So, the model is solved for
predetermined different values of the membership
function and the set of solutions represent alter-
native decision plans for varying grade of preci-
sion. They prepare reasonable and realistic
foundation that enables DM to arrive at appro-
priate conclusions.

Herein, another important point during model
solving is that for l = 1, the membership function
takes continuous values in the interval [Dj

0, Dj
1) for

each j due to the structure of the function of fuzzy
part demand. In such a situation, while the other
parameter’s ‘‘risk-free’’ values remain same, the
[Dj

0, Dj
1) region should be investigated of which

detailed explanation is illustrated in the next Sec-
tion 4.

Steps 7 and 8 are carried out just as mentioned
in the flow chart.
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4. Data set for numerical computations and

parameterised of fuzzy coefficients

To illustrate the proposed FPP model, the data set
adapted from the Shafer et al.’s (1992) study.
Table 2 lists the processing times of each part and
the part-machine matrix structure. Other related
interval data for the fuzzy parameters as the costs
involved, the part demand and the machine
capacity in the table were generated randomly.

Fuzzy parameter values for " i and " j (i=1,
2, . . . ,9 and j=1, 2, . . . ,10), were calculated for
each l level (0, 0.1, 0.2, . . . , 1) and by using the
parameter sets gathered from the calculations, 11
different problems are constructed. For the inter-
val (Dj

0, Dj
1] of which the level of membership is

constant and l, it is considered by 1000 units
increments in part demand, so there are
2,2,1,1,1,1,1,1,2 different part demand levels for
each j, respectively. The permutation of these lev-
els results the eight different parameter sets in the
interval (Dj

0, Dj
1] while the other parameter values

are constant for l = 1 (Table 3).
The calculation of each parameter for l = 0.1

is illustrated below:

A1 ¼ 45; 000� 0:1ð45; 000� 50; 784Þ ¼ 45; 578:4$;

where A1 2 ½45; 000; 50; 784Þ for i ¼ 1

S1 ¼ 3:8� 0:1ð3:8� 4:2Þ ¼ 3:84$;

where S1 2 ½3:8; 4:2Þ for j ¼ 1

I1 ¼ 3:6� 0:1ð3:6� 3:85Þ ¼ 3:63$;

where I1 2 ½3:6; 3:85Þ for j ¼ 1
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Table 3. l=1, Djx 103 2(Dj
0, Dj

1], alternative demand
combinations for each part

j D1 D2 D3 D4 D5 D6 D7 D8

1 33 33 33 33 34 34 34 34

2 30 31 30 31 30 31 30 31
3 21 21 21 21 21 21 21 21
4 12 12 12 12 12 12 12 12

5 18 18 18 18 18 18 18 18
6 18 18 18 18 18 18 18 18
7 46 46 46 46 46 46 46 46
8 46 46 46 46 46 46 46 46

9 16 16 16 16 16 16 16 16
10 23 23 24 24 23 23 24 24
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Ci ¼ 160; 000þ ð1=0:8Þ ln½1� 0:1ð1� expð0:8ÞÞ�
� ð140; 000� 160; 000Þ�

¼ 157; 109:8min :; where

Ci 2 ½140; 000; 160; 000Þ for 8i ¼ 1; 2; . . . ; 9

D1 ¼ 40; 000� 0:1ð40; 000� 35; 000Þ
¼ 39; 500unit where

D1 2 ½35; 000; 40; 000Þ for j ¼ 1

D1 ¼ Dj where D1 2 ½32; 000; 35; 000Þ for j ¼ 1

5. Computational results

Eleven problems for different levels of l and eight
problems for l = 1 are modelled and solved by
GAMS—The General Algebraic Modelling Sys-
tem (Brooke et al., 1988).

Table 4 summarises computational results for
different levels of l. According to the table, the
relationship between the total cost of EE elimina-
tion and l is inversely proportional. It shows the
necessity to avoid the unrealistic solutions while l
is increasing. For the first four levels, related
block-diagonal arrangements of solutions stay
same. If the arrangement for l=0.3 in Table 5 is
investigated; nine EE are eliminated by duplication
of machine type 1, 2, 4, 6, 7 and 8. Also, part type
9 and 8 are transferred to related cells since the
machine type 6 and 8 are not being available
within cell 2 and cell 1, respectively.

The block diagonal arrangements of parts and
machines for the next six levels of l are same (Ta-
ble 6). The solutions of each precision level show
that even if the number of EE is increased from 9 to

11, it is worth noting that the total cost is minimised
for the related cell configuration. Machine dupli-
cation and intercellular transfer of exceptional
parts are the elimination alternatives that are cho-
sen. Bottleneck machines are 1, 2, 4, 6 and 7, and
exceptional parts for l=0.4 and 0.5 are 1 and 9,
and for l=0.6... 1 part type 6 is added to these two.

The GAMS solutions and the cell configurations
for eight problems for l = 1 in the interval of (Dj

0,
Dj

1] are given in Tables 7 and 8, respectively. Eleven
EE are eliminated by duplication of machine type
1, 4, 6, 7 and 8. Also part type 1 and 9 are trans-
ferred to related cells since the machine type 1, 2, 4
and 6 are not being available within related cells.

6. Conclusion

This study proposes an efficient FPP model for the
realistic CMS design problem, which handle the
cell formation and EE simultaneously. The pro-
posed model considers the fuzziness in the EE
elimination costs, part demands and the machine
capacities, which makes the study different from
the others in literature. Model constructed by
using the fully trade-off membership functions of
fuzzy parameters. Theoretical aspects of FPP
provide the opportunity of being modelled the
problem as flexible as being in real life

The solutions of FPP for each level of l, gives
the alternative decision plans for the fuzzy
parameters in different risk levels. To avoid the
unrealistic and risk-free plans, the solution of
FPP model for l=0.5 is taken as a reference
decision plan. The other solutions are very
important for the DM to enable him to arrive at

Table 5. Dj 2 (Dj
1, Dj

2] for " j and the cell formation
for l=0, 0.1,0.2, 0.3, (EE 9, Voids 12)

M/P 4 5 6 8 1 2 3 9 7 10

4 1 1 1 1 1
5 1 1

7 1 1 1 1
1 1 1
2 1 1 1 1 1

3 1 1
8 1 1 1
6 1 1 1

9 1 1

Table 6. Dj 2 (Dj
1, Dj

2] for " j and the cell formation
for l=0.4, . . . ,1 (EE 11, Voids 15)

M/P 7 10 1 2 3 5 8 9 4 6

1 1 1 1

6 1 1 1
9 1 1
2 1 1 1 1 1

3 1 1
7 1 1 1 1
8 1 1 1

4 1 1 1 1 1
5 1 1
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appropriate conclusions in the real life’s imprecise
environment.

7. Future directions

Since the mathematical model considers the only
objective function as the minimisation of the EE
elimination costs, some different cell configura-
tions were found by FPP solutions. Even if the
increase in EE concludes the minimum cost, it is
obvious that the worse cell configuration makes
the scheduling more complicated. So it is worth
considering the maximum cell utilisation as an-
other objective function for the model.

The other directions could be the addition of the
fuzzy budget constraint to support the duplication
of bottleneck machine alternative, and also the
considerations of the fuzziness in part processing
times for an application study.
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