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Our objective is a comparison of two data mining approaches to dealing with imbalanced
data sets. The first approach is based on saving the original rule set, induced by the LEM2
(Learning from Example Module) algorithm, and changing the rule strength for all rules
for the smaller class (concept) during classification. In the second approach, rule induc-
tion is split: the rule set for the larger class is induced by LEM2, while the rule set for
the smaller class is induced by EXPLORE, another data mining algorithm. Results of our
experiments show that both approaches increase the sensitivity compared to the original
LEM2. However, the difference in performance of both approaches is statistically insig-
nificant. Thus the appropriate approach for dealing with imbalanced data sets should be
selected individually for a specific data set.
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1. Introduction

During data mining from real-life data, sizes of
classes (concepts) are frequently different. Quite
often the class which is critical from the domain
point of view (the primary class) includes a much
smaller number of cases while other (secondary)
classes form the majority of cases (Japkowicz,
2000). Such data sets are called imbalanced. This
situation is typical in medical problems, where
the task is to diagnose a specific disease. The
primary class usually describes patients requir-
ing special attention while all remaining cases
are members of the secondary class (e.g., healthy
patients). Similar situations also occur in other

domains, e.g., in financial analysis of loan policy
or bankruptcy.

Recently we observe an increase of research
activity in data mining from imbalanced data
sets. For example, the Newsletter of the ACM
Special Interest Group on Knowledge Discovery
and Data Mining, SIGKDD Explorations, pub-
lished a special issue on Learning From Imbal-
anced Data Sets (June 2004).

Standard classifiers derived from such data sets
are affected by a lack of balance. That is, their
predictive accuracy is biased towards majority
classes and they usually have difficulties with cor-
rect classification of objects from the primary
classes. Since the primary class is more important,
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costs of false positives and false negatives may
drastically differ. Using again an example of med-
ical diagnosis, the total classification accuracy is
misleading as an indicator of the classifier quality
for imbalanced data. Diagnosis is characterized
by sensitivity (the conditional probability of the
set of correctly classified cases from the primary
class, given the primary class) and by specificity
(the conditional probability of the set of correctly
recognized cases from the secondary class, given
the secondary class). In such applications more
attention is given to sensitivity than to specificity.

In our research, we tested two approaches to
increasing the sensitivity of the primary class for
rule-based classifiers. In both approaches, initial
rules were induced by the LEM2 (Learning from
Examples Module) algorithm. An original ver-
sion of LEM2 induces a minimal set of rules
from rough approximations of classes (Grzymala-
Busse, 1992). Generated rules are then used by
the Learning from Examples-based on Rough
Sets (LERS) “bucket brigade” classification strat-
egy. The first technique to improve sensitivity is
based on increasing strengths of rules describing
the primary class. The rule strength is defined
as the number of training cases correctly clas-
sified by the rule. The idea is to multiple the
strengths of all primary class rules by the same
real number, called strength multiplier, while not
changing the strength of rules from the second-
ary classes. As a result, during classification of
new objects, such primary class rules have an
increased chance to classify these objects as being
members of the primary class. (Grzymala-Busse
et al., 2000)

The second technique is based on a different
principle. A minimal set of rules for the primary
class is replaced by a new set of rules, with the
strength greater than a certain threshold. Such
rules are discovered by a special algorithm, called
EXPLORE (Stefanowski and Vaderpooten, 2001).
If the strength threshold is sufficiently low, then
EXPLORE may generate much more rules then
LEM2. Thus, by using such rules for the primary
class, while preserving the original set of rules for
the secondary class, the chance that a case from the
primary class is selected by a classifier is increased
and sensitivity should improve.

The main aim of this study is to evaluate
the performance of both techniques on several

imbalanced data sets. Moreover, we compare both
techniques using a standard scheme of applying
LEM2 with LERS classification strategy.

The paper is organized as follows. We begin with
a brief description of the LEM2 rule induction
algorithm, which is a basis of the first approach
and partially employed by the second approach.
The LERS classification system is described later.
The next section is devoted to explaining sensitivity
and specificity. Then we present both approaches
to dealing with imbalanced data sets. Finally, we
quote results of our experiments and conclusions.

A preliminary version of this paper was pre-
sented at the eighth International Conference
on Knowledge-Based Intelligent Information and
Engineering Systems, Wellington, New Zealand,
September 20–24, 2004 (Grzymala-Busse et al.,
2004).

2. Rule induction with LEM2

Both presented approaches to some extent employ
the LEM2 algorithm which uses rough set theory
for inconsistent data. In rough set theory (Paw-
lak, 1982, 1991; Pawlak et al., 1995) inconsisten-
cies are not removed from consideration. Instead,
lower and upper approximations of the concept
are computed. On the basis of these approxima-
tions, two corresponding sets of rules: certain and
possible, are induced.

The following is a summary of the main ideas
of the LEM2 algorithm. The LEM2 is a compo-
nent of the LERS data mining system (Grzymala-
Busse, 1992, 1997). A block of an attribute-value
pair t = (a, v), denoted [t ], is the set of all exam-
ples that for attribute a have value v. A concept,
described by the value w of decision d, is denoted
[(d, w)], and it is the set of all examples that have
value w for decision d. Let C be a concept and
let T be a set of attribute-value pairs. Concept C
depends on a set T if and only if

∅ �= [T ]=
⋂

t∈T

[t ]⊆B.

Set T is a minimal complex of concept C if and
only if C depends on T and T is minimal. Let
T be a nonempty collection of nonempty sets of
attribute-value pairs. Set T is a local covering of
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C if and only if the following three conditions are
satisfied:

(1) each member of T is a minimal complex of C,
(2)

⋃
T ∈T [T ]=B

and

(3) T is minimal, i.e., T has the smallest possible
number of members.

Procedure LEM2
(input: a set B;
output: a single local covering T of
set B);
begin

G := B;
T:= ∅;
while G �= ∅ do

begin
T :=∅ ;
T(G) :={t|[t]∩G �=∅};
while T=∅ or not([T]⊆B) do

begin
select a pair t∈T(G) with
the highest attribute
priority, if a tie occurs,
select a pair t∈T(G) such
that |[t]∩G| is maximum; if
another tie occurs, select
a pair t∈T(G) with the
smallest cardinality of
[t]; if a further tie occurs,
select first pair;
T := T ∪ {t};
G := [t] ∩ G ;
T(G) := {t | [t] ∩ G �= ∅};
T(G) := T(G) − T;

end; {while}
for each t in T do

if [T − {t}] ⊆ B then
T := T − {t};

T := T ∪ {T};
G := B − ⋃

T∈T[T];
end {while};
for each T∈ T do

if
⋃

S∈T−{T} [S] = B then
T := T − {T};

end {procedure}.

For a set X, the cardinality of X is denoted by
|X|.

For each concept C, the LEM2 algorithm
induces rules by computing a local covering T. Any
set T , a minimal complex which is a member of
T, is computed from attribute-value pairs selected
from the set T (G) of attribute-value pairs relevant
with a current goal G, i.e., pairs whose blocks have
nonempty intersection with G. The initial goal G

is equal to the concept and then it is iteratively
updated by subtracting from G the set of examples
described by the set of minimal complexes com-
puted so far. Attribute-value pairs from T which
are selected as the most relevant, i.e., on the basis
of maximum of the cardinality of [t ] ∩G, if a tie
occurs, on the basis of the smallest cardinality of
[t ]. The last condition is equivalent to the maximal
conditional probability of goal G given attribute-
value pair t .

3. Classification of unseen cases

In our experiments, we used the LERS classifica-
tion system. For classification of unseen cases sys-
tem LERS employees a modified “bucket brigade
algorithm” (Booker et al., 1990; Holland et al.,
1986). In this approach, the decision to which con-
cept a case belongs is made using two factors:
strength and support. They are defined as follows:
Strength factor is a measure of how well the rule
has performed during training. The second factor,
support, is related to a concept and is defined as
the sum of scores of all matching rules from the
concept. The concept getting the largest support
wins the contest.

In LERS, the strength factor is adjusted to be
the strength of a rule, i.e., the total number of
examples correctly classified by the rule during
training. The concept C for which the support,
i.e., the following expression

∑

R∈Rul

Strength f actor (R)∗Specif ity f actor (R)

is the largest is the winner and the example is
classified as being a member of C, where Rul
denotes the set of all completely matching rules
R describing C. This process reminds voting by
rules for concepts.
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If an example is not completely matched by
any rule, some classification systems use partial
matching. If complete matching is impossible, all
partially matching rules are identified. These are
rules with at least one attribute-value pair match-
ing the corresponding attribute-value pair of an
example.

For any partially matching rule R, the additional
factor, called Matching factor (R), is computed.
Matching factor (R) is defined as the ratio of the
number of matched attribute-value pairs of a rule
R with the case to the total number of attribute-
value pairs of the rule R. In partial matching, the
concept C for which the following expression

∑

R∈Rul′
Matching f actor (R)

∗Strength f actor (R)

∗Specif ity f actor (R)

is the largest is the winner and the example is
classified to C, where Rul′ is the set of all par-
tially matching rules R describing C.

4. Sensitivity and specificity

In many applications, e.g., in medicine, we dis-
tinguish between two classes: primary and sec-
ondary. In medicine the primary class, defined as
the class of all cases that should be diagnosed as
affected by a disease, is more important.

The set of all correctly classified cases from
the primary class are called true-positives, incor-
rectly classified primary cases are called false-
negatives, correctly classified secondary cases are
called true-negatives, and incorrectly classified sec-
ondary cases are called false-positives.

Sensitivity is the conditional probability of true-
positives given primary class, i.e., the ratio of the
number of true-positives to the sum of the num-
ber of true-positives and false-negatives. Specific-
ity is the conditional probability of true-negatives
given secondary class, i.e., the ratio of the num-
ber of true-negatives to the sum of the number of
true-negatives and false-positives.

Usually, by applying techniques described later,
we may increase sensitivity at the cost of speci-
ficity. It is difficult to estimate what are the opti-
mal values of sensitivity and specificity. In our

experiments, we applied an analysis presented by
Bairagi and Suchindran (1989). Let p be a prob-
ability of the correct prediction, i.e., the ratio of
all true positives and all false positives to the
total number of all cases. Let P be the probabil-
ity of an actual primary class, i.e., the ratio of all
true positives and all false negatives to the total
number of all cases. Then

p =Sensitivity∗P + (1−Specificity)∗ (1−P).

As Bairagi and Suchindran observed (1989), we
would like to see the change in p as large as pos-
sible with a change in P , i.e., we would like to
maximize

dp

dP
=Sensitivity+Specificity−1.

Thus the optimal values of sensitivity and
specificity correspond to the maximal value of
Sensitivity + Specificity − 1. The sum of sensitivity
and specificity is called a gain. Thus, in our exper-
iments the objective was to maximize gain.

5. Increasing the strength of rules

As a result of rule induction, the average of all
rule strengths for the bigger class is greater than
the average of all rule strengths for the more
important but smaller primary class. During clas-
sification of unseen cases, rules matching a case
and voting for the primary class are outvoted by
rules voting for the bigger, secondary class. Thus
the sensitivity is low and the resulting classifica-
tion system would be rejected by the users.

Therefore it is necessary to increase sensitiv-
ity. The simplest way to increase sensitivity is to
add cases to the primary class in the data set,
e.g., by adding duplicates of the available cases.
The total number of training cases will increase,
hence the total running time of the rule induction
system will also increase. Adding duplicates will
not change the knowledge hidden in the original
data set, but it may create a balanced data set so
that the average rule set strength for both clas-
ses will be approximately equal. The same effect
may be accomplished by increasing the average
rule strength for the primary class. In our first
approach to dealing with imbalanced data sets,
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we selected the optimal rule set by multiplying
the rule strength for all rules describing the pri-
mary class by the same real number called a
strength multiplier (Grzymala-Busse et al., 1999).

In general, the sensitivity increases with the
increase of the strength multiplier. At the same
time, the specificity decreases.

In our experiments, rule strength for all rules
describing the primary class was increased incre-
mentally. The process was terminated when gain
was decreased.

6. Replacing rules

Unlike the previous technique, this approach is
based on replacing the rule set for the primary
class by another rule set that improves the chance
of a case from the primary class to be selected by
the “bucket brigade” algorithm, because this case
can be matched by multiple rules voting for the
primary class. Although strengths of new rules
may be generally lower than for those for the sec-
ondary class, their number leads to an increased
number of votes. New rules are generated directly
from data, and their strength is modified neither
by an induction algorithm, nor by a classifier.

Rules for the primary class were generated
by the EXPLORE algorithm (Stefanowski and
Vanderpooten, 2001). As opposed to LEM2,
EXPLORE induces all rules that satisfy certain
requirements, e.g., the strength greater than a given
value, or the length of a rule smaller than a speci-
fied threshold.

The EXPLORE algorithm is based on a
breadth-first exploration to generate rules of
increasing size, starting from rules with single con-
ditions. Exploration of a specific branch is termi-
nated when a rule satisfying the requirements is
generated or a stopping condition SC is satisfied
(i.e., it is impossible to satisfy the requirements).

We use similar definitions as in Section 2.
Decision rule R has a condition part, a con-
junction of q elementary conditions T = t1 ∧
t2 ∧ . . . ∧ tq , where t is an attribute value pair
(a, v), and a decision part indicating the con-
cept. Set [T ]+C = [T ] ∩ C denotes the set of pos-
itive learning examples covered by the rule. The
rules are evaluated mainly by the measure of

the (relative) strength strength(R) = |[T ]+C |/|[C]|.
An initial list LS of elementary conditions (e.g.,
simple attribute-value conditions) is created and
given as an input to Explore. Obviously, con-
ditions in LS must cover at least one example
from a decision concept, they may also be sub-
ject to specific constraints on the syntax. This
initial list is first pruned to discard selectors
which directly correspond to rules as well as
those which already satisfy SC and thus cannot
be a basis for rules (subprocedure Is Good Candi-
dates). Selectors remaining in LS are then com-
bined to form complexes (i.e., conjunctions of
selectors) which will be candidates for conditions
of rules. The resulting complexes are then tested
by subprocedure Is Good Candidates.

In the Explore algorithm the search for rules is
controlled by the parameters called stopping con-
ditions SC defined by the user. Since EXPLORE
is rule strength driven, the definition of SC is
based on determining the threshold value for the
minimal strength of the conjunction of conditions
that is a candidate for the condition part of the
rule. If its strength is lower than SC, then the
conjunction is discarded, otherwise it can be fur-
ther evaluated. Additionally, the user may also
define a threshold expressing the minimum value
of the level of discrimination D(R) of the rules to
be generated.

procedure Explore
(input LS: list of valid elementary
conditions,
SC: stopping conditions,
output R: set of rules)
{Main procedure}
begin
R :=∅;

IsGoodCandidate (LS, R) ; {LS
is a list of valid
elementary conditions
t1,t2, . . .tn – ordered
according to the
decreasing strength}

Q := LS; {Copy current LS to
queue Q}
while Q <> ∅ do

begin
select the first con-
junction T from Q;



570 Grzymala-Busse et al.

Q := Q −{ T };
gene-rate the set LC of
all the conjunctions
T ∧ th+1, T ∧ th+2, . . .

T ∧ th+n, where h is
the highest index of
the condition involved
in T
{generate extensions
of T using LS}
IsGoodCandidate (LC, R);
Q := Q ∪LC; {Place all
candidates from LC at
the end of Q}

end
end

procedure IsGoodCandidate
(input L: list of conjunctions,
R: set of rules)
{This procedure prunes list L discard-
ing conjunctions whose extension
cannot generate rules due to SC and
conjunctions corresponding to rules
which are already stored in R}
begin

for each T in L do
begin

if T satisfies SC then
L := L − {T}
else [T] ⊆ [C] then

begin
R := R ∪ {T};
L := L − {T};

end
end

end

For further details of the EXPLORE algorithm
see (Stefanowski, 1998; Stefanowski and Vander-
pooten, 2001; Stefanowski and Wilk, 2001).

Although there are several requirements that can
be specified for EXPLORE, we are focused only on
the minimal strength of a rule (for discussion see
Stefanowski 1998, Stefanowski and Vanderpooten,
2001). The threshold is modified in order to obtain
an optimal set of rules, i.e., leading to the best clas-
sification outcome (Stefanowski and Wilk, 2001).
To avoid repeating induction of rules with varying

strengths, a set of rules is generated only once for
the smallest acceptable threshold, and then appro-
priate subsets are selected. The smallest strength
is set to the minimal strength observed for rules
generated for the primary class by LEM2 (we
have to induce a temporary set of rules that is
later discarded and not used for classification).
This prevents the induction of an overwhelming
number of rules (it would happen, if the thresh-
olds were too low). Rules for the secondary class
are created as previously, using LEM2.

To find an optimal set of rules according to
the gain criterion described in Section 4 we ver-
ify, in a number of steps, various subsets of rules
for the primary class, starting from the strongest
rules to all rules created by EXPLORE. In each
step we consider rules for the primary class with
strength greater than the current threshold (the
threshold changes from the maximal value to the
minimal one, which were observed in a tempo-
rary set of rules generated by LEM2) and com-
bine them with rules obtained for the secondary
class (this set does not change) into a final set
used by the classifier. Having finished the pro-
cess, we are able to point out the threshold and
a set of rules leading to the best classification
outcome. If there is a tie (the same outcome
for several sets), we select the higher threshold
(the smaller set), following the Occam’s razor
principle.

7. Experiments

Some of the original data sets, used for our
experiments, contained numerical attributes. These
attributes were discretized using cluster analysis.
Clusters were first formed from data with numer-
ical attributes. Then those clusters were projected
on the attributes that originally were numerical.
The resulting intervals were merged to reduce the
number of intervals and, at the same time, to pre-
serve consistency. Some data sets contained miss-
ing attribute values, which were substituted with
the most frequent value among examples belong-
ing to the considered class.

For calculation of classification performance we
used twofold cross-validation. Both approaches
used the same sets of cases, with the same split into



A comparison of two approaches to data mining 571

Table 1. Data sets used in experiments

Data set Number of objects Ratio of objects

Total Primary Secondary Primary (%) Secondary (%)

ABDOMINAL-PAIN 723 202 521 27.9 72.1
BREAST-SLOVENIA 294 89 205 30.3 69.7
BREAST-WISCONSIN 625 112 513 17.9 82.1
BUPA 345 145 200 42.0 58.0
GERMAN 666 209 457 31.4 68.6
HEPATITIS 155 32 123 20.6 79.4
PIMA 768 268 500 34.9 65.1
SCROTAL-PAIN 201 59 142 29.4 70.6
UROLOGY 498 155 343 31.1 68.9

Table 2. Results for the original LEM2 algorithm

Data set Sensitivity Specificity Gain Error (%)

ABDOMINAL-PAIN 0.5842 0.9290 1.5132 16.74
BREAST-SLOVENIA 0.3647 0.8856 1.2503 26.92
BREAST-WISCONSIN 0.3125 0.9259 1.2384 18.40
BUPA 0.3241 0.7400 1.0641 43.48
GERMAN 0.3014 0.8468 1.1482 32.43
HEPATITIS 0.4375 0.9512 1.3887 15.48
PIMA 0.3918 0.8260 1.2178 32.55
SCROTAL-PAIN 0.5424 0.8310 1.3734 25.37
UROLOGY 0.1218 0.8227 0.9445 39.60

Table 3. Best results for increasing rule strength

Data set Multiplier Sensitivity Specificity Gain Error (%)

ABDOMINAL-PAIN 5.0 0.8069 0.8484 1.6553 16.32
BREAST-SLOVENIA 1.0 0.3647 0.8856 1.2503 26.92
BREAST-WISCONSIN 5.0 0.5714 0.8674 1.4388 18.56
BUPA 3.0 0.5586 0.5850 1.1436 42.61
GERMAN 4.0 0.5789 0.6411 1.2200 37.84
HEPATITIS 18.0 0.8438 0.7724 1.6162 21.29
PIMA 3.5 0.5933 0.7640 1.3573 29.56
SCROTAL-PAIN 3.0 0.6780 0.8099 1.4879 22.89
UROLOGY 14.0 0.5192 0.4942 1.0134 49.48

two subsets. Although twofold cross-validation
may be not sufficient to estimate the actual error
rate, our objective was to compare our approaches
to handling imbalanced data sets.

Results of our experiments are presented in
Tables 1–4. Most of the data sets, presented in
Table 1, were taken from the Repository at the
University of California, Irvine, CA, USA. Oth-
ers come from medical applications of rule induc-

tion approaches (Wilk et al., 2004). In Tables 2–4,
sensitivity, specificity, gain and the total error are
presented.

8. Conclusions

Results of our experiments show that an increase
in gain, comparing with the original LEM2, may
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Table 4. Best results for replacing rules (EXPLORE approach)

Data set Support Sensitivity Specificity Gain Error (%)

ABDOMINAL-PAIN 16.0 0.6939 0.9175 1.6114 14.52
BREAST-SLOVENIA 3.0 0.4709 0.8411 1.3120 26.92
BREAST-WISCONSIN 2.0 0.6385 0.8160 1.4545 21.43
BUPA 2.0 0.4275 0.6300 1.0575 45.50
GERMAN 5.0 0.6271 0.7265 1.3536 30.50
HEPATITIS 6.0 0.5830 0.9175 1.5005 15.52
PIMA 3.0 0.5686 0.7829 1.3514 29.30
SCROTAL-PAIN 4.0 0.6887 0.8724 1.5611 18.44
UROLOGY 6.0 0.3403 0.7017 1.0420 41.57

be accomplished by both approaches: changing
strength multipliers for rules describing the pri-
mary class and by replacing rule sets for the pri-
mary class using EXPLORE.

The purpose of our experiments was to com-
pare both approaches for dealing with imbal-
anced data sets. In order to compare the overall
performance of both approaches, the Wilcoxon
Signed Ranks Test (Hamburg, 1983), a nonpara-
metric test for significant differences between
paired observations, was used. As a result, the
difference in performance for both approaches for
dealing with imbalanced data sets, in terms of
gain, is statistically insignificant. Additionally, the
same conclusion is true for the error rate: the dif-
ference in performance for both approaches, in
terms of error rate, is also statistically insignifi-
cant. Therefore, the appropriate approach to deal-
ing with imbalanced data sets should be selected
individually for a specific data set. The first
approach for increasing sensitivity, based on chan-
ging the rule strength for the primary class, is
less expensive computationally than the second
approach, based on replacing rule the set for the
primary class.

We can extend both approaches by also post-
processing rule sets for stronger secondary class
using rule truncation, i.e., removing weak rules
describing only a few learning cases. Such possi-
bilities can be explored in further research.

For many important applications, e.g., medi-
cal area, an increase in sensitivity is crucial, even
if it is achieved at the cost of specificity. Thus,
the suggested approaches for dealing with imbal-
anced data sets may be successfully applied for
data mining from imbalanced data.
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