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Abstract A main function for supporting global
objectives in a manufacturing supply chain is planning
and scheduling. This is considered such an important
function because it is involved in the assignment of
factory resources to production tasks. In this paper, an
advanced planning model that simultaneously decides
process plans and schedules was proposed for the
manufacturing supply chain (MSC). The model was
formulated with mixed integer programming, which
considered alternative resources and sequences, a
sequence-dependent setup and transportation times.
The objective of the model was to analyze alternative
resources and sequences to determine the schedules
and operation sequences that minimize makespan. A
new adaptive genetic algorithm approach was devel-
oped to solve the model. Numerical experiments were
carried out to demonstrate the efficiency of the
developed approach.
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Introduction

Many manufacturing enterprises are developing into
global chains covering multiple manufacturing sites and
consisting of suppliers, fabrication and assembly shops,
as well as outsourcing entities. The manufacturing sup-
ply chain (MSC) tries to optimize the total system
to cope with global manufacturing. Increasingly,
enterprises are being organized as multiple plant chains
of different units. For that reason, planning and sched-
uling activities are very complex, and have to take place
within the enterprise and across the entire supply chain
in order to achieve high quality products at lower cost,
lower inventory and high levels of performance. As a
result, to efficiently provide global optimal solutions,
manufacturing enterprises are migrating from separated
planning processes toward more coordinated and inte-
grated planning processes. However, state-of-the-art
solutions do not effectively manage this planning and
scheduling. Additionally, the transportation associated
with manufacturing processes in several different plants
and outsourcing plants becomes an important and prac-
tical issue (Guinet, 2001; Lutz, Helms, & Wiendahl, 1999;
Moon, Kim, & Gen, 2004; Vercellis, 1999).

This paper presents an advanced planning model in
a MSC to provide realistic process plans and schedules
for manufacturing entities. The model was developed to
determine a global optimal schedule of machine assign-
ments and operation sequences of customer orders that
minimizes the total processing time. The model treats
one of the most important issues for supporting
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management goals because the function takes part in
the assignment of factory resources to production tasks.
In addition, it is important that customer orders are met
on time.

There has been some research completed for
advanced planning. Tan (2000) presented a review of the
research in the integrated process planning and sched-
uling area and discussed the extent of applicability of
various approaches. Palmer (1996), Brandemarte and
Calderini (1995) presented several operational planning
models based on material resource planning (MRP) con-
cepts. Saygin and Kilic (1999) and Morad and ZalZala
(1999) proposed several operational planning models
with the objective of reducing the completion time.

More recently, Thoney, Hodgson, King, and Taner
(2002) developed a heuristic procedure for flexible
scheduling, including inter-plant transportation. They
considered batch processing, which includes both inter-
nal and external transportation operations. Moon, Kim,
and Hur (2002) proposed an integrated process plan-
ning and scheduling model to minimize total tardiness
through analysis of the alternative resource selection
and the operation sequences in MSC using mixed inte-
ger programming. They developed a genetic algorithm
(GA) approach to solve the model. Cochran, Horng,
and Fowler (2003) proposed a two-stage multi-popula-
tion GA to solve the parallel resource scheduling prob-
lems. Guinet (2001) formulated a production planning
problem appearing as a network program solved with a
primal-dual approach. Tan and Khoshnevis (2004) pre-
sented a linearized polynomial mixed integer program-
ming model for the integration of process planning and
scheduling problem. Moon and Seo (2005) developed an
operational planning and scheduling model for a multi-
plant composed of a network of production facilities,
and of multiple products flow through manufacturers.
They also developed a GA based heuristic approach to
solve the model.

The models introduced above consider alternative
machines for each operation with a fixed sequence or
with a non-constraint operational sequence when gen-
erating a schedule. When assigning resources to orders,
some models assume infinite resource capacities on the
shop floor, a common due date for all orders, and an
idle plant. As a result, the schedules may end up with an
infeasible task, even before the start of manufacturing.

In this paper, an advanced planning problem is con-
sidered which minimizes the makespan for a MSC, and
that is composed of many production facilities with out-
sourcings and with multiple product flows through man-
ufacturers. The advanced planning problem includes a
range of capabilities, from finite-capacity scheduling at
the shop floor level, through constraint-based planning,

to the advanced planning in a manufacturing supply
chain. The model is formulated with mixed integer pro-
gramming which considers alternative machines and
sequences, a sequence-dependent setup and transporta-
tion times. It was assumed that the alternative machines
had different capabilities and required unequal process-
ing times for each operation. The operation sequences
for each order included precedence constraints.

In order to obtain good solutions for planning and
scheduling models, various GA approaches have been
developed (Cochran et al., 2003; Moon & Seo, 2005;
Moon et al., 2002). However, despite the successful
application of various GAs to numerous planning and
scheduling optimization problems, the identification of
the correct settings of genetic parameters (such as pop-
ulation size, crossover and mutation rates) for these
problems is not an easy task. This is mainly because
the performance of GAs relies highly on the settings
of the parameter values. Therefore, there have been
many studies performed to identify the correct settings
for these values (Angeline, 1995; Eiben, Hinterding,
& Michalewicz, 1999; Fogel, Fogel, & Ohkura, 2001;
Herrera & Lozano, 2003; Yun, 2002).

Consequently, this paper developed a new adaptive
genetic algorithm (AGA) based on a heuristic approach.
The suggested AGA approach has adaptive schemes
that can automatically determine the use of the local
search technique and adaptively regulate the rates of
crossover and mutation operations in a GA; this is done
during its search process.

Problem definition

The objective of the advanced planning problem is to
determine an optimal schedule with resource selection
for assignments, operations sequences, and allocations
of variable transfer batches. This optimal schedule min-
imizes the makespan that consists of processing times,
setup times and transportation times.

The advanced planning problem is defined as: given a
set of n customer orders which are to be processed using
m resources, with alternative operations sequences for
orders and alternative resources for operations in the
environment of a MSC; find an operation sequence for
each order and a schedule in which orders pass through
machines, as well as a schedule in which operations on
the same orders are processed, such that it satisfies the
precedence constraints and is optimal with respect to
the minimization of the makespan criterion.

According to the production capacity, location and
facility features of a plant; the transportation of mate-
rial flows between plants in a MSC should be considered,
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as each of them influences the performance measures
such as total machining and transportation times. The
resources have finite capacities, different capabilities
and require unequal processing times for a specific oper-
ation. Alternative resources for an operation can be
used to define flexible process plans and schedules for a
customer order.

System characteristics are as follows: the system is
composed of a network of plants. Transportation and
setup times are sequence-dependent and all machines
have a distinct initial load level. The schematic diagram
of an advanced planning problem for a MSC is illus-
trated in Fig. 1.

Model development

The advanced planning problem includes the opera-
tion sequences that select a resource for each operation
and determine the schedules for all parts. Operation
sequence problems can be treated as multiple traveling
salesman problems, each of which determines the opera-
tion sequences for each order. Since the sequence should
obey the precedence relations intrinsic to the order,
the traveling salesman problem with precedent con-
straints could be considered to represent the sequenc-
ing structure for an order. Additionally, the transition
costs between the operations for an order, which corre-
spond to the travel costs between nodes in the original
traveling salesman problem, are not given, but should
be obtained by solving a resource selection
subproblem.

From an unordered set of the operation processes
with precedence relations and alternative resources, an
advanced planning problem determines a schedule with
resource selection and an operation process plan with

consideration of the combination of parallel processes
and alternative resources for operations and resource
constraints. Figure 2 shows an example of the process
that determines a schedule with operation selection and
operation sequence.

The following notations are used to describe the prob-
lem throughout this paper:

k, l index for order, k, l = 1, . . ., K, where K is the
number of orders.

i, j index for operation, i, j = 1, . . ., I, where I is the
number of all operations.

m, n index for resource, m, n = 1, . . ., M, where M is
the number of resources.

Rk set of precedence relations of two operations in
order i, i.e., Rk = {(i, j)|∀(i, j) = pair of opera-
tions included in order k where operation i pre-
cedes operation j}.

Qk set of operation pairs in order k without prece-
dence relation, i.e., Qk = {(i, j)|∀(i, j) = pair of
operations included in order k where operations
i and j can be processed in any order}.

Nm set of operations to be performed on resource m.
pkim processing time of operation i of order k on

resource m.
M an arbitrary large positive number.

Cm available capacity in resource m.
tmn transportation time from resources m to n.
skilj setup time required to transfer from operation i

of order k to operation j of order l.
qk lot size for order k.
uk size of unit load for order k.

The variables are introduced to adapt the advanced
planning model as follows:
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xkim =
⎧
⎨

⎩

1, if operation i in order k is assigned
to machine m,

0 otherwise.

ykimljn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if operation i in order k
on machine m
precedes operation j in order l
on machine n,

0, otherwise.
ckim completion time of operation i in order k on
machine m

Generally, the transportation time between plants is
larger than that between resources within a plant. In
this paper, since both intra-plant transportation capacity
between resources and inter-plant transportation capac-
ity are assumed to be infinite, vehicle assignments for
intra- and inter-transportations are not necessary. There-
fore, transportation from resource m to resource n, tmn,
contains the transportation time between plants, if
resources m and n are not in the same plant. If the trans-
portation load size between resources is fixed (i.e., unit
load size uk), the number of sublots can be obtained
by �qk/uk�, where �x� represents the smallest integer
greater than or equal to x. Because a unit load is han-
dled as an individual part, the total number of items
under scheduling consideration equals to the number of
total sublots for all orders,

∑
∀k �qk/uk�.

In general, the time to complete the orders for all
customers can be calculated by summing setup times,

transportation times, processing times, and waiting
times. If two jobs on the same resource that are sched-
uled consecutively, then the setup time is added. If two
operations in the same order are processed on two differ-
ent machines, the transportation time is considered. The
length required to complete the orders for all customers
is called makespan. The makespan is important when
the number of customer orders is finite. The makespan
was denoted by E and defined as the time it takes for the
last customers’ order to leave the manufacturing system,
that is,

Xk = max
∀i and m

{ckim} , and (1)

E = max
∀k

{Xk} = max
∀k,i and m

{ckim} . (2)

Minimizing the makespan in a MSC forces the planner to
balance the workload over various resources and plants.
The mixed integer programming model for the advanced
planning problem in a MSC is presented below.

Minimize E
subject to

ckjn − ckim + M(2 − xkjn − xkim)≥ ukpkjn + tmn,

∀(i, j) ∈ Rk, k, m, n, m �= n, (3)

ckjn − ckim+M(1−ykimkjn)≥ ukpkjn + tmn,

∀(i, j) ∈ Qk, k, m, n, (4)
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−ckjn+ckim+Mykimkjn+M(2 − xkjn − xkim)

≥ ukpkim + tnm, ∀(i, j) ∈ Qk, k, m, n, (5)

cljm − ckim+M(1−ykimljm)≥ ulpljm + skilj,

∀(i, j) ∈ Nm, m,k, l, k �= l, (6)

−cljm+ckim + Mykimljm+M(2 − xljm − xkim)

≥ ukpkim + sljki, ∀(i, j) ∈ Nm, m,k, l, k �= l, (7)

xljn + xkim − 2ykimljn ≥ 0, ∀k, l, i, j, m, n, (8)

∑

k

∑

i

pkimxkim ≤ Cm, ∀m, (9)

∑

∀m

xkim = 1, ∀k, i, (10)

ckim ≥
{

pkim, ∀i ∈ Qk, k, m,
0, ∀i /∈ Qk, k, m

(11)

xkim,ykimljn ∈ {0, 1}, ∀k, l, i, j, m, n. (12)

Constraint (3) means that the operations of the order
of each customer are processed according to the required
precedence constraint. Constraints (4) and (5) ensure
that any two operations belonging to the same customer
order cannot be processed simultaneously. Constraints
(6) and (7) ensure that a resource cannot simultaneously
process more than one customer order. These
constraints, (3) through (7), are referred to as disjunc-
tive constraints because only one or the other must hold.
Constraint (8) guarantees that a precedence relation
from operation i of order k on resource m to opera-
tion j of order l on resource n is possible only when the
resource m and n are assigned to the operations i and j,
respectively. Constraint (9) restricts the available capac-
ity for each resource. Constraint (10) ensures that only
one resource for each operation should be selected. Con-
straints (11) and (12) imply non-negativity and integral-
ity of the corresponding variables.

Adaptive genetic algorithm approach

To solve the mixed integer programming model sug-
gested in section “Model development”, a new AGA
approach with the adaptive scheme was proposed, which
could automatically regulate GA operators (crossover
and mutation rates) and could use a local search tech-
nique during its search process. The AGA reinforced

by an adaptive scheme could appropriately regulate a
balance between exploitation and exploration during its
search process.

Therefore, first, some concepts and logics on exploi-
tation and exploration in a genetic search process are
discussed. Secondly, the detailed implementation pro-
cedure of the AGA follows.

Exploitation and exploration in genetic search process

In general, as a GA converges, the similarity among the
chromosomes of a GA is increased and the variance of
the fitness values of the chromosomes is decreased. If the
GA search proceeds to an optimal solution, it can get a
reliable solution. However, if it becomes fixed at a local
optimum, there may be a premature convergence, which
makes improvement of the solution and the search for
an optimal solution very difficult.

Therefore, a reliable search method in GA requires
that it: (i) continuously leads the convergence to an opti-
mal solution and (ii) suitably regulates the inputs of new
chromosomes into the current population in order to
prevent premature convergence; this is usually referred
to as exploitation and exploration of a solution. Exploi-
tation uses knowledge acquired by exploration to reach
better positions in the search space; while, exploration
investigates new and unknown areas in the search space.
By exploration, the diversity of the chromosomes in a
GA population is maintained, and its premature conver-
gence to local optima can be avoided. Alternatively, by
exploitation, the searching ability for an optimal solu-
tion is enhanced, and the good chromosomes in a GA
population are continuously preserved.

Many efforts for regulating a balance between exploi-
tation and exploration in a GA have been performed.
Srinivas and Patnaik (1994) developed a scheme that
the crossover and mutation rates are increased when a
population in GA tends to get stuck at a local optimum;
they are decreased when the population is scattered in
the search space of a GA. Other researchers (Herre-
na & Lozano, 2003; Mak, Wong, Wang, 2000; Wu, Cao,
& Wen, 1998) have also suggested various schemes to
adaptively regulate crossover and mutation rates.

A common characteristic of the studies above men-
tioned is to identify the status in which GA search pro-
cess is converging or not converging, to adaptively regu-
late the crossover and mutation rates. As shown in Fig. 3,
in a situation where the search is converging, the rates of
mutation and crossover operations should be increased,
respectively to prevent premature convergence and to
reinforce the search to optimal solution. On the other
hand, if GA is not conversing as in Fig. 4, then the rates of
crossover and mutation operations should be decreased
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Fig. 3 The situation that GA is converging

Fig. 4 The situation that GA is not converging

to restraint the introduction of new chromosomes and
to guide the search toward convergence.

However, there are some weaknesses in the GA
search strategies for these two situations. In the case
of Fig. 3, where GA is converging, since the similarity
among chromosomes of the GA population increases,
the fitness values of the chromosomes are significantly
similar to each other, and the variety of the popula-
tion is reduced. This situation definitely deteriorates
the performance of the GA, since it might be difficult
for a GA search to avoid premature convergence even
though the rates of crossover and mutation operations
are increased. The technique that helps to improve this
weakness of GA performance is to forbid the introduc-
tion of new chromosomes by crossover operations into
the population when too many similar chromosomes
already exist.

One possible alternative is to add new chromosomes
into the current population. These new chromosomes
should not be similar to the current population; cer-
tain high fitness values that are similar to that of the
population should be maintained. The mutation oper-
ator in a GA is an example of such alternatives, but it
usually generates random outputs, which is not neces-
sarily an ideal approach. A local search technique that
can search around the convergence area in a GA search
at each generation is a possible alternative, since it is
capable of having both a certain high fitness value, like
the chromosomes generated by a GA, and being able
to produce new chromosomes that discriminate the

similarity with the chromosomes (Espinoza, Minsber,
& Goldberg, 2001).

In the situation of Fig. 4, where the GA is not converg-
ing, detailed analysis divides the situation in two ways:
one considers the case that the current fitness value of
the GA is inferior to the previous fitness values during
the genetic search process; the other is the case that the
fitness values in continuous generations of the GA do
not show any change.

In the first situation, the introduction of the inferior
chromosomes in a current generation will be increased
to the next generation, which deteriorates the perfor-
mance of the GA. To overcome this weakness, the intro-
duction of the new chromosomes should be reduced
when constructing a new population of the next genera-
tion. Decreasing the rates of the crossover and mutation
operations is a good choice for this purpose. By decreas-
ing the rates, good chromosomes with a high fitness value
in the current generation are kept, which can help the
convergence of the solution.

The second case often occurs after the GA search
has significantly progressed. At that time, any improve-
ment or convergence of the solution may not occur, even
though the introduction of new chromosomes to the next
generation is reduced by decreasing the rates of cross-
over and mutation operations; which is mainly because
the fitness values of the chromosomes at that time are
significantly similar to each other. Therefore, a new tech-
nique for improving this situation is required. A possi-
ble alternative is to add the new chromosomes into the
current population, resulting from the local search tech-
nique that is already explained when the GA is converg-
ing. Table 1 summarizes three resolutions to improve the
searching capability of pure adaptive GA.

With the improved methods stated above, the three
improved situations can be reached as shown in Table 1.
To realize the three situations in Table 1, the change C(t)
of the population at generation t was used as follows:

C(t) = fmax(t) − f (t)
fmax(t) − fmin(t)

(13)

where fmax(t) and fmin(t) were the maximal and minimal
fitness values of the population, respectively, and f (t)
was the average of all the fitness values of the popula-
tion, at generation t.

The change C(t) in Eq. (13) can confirm the conver-
gence situation of the solution in the GA population
(Herrena & Lozano, 2003). Using Eq. (13), the change
ratio (CR) of the fitness values in the continuous two
generations could be formulated as follows:

CR = C(t)
C(t − 1)

(14)
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Table 1 Three improved
situations Situation 1 If GA is converging, the rates of crossover and mutation operations are

increased and a local search technique is also applied to the GA loop
In this case, both the reservation of good chromosomes and the introduc-
tion of new chromosomes can be simultaneously achieved

Situation 2 If GA is not converging (the case where the current fitness value of the
GA is inferior to the previous fitness values), the rates of crossover and
mutation operations are decreased
In this case, the introduction of new chromosomes is reduced and the
convergence of the solution can be progressed.

Situation 3 If GA is not converging (the case where the fitness values in the continu-
ous generations of the GA do not show any change at all), a local search
technique is applied to the GA loop
In this case, several new chromosomes, without the similarity of the current
population and that keep a certain high fitness value similar to that of the
population, are generated and inserted into the GA loop

Table 2 Three conditions

Conditions

Situation 1 CR < 1
Situation 2 CR > 1
Situation 3 CR = 1

Using the CR in Eq. (14), when minimization was
assumed, the three improved situations in Table 1 could
be represented as shown in Table 2.

Using Tables 1 and 2, the procedure to adaptively reg-
ulate a balance between the exploration and exploitation
during the GA search could be formulated. The proce-
dure that uses the rate of the crossover operation (pC),
the rate of the mutation operation (pM) and the local
search technique is shown in Fig. 5.

The detailed approach using the GA and local search
technique for implementing the proposed procedure are
presented in section “Design of AGA”

Design of AGA

For designing the proposed AGA, both the GA and local
search technique were used. The former was used to
globally search the entire search space; while, the latter
was used to locally search around the convergence area
in the GA loop. By the mixed use of the two approaches,
a balance between the exploitation and exploration dur-
ing the search process of the AGA could be adaptively
regulated. The detailed procedures for implementing
both the GA and local search approaches are shown in
the following sub-sections.

GA approach

The idea of the multistage operations considered in
the proposed AGA came from the basic concept of a

multistage decision making model, such as in dynamic
programming. The multistage decision making model
can be divided into stages, with a decision required at
each stage. Each stage has a number of states associ-
ated with it. The decision at one stage transforms one
state into a state in the next stage. After all the deci-
sions were made for choosing states, a solution could be
drawn, and the fitness of the result was in terms of the
different decisions made along the route.

Since it was decided that both the operation sequence
and the resource selection can affect the solution of an
advanced planning problem, it was obvious that the
chromosome presentation of the AGA for advanced
planning problems consists of three main parts such as
operation sequence, resource selection, and scheduling.

(1) Representation of feasible solution. The advanced
planning problem includes various types of constraints
such as precedent constraints and limited capacities. In
order to generate a feasible solution, the representation
scheme has to be capable of considering all possible con-
straints for a given problem. Therefore, a critical issue
is the development of a representation scheme to rep-
resent a feasible solution. To generate a feasible sched-
ule with operation sequence and resource selection, a
representation scheme using the integrated concept of
topological sort (Horowitz & Sahni, 1984) and random
assignment of priority, and random resource selection is
proposed. Suppose there are two customer orders, which
consist of five operations for each order, o11 through o25,
where oki denotes operation i of order k. The chromo-
some structure can be represented as shown in Fig. 6.

In Fig. 6, the second row of the representation indi-
cates the priority for candidate selection when operations
with no incoming edges exist in a network of customer
order with precedent constraints. The value of a gene
is generated at random within [1, J] exclusively, where
J is the number of all operations. For example, oper-
ations o11, o21, and o22 have no precedent constraints
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Fig. 5 Regulation of a
balance between exploitation
and exploration

procedure: Regulation of a balance between exploitation and exploration 

input: CR, pC(t), pM(t)
output: pC(t+1), pM(t+1)

begin:
if CR < 1 then

pC(t+1) = pC(t) + 0.1; 

pM(t+1)= pM(t) + 0.01; 
apply local search technique to GA loop; 

if CR > 1 then
pC(t+1) = pC(t) - 0.1; 
pM(t+1) = pM(t) - 0.01; 

if CR = 1 then
apply local search technique to GA loop; 

end;
end.

Fig. 6 Chromosome
representation
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simultaneously as shown in Fig. 6. From the represen-
tation scheme, o22 is firstly selected for determining the
operation sequence because the operation o22 has a high
priority for selection. After selecting the o22, we can
remove the o22 and all arcs leading out of o22. Now o11
and o21 have no predecessors and o11 is selected for the
next operation because o11 has a higher priority than
o21. By the same manner, a final feasible path o22—o11—
o12—o21—o13— o15—o23—o24—o14—o25 is determined.

The third row indicates the randomly selected
resource number for each operation. Each operation
randomly selects a resource number from the possible
alternative resources. Let a feasible operation sequence

with corresponding resources be (o22, M2) —(o11, M3)—
(o12, M2)—(o21, M1)— (o13, M2)—(o15, M5)—(o23, M3)

— (o24, M3)—(o14, M4)—(o25, M2), where Mm denotes
machine m. A feasible schedule is then obtained as
shown in Fig. 6.

(2) Overall procedure for generating a feasible solution.
The overall procedure to determine a feasible
schedule and operation sequence with resource selec-
tion is shown in Fig. 7. The first step in the AGA is to
initialize the population of feasible solutions. The initial-
ization of the population is done by generation feasible
solutions randomly as much as the population size.
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Fig. 7 Overall procedure of
feasible solution generation

procedure: feasible solution generation

input: set of precedent constraints, alternative resources, available capacities, and processing 

and transportation times. 

begin:

generate chromosome: generate a random priority number (1 to J ) for operations with

corresponding resources; 

generating an operation sequence:

while (any operation remains) do 

  if every operation has a predecessor then the network is infeasible: stop; 

else pick an operation okl without predecessors; output (okl, Mm); and

 delete okl and all arcs leading out of okl from the network;

end;

generate a schedule:

while (any operation remains) do

Allocate all operations to the corresponding resources sequentially; 

end; 

end.

Local search approach

Local search techniques usually use local information
about the current set of data (state) to determine a prom-
ising direction for moving some of the data set, which
in turn is used to form the next set of data. The advan-
tage of local search techniques is that they are simple
and computationally efficient. However, they are easily
entrapped in a local optimum. In contrast, global search
techniques, such as GA, explore the global search space
without any local information about a promising search
direction. Consequently, they are less likely to become
trapped in local optima; however, their computational
cost is higher.

Many researchers have reported that hybrid
approaches with both the GA and a local search tech-
nique produces certain benefits (Lee, Yun, & Gen, 2002;
Li & Jiang, 2000; Yen Liao, Lee, & Randolph, 1998). The
reason is that the hybrid approaches can combine a merit
of the GA with that of the local search technique. That is,
the hybrid approaches are less likely to become trapped
in a local optimum than the local search technique. Due
to the local search technique, the hybrid approach often
converges faster than the GA does.

Therefore, in this paper, a method was used to hybrid-
ize the GA with the local search technique. This
approach, as seen in most of conventional hybrid GAs,
was to incorporate the local search technique into the
GA loop (Gen & Cheng, 2000; Yen et al., 1998). With
this approach, the local search technique was applied
to each newly generated offspring to move it to a local
optimum before injecting it into the new population.

For the proposed AGA, the iterative hill climbing
method suggested by Michalewicz (1994) was used and
improved upon. This method could guarantee the
desired properties of a local search technique for hybrid-

ization as explained above. The main difference between
the conventional iterative hill climbing method and the
improved iterative hill climbing method was that the
latter selects an optimal chromosome among the chro-
mosomes satisfying the constraints of the hybrid GA,
while the former selects a current chromosome at ran-
dom. This allows the improved iterative hill climbing
method to have various search abilities and good solu-
tions unmet by the conventional method. The detailed
procedure of the improved iterative hill climbing
method, when minimization was assumed, is shown in
Fig. 8.

Implementation procedure of AGA

According to the logic and scheme used in sections
“GA approach” and “Local search approach”, the over-
all procedure could be formulated for the APS prob-
lem using the AGA; the procedure is shown in Fig. 9.
In this procedure, P(t) and C(t) were defined as pop-
ulations for the parent and offspring at generation t,
respectively. In the overall procedure, the appropriate
functions of crossover and mutation were chosen in
correspondence to the two vectors of the chromosome.
There was only one crossover for phase 1 of section
“GA approach”, since after the operation sequence was
decided, the stages (operations) position in phase 2 for
choosing states (machines) did not have to be changed.

Numerical experiments

A benchmarking example (Moon et al., 2004) consist-
ing of four customer orders with lot sizes (40, 70, 60,
30) and 6 machines in 2 plants was used to test the
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Fig. 8 Procedure of the
improved iterative hill
climbing method

procedure: improved iterative hill climbing method in GA loop 

input: chromosome vc, 

output: chromosome vn

begin 

select the best chromosome vc in current GA loop; 

randomly generate as many chromosomes as the population size in the neighborhood of vc ;  

select the chromosome vn with the optimal value of the objective function f among the set

of the new chromosomes generated;

if f(vc) > f(vn) then vc vn;

end. 

Fig. 9 Overall procedure for
APS using AGA

procedure: AGA for advanced planning
input: advanced planning data set, GA parameters 
output: best solution

begin 
t  0;

 initialize P1(t) by priority encoding; 

 initialize P2(t) by machine permutation encoding;
  fitness eval(P1, P2);  

   while (not termination condition) do
crossover P1(t) to yield C1(t) by one-cut point crossover;
mutation P1(t) to yield C1(t) by swap mutation;
mutation P2(t) to yield C2(t) by neighbor search mutation;

  fitness eval(C1, C2); by priority decoding and machine permutation decoding;
calculate CR by equations (13) and (14) and adaptively change pC and pM by

invoking the local search in Figure 5; 

select P(t+1) from P(t) and C(t) by roulette wheel selection;
t  t+1;

   end.

Fig. 10 Operations and
precedence constraints for 4
orders
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proposed AGA. Each plant had three resources; Plant
1 = {M1, M2, M3} and Plant 2 = {M4, M5, M6}. The unit
load size for transportation was assumed to be 10 for all
orders. The operations and their precedence constraints
for the 4 orders are given in Fig. 10. The transportation
times between resources and the available capacities for
the resources are given in Table 3, and the processing
times for each operation and their alternative resources
are given in Table 4. The setup times between operations
are given in Table 5.

If the resources m and n are not included in a plant,
the transportation time tmn was assumed to be 50 ( i.e.,
transportation time between plant 1 and plant 2), and

the unit size per trip was equal to the lot size of each
order. To solve the problem using the proposed AGA,
the parameters used were set as follows:

Maximum generation maxGen = 200,
Population size popSize = 100,
Initial crossover probability pC = 0.6,
Initial mutation probability pM = 0.2,
Search range for improved iteration hill climbing
method = 0.5

In the parameters of the AGA mentioned above, all
the parameters except for the pC and pM were fixed
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Table 3 Transition time tmn between machines

Plant 1 Plant 2

M1 M2 M3 M4 M5 M6

M1 0 5 6 M4 0 5 6
Plant 1 M2 5 0 7 Plant 2 M5 5 0 7

M3 6 7 0 M6 6 7 0
Available capacity 1000 1000 2000 Available capacity 2000 2000 2000

Table 4 Processing time pkim for operations in alternative machines

Order 1 Order 2 Order 3 Order 4
Operation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

M1 7 7 – 6 – 3 8 – 10 6 15 – – – – – 5
Plant 1 M2 – – 6 – 9 5 – – – 5 – 6 – 5 – 5 –

M3 – – 5 – – – 12 5 – – – – 6 – 6 – –
M4 5 6 – – 8 – 9 – 10 – 6 – 6 – 4 3 –

Plant 2 M5 – – 8 – – 6 – 8 – 6 – 5 – 9 – – 4
M6 – – – 5 – – 8 – 7 – 5 – 8 – – 5 –

Table 5 Setup time between operations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 – 17 36 6 37 20 11 30 5 32 30 36 23 21 1 28 20
2 42 – 32 3 2 15 15 22 44 39 30 37 47 12 5 38 31
3 6 6 – 37 26 0 23 29 12 5 13 3 13 24 29 26 8
4 12 3 40 – 19 46 31 30 31 49 49 27 39 45 9 0 3
5 2 48 43 25 – 49 10 11 4 8 17 39 34 31 11 0 24
6 24 26 43 31 49 – 22 31 21 43 31 10 30 23 2 34 38
7 20 45 28 43 22 16 – 39 46 25 43 34 9 22 38 12 7
8 15 41 44 35 14 10 30 – 2 14 7 8 22 3 18 45 18
9 25 47 22 21 47 39 26 0 – 22 33 7 37 20 25 20 7
10 3 46 9 10 35 18 5 21 24 – 33 40 22 23 41 37 31
11 1 17 31 3 30 15 23 21 37 3 – 15 23 32 3 46 6
12 4 18 41 37 26 39 43 46 44 28 13 – 45 47 7 32 2
13 18 45 24 27 47 21 8 21 35 38 26 39 – 21 2 12 33
14 48 37 46 44 25 24 1 8 38 46 48 37 6 – 6 41 10
15 43 3 39 3 44 17 46 24 46 33 9 16 15 4 – 4 12
16 9 44 40 21 16 12 36 37 44 16 41 31 7 3 8 – 44
17 14 21 5 29 44 48 8 31 10 44 1 7 18 2 11 22 –

during its search process. However, the pC and pM were
variously changed to automatrically regulate a suitable
balance between the exploitation and exploration dur-
ing the search process of the AGA.

By applying the proposed AGA to the example prob-
lem, the best solution was obtained as the makespan of
1,102 time units, and the corresponding chromosomes
and schedules were as follows:
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Table 6 Best schedule for the benchmarking problem

Plant d Machine Mm Operation Oki(start time–finishing time)

M1 o22(0–210) o23(232–792) o45(952–1102)
Plant 1 M2 o21(35–665) o42(696–846) o44(890–1040)

M3 o31(0–300) o13(551–751) o43(782–962)
M4 o11(0–200) o12(217–457) o34(578–938)

Plant 2 M5 o33(350–710) o35(750–1050)
M6 o41(0–240) o32(452–872) o14(893–1093)

Table 7 Comparisons of Moo–Kim–Gen’s and AGA approaches on different problem settings

Problem settings maxGen popSize Moon–Kim–Gen’s approach Proposed AGA approach
(No. of orders, No. of operations,
No. of plants, No. of resources) Makespan Aver. comp. time (s) Makespan Aver. comp. time (s)

(5, 21, 2, 6) 100 100 1370 9 1370 2
200 100 1370 1370
500 100 1370 1370

(10, 40, 2, 6) 100 100 2264 56 2178 21
200 100 2258 2178
500 150 2238 2178

(15, 60, 3, 9) 200 100 1659 98 1598 48
500 100 1623 1598
500 150 1620 1598

(20, 80, 4, 16) 200 100 1330 132 1306 76
500 100 1330 1306
500 150 1327 1306

index j: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
v1(j): 2 3 7 13 8 1 9 4 11 5 12 17 6 10 14 15 16
v2(j): 4 4 3 6 2 1 1 3 6 5 4 5 6 2 3 2 1

S = {Order 1, Order 2, Order 3, Order 4}
= {(o11, M4 : 0 − 200), (o12, M4 : 217 − 457),

(o13, M3 : 551 − 751), (o14, M6 : 893 − 1093),

(o22, M1 : 0 − 210), (o21, M2 : 35 − 665),

(o23, M1 : 232 − 792), (o31, M3 : 0 − 300),

(o33, M5 : 350 − 710), (o32, M6 : 452 − 872),
(o34, M4 : 578 − 938), (o35, M5 : 750 − 1050),

(o41, M6 : 0 − 240), (o42, M2 : 696 − 846),

(o43, M3 : 782 − 962), (o44, M2 : 890 − 1040),

(o45, M1 : 952 − 1102)}
The best schedule, in detail, is shown in Table 6.

To prove the efficiency of the AGA approach, the
experimental results were compared with Moon–Kim–
Gen’s approach (Moon et al. 2004) by using the same
experimental data that were randomly generated. The
Moon–Kim–Gen’s approach is one of the traditional
GAs that rely highly on the proper settings of genetic
parameter values. The computational experiments for
comparison were conducted on a computational envi-
ronment with Pentium 4 CPU and 512 MB of RAM.
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Fig. 11 Converging processes of the proposed AGA and Moon–
Kim–Gen’s GA

Table 7 shows the average makespan of the best solu-
tions found over 10 runs for each of 12 cases, i.e., 4
different problems and 3 parameter combinations for
each problem. In this set of experiments, the pC = 0.6
and pM = 0.2 were chosen. For the first, second and
third problem settings, the experimental probabilities
of getting the best solution were about 100%. For the
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Fig. 12 Changing process of the (a) crossover probabilities and (b) mutation probabilities

forth experiment, the probability of getting the best
solution was about 94%. However, Moon-Kim-Gen’s
approach could not reach the best solution for the sec-
ond, third and forth cases. From the results, it could be
seen that the AGA approach with a local search could
find better solutions with a very high probability and
in reasonable computational times. Also, the proposed
AGA algorithm was relatively insensitive to the change
of parameters, maxGen and popSize. This is because
the proposed AGA algorithm is capable to adaptively
control the balance of the crossover and mutation rates.

In Fig. 11, the average fitness values of 10 runs of
the first 5-order problem setting in Table 7 are plot-
ted to compare the converging processes of these two
approaches. Figure 11 shows that the evolutionary search
behavior of the proposed AGA is better than that of the
Moon–Kim–Gen’s GA approach.

In order to trace the adaptive capability of the pro-
posed adaptive GA, the changing values of the crossover
and mutation rates through the whole generations of the
first 5-order problem in Table 7 were plotted in Fig. 12.
Figure 12(a) and (b) illustrate that the crossover rate
increases overall from 0.6 to 0.82 in the 61th generation,
while the mutation rate decreases from 0.2 to 0.1 until
around 64th generation. This controlled change of cross-
over and mutation rates by the adaptive scheme could
bring out the outpeformance of the proposed AGA to
Moon–Kim–Gen’s approach shown in Fig. 11.

Conclusion

This paper addresses the adaptive genetic algorithm
(AGA) approach with a local search to solve the
advanced planning problems in a manufacturing supply
chain. The objective was to find the optimal resource

selection for assignments and operations sequences in
order to minimize the makespan; this included the setup
time, transportation time, and operations processing
time. Some numerical experiments were offered to prove
the efficiency of the AGA. The result showed that the
AGA found a better solution when the problem sizes
were enlarged. In the end, the experiments were ana-
lyzed in detail, and the appropriate parameter setting
of the proposed AGA was determined. This approach
was compared with Moon–Kim–Gen’s approach using
the same data. The results using various sizes of exper-
iments have demonstrated the efficiency of the AGA
by comparing it with the previous methods as well as
the capability of adaptive regulation of exploration and
exploitation using a local search technique embedded.
In conclusion, the proposed approach can be effectively
used to solve the complex and sizable problem of
advanced planning in a manufacturing supply chain.
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