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Abstract Fashion products require a significant amount of
customization due to differences in body measurements, di-
verse preferences on style and replacement cycle. It is nec-
essary for today’s apparel industry to be responsive to the
ever-changing fashion market. Just-in-time production is a
must-go direction for apparel manufacturing. Apparel indus-
try tends to generate more production orders, which are split
into smaller jobs in order to provide customers with timely
and customized fashion products. It makes the difficult task of
production planning even more challenging if the due times
of production orders are fuzzy and resource competing. In
this paper, genetic algorithms and fuzzy set theory are used
to generate just-in-time fabric-cutting schedules in a dynamic
and fuzzy cutting environment. Two sets of real production
data were collected to validate the proposed genetic opti-
mization method. Experimental results demonstrate that the
genetically optimized schedules improve the internal satis-
faction of downstream production departments and reduce
the production cost simultaneously.
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Introduction

Apparel production is a type of assembly manufacture that in-
volvesanumberofprocesses.Fabric-cuttingoperationisdone
in a fabric-cutting department, which usually serves several
downstream sewing assembly lines. Effective upstream fab-
ric-cutting operation ensures the smoothness of downstream
operations, and thus is vitally important to the overall system
efficiency. Production scheduling of apparel production is a
challenging task due to a number of factors. First of all, fash-
ion trend is always unpredictable, thus just-in-time produc-
tion is employed to ensure products’ short time-to-market.
Moreover, in order to cope with the increasing demand on
product customization, the quantity of garments per produc-
tion order tends to be smaller and thus number of produc-
tion order processed by the manufacturer has been becoming
larger. In this paper, just-in-time (JIT) production scheduling
of manual cutting department operation is investigated.

JIT scheduling

Production scheduling has been extensively studied, and the
previous literature has more focused on some single regular
measures, such as mean flow-time and mean lateness. Since
the 1980s, the concept of penalizing both earliness and tar-
diness has spawned a new and rapidly developing line of
research in the scheduling field (Baker & Scudder, 1990).
In a JIT environment, both earliness and tardiness must be
discouraged since early finished jobs increase inventory cost
while late jobs lead to customers’ dissatisfaction and loss of
business goodwill. Thus an ideal schedule is one in which all
jobs finish within the assigned due dates. The objectives of
early/tardy (E/T) scheduling could be interpreted in different
ways, for example minimizing total absolute deviation from
due dates, job dependent earliness and tardiness penalties,
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nonlinear penalties, and so forth (see Baker & Scudder, 1990
for an comprehensive survey).

A main stream of E/T scheduling research is about the
scheduling of a group of independent jobs with a common
due date (De, Ghosh, & Wells 1991, 1993; Hall, Kubiak,
& Sethi 1991; Hall & Posner, 1991; Hoogeveen & van de
Velde, 1991). The common due date is either a known prop-
erty of the problem, or a decision variable to be optimized
along with the job sequence. The latter is equivalent to the
former for single-machine case when the common due date
is large (long) enough (De et al., 1991, 1993; Hoogeveen &
van de Velde, 1991). Therefore, the former case of scheduling
problem with a known due date can be divided into two clas-
ses, namely large due date (unrestrictive case) and small due
date (restrictive case). Large due-date problems are analyti-
cal solvable (De et al., 1993; Kanet, 1981), while small due
date cases are proven NP-hard even with linear E/T penalties
(De et al., 1991; Hall et al., 1991; Hoogeveen & van de Velde,
1991). In the more complex case of small due-date, research-
ers obtained so far limited results for some special cases using
various techniques such as explicit enumeration algorithms
(Bagchi, Sullivan, & Chang, 1986), branch and bound algo-
rithms (Bagchi, Sullivan, & Chang, 1987; Szwarc, 1989), and
pseudo-polynomial dynamic programming algorithms (Hall
et al., 1991; Hoogeveen and van de Velde, 1991). In apparel
industry, a single-cutting department works on different pro-
duction orders simultaneously in order to meet the needs of
downstream sewing lines. Different from the above common
due date cases, each production order, which is composed of
a group of smaller jobs, has a distinct due time.

Parallel machine scheduling

The above mentioned studies are mainly for single machine
production scheduling. The scheduling of cutting department
operation is similar to a traditional parallel machine sched-
uling (Mok, Kwong, & Wong, 2004). Figure 1 shows an
example about the configuration of cutting department.

In parallel machine scheduling, a batch of jobs is sched-
uled to be processed by any one of a number of available ma-
chines so that the best overall system performance is achieved
(Cheng & Sin, 1990). In a cutting department, fabric-cut-
ting jobs, which belong to different production orders, are to
be processed on one of the parallel spreading tables so that
the demand from downstream sewing lines could be timely
fulfilled. Research on parallel machines scheduling with JIT
context has received much attention in recent years. Cheng &
Chen (1994) showed that parallel machine scheduling prob-
lem is NP-hard when due-date is a decision variable. Cheng,
Gen, & Tozawa, (1995) minimized the maximum weighted
absolute lateness on parallel machine using genetic algo-
rithms. Cheng, Chen, & Li (1996) discussed the scheduling of
multiple simultaneously available jobs on parallel machines

with controllable processing times. Chen & Lee (2002) stud-
ied the parallel machine scheduling with a common due win-
dow using branch and bound algorithms. However, the above
results assume all jobs with a common due date.

Moreover, fabric-cutting scheduling has a distinctive
feature that two interdependent processes (spreading and cut-
ting) must be scheduled simultaneously. Spreading opera-
tion must be completed before the cutting operation could
start. Spreading operation can be accordingly viewed as a
setup operation for the cutting process. In addition, fabric-
cutting scheduling is a resource constrained scheduling prob-
lem (see Section ‘Fuzzy duetimes representation’). Ventura
& Kim (2003) recently investigated parallel machine sched-
uling with noncommon due dates and additional resource
constraints, however all jobs processing times are assumed
constant in their investigation. In fabric-cutting scheduling
problem, each job has its individual spreading and cutting
processing times.

Fuzzy scheduling

The traditional production scheduling studies assumed the
due times are crisp values. In practice, jobs being completed
beyond certain due times are sometimes allowed in the apparel
industry. It is because apparel manufacturers determine inter-
nally the due time windows of various production orders for
different production departments including cutting, sewing,
pressing and packaging departments, based on the final deliv-
ery due dates and production capacity. Such internal due time
windows are determined to ensure on time delivery of final
products and reduce work-in-progress. Recently, fuzzy set
theory has been applied to handle the scheduling problem in
fuzzy environment.

Fuzzy set theory (Zadeh, 1965) is an attractive framework
for dealing with ‘fuzzy’ (uncertain) information, and there is
indeed an increasing interest in fuzzy scheduling in the aca-
demia and industries recently (Słowiński & Hapke, 2000).
In the fuzzy scheduling research, fuzzy numbers, an exten-
sion of the concept of confidence intervals, are used to model
the imprecise time parameters. In this paper, the production-
order due-time windows are presented in forms of fuzzy
numbers. Genetic algorithms are then used to optimize the
cutting department production schedules such that the fab-
ric cut pieces required by the downstream sewing lines for
assembly can be maximally satisfied.

The outline of this paper is as follows. Section ‘Problem
formulation’ provides the general description about fabric-
cutting system including model formulation, fuzzy due time
definition, and job placement mechanism. The next section
deals with the general methodology of genetic optimization
of fabric-cutting scheduling with fuzzy due times. The pro-
posed method is demonstrated by two real production cases
in the following Section, in which the genetically optimized
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Fig. 1 Layout of a
fabric-cutting department
consisting of four spreading
tables with examples of fabric
lays are being spread

Length of Spreading Tables 600 feet

Spreading Table 1

Spreading Table 2

Spreading Table 3

Spreading Table 4

fabric lays/jobs*

* fabric cutting jobs belong to different production order.

Fig. 2 Workflow of a
fabric-cutting department fabric-lay

planning
marker

planning
spreading cutting takeoff bundling

results are compared with those implemented by the indus-
trial practice. Finally, conclusions and recommendations for
future work are outlined.

Problem formulation

In a traditional fabric-cutting department, there are several
key operations involved, which are shown in Fig. 2.

The fabric-cutting operation studied in this paper satisfies
the following assumptions:

(a) The manual spreading carts for spreading and manual
straight-knife cutters for cutting are always available
throughout the scheduling period.

(b) Jobs (fabric lays) are always available to be loaded into
the system and be processed by any of spreading carts
and cutters on any of the parallel spreading tables.

(c) No job can be processed on more than one spreading
table simultaneously.

(d) There is no precedence constraint on the jobs.

Nomenclature

A summary of the nomenclature used in this paper is as
follows:
n number of jobs to be processed.
J {J1, J2, . . ., Jn}, set of jobs (fabric lays).
m number of spreading tables in the fabric

cutting department.
M {M1, M2, . . ., Mm}, set of spreading tables

in the cutting department.
p number of production orders to be

processed.

� {θ1, θ2, . . ., θp}, set of production orders
(PO).

x(θ, Jk) state value indicating whether or not job Jk

belongs to production order θ .
x(θ, Jk) = 1 if job Jk belongs to produc-
tion order θ , and x(θ, Jk) = 0 otherwise.

i job setup (spreading) index and i =
1, 2, . . ., n.

j job processing (cutting) index and j =
1, 2, . . ., n.

σs setup (spreading) sequence of jobs.
σc processing (cutting) sequence of jobs.
χ(Jk) quantity of apparel cut-pieces of job Jk .
ϕ(Jk) length of fabric lay of job Jk .
s(Ji ) spreading time of job Ji .
c(J j ) cutting time of job J j .
Ck completion time of job Jk .
Ã fuzzy number A.
D̃θi (t) fuzzy due time of production order θi , i =

1, 2, . . ., p.

Efficient manual cutting systems

The system investigated in this paper assumes an efficient
manual cutting model configuration. In an efficient system,
after spreading and cutting operations, fabric pieces are taken
away from the spreading tables for bundling operations,
which helps to make department for spreading new jobs. In an
efficient fabric-cutting department, a group consisting of four
operators is normally assigned to each spreading table. The
group is divided into two subgroups in which two operators
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are responsible for fabric spreading and the remaining two
operators are responsible for cutting the fabric lay that has
been spread. The division of labor allows operators to focus
on their competent operations, thus improving the overall
efficiency. Spreading operators continue to spread new fabric
lays (jobs) once they have finished the present jobs. The pur-
pose is to reduce delay due to the switching between spread-
ing and cutting. Because of the limited length of spreading
tables, idle time would occur when there is not sufficient free
area on the spreading table available for the new fabric lay.
Cutting operators then cut the fabric lays according to the
spreading schedule, i.e., σs = σc, on each spreading table.
Obviously, cutting idle time occurs when the cutting opera-
tors have finished the current job while the new job is still
being spread and is not yet ready to be cut.

Fuzzy due times representation

As discussed in Section JIT Scheduling, both tardiness and
earliness are discouraged in a JIT environment. A generic
E/T model is represented as

f (S) =
∑

k

(αk Ek + βk Tk) (1)

where Ek = max(0, dk − Ck) is the earliness of job k with
completion time Ck and due time dk , and Tk = max(0, Ck −
dk) is the corresponding tardiness. In (1), αk and βk are
penalty weights for earliness and tardiness, respectively. JIT
scheduling focuses on the best schedule to minimize the
objective function f (S).

In this paper, the due times of different production orders
are represented as trapezoidal fuzzy number (TrFN) with the
following definition,

µD̃(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, t ≤ d A

t−d A

d B−d A , d A < T < d B

1, d B ≤ T ≤ dC

d D−t
d D−dC , dC < T < d D

0, d D ≤ t

(2)

In apparel industry, the factory manager determines depart-
mental due time windows, rather than precise due time, of
different production orders so as to ensure smoothness of
downstream operations and on time delivery of final
products. Such due time windows represent the manage-
rial preference regarding different values of production order
completion time.

As shown in Fig. 3, d A, d B , dC , and d D are crisp real
numbers such that 0 ≤ d A ≤ d B ≤ dC ≤ d D . The mem-
bership value of these fuzzy numbers expresses the degree
of satisfaction associated with corresponding job completion
time: complete satisfaction if the job is completed during the
time interval of d B to dC ; the degree of satisfaction increases
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Fig. 3 Trapezoidal fuzzy due date (d A, d B , dC , d D)

linearly from time d A to d B and decreases linearly from time
dC to d D; and complete dissatisfaction if the job is completed
before t = d A or beyond t = dU .
When the due dates are crisp, the weights α and β in (1)
denote the decision maker’s view on how significant each
job’s lateness or earliness affects the overall system. In the
case of fuzzy due date, the steepness of change between com-
plete satisfaction and complete dissatisfaction (i.e., the side
slope) represents the same decision maker’s view.

Job placement mechanism

The main objective of fabric-cutting scheduling in JIT envi-
ronment is to maximize downstream production units’ sat-
isfaction. Minimizing production makespan (in other words,
minimizing operator idle time) is another key issue. Since
each fabric-cutting job involves both spreading and cutting
operations, job placement algorithm of manual cutting sys-
tems is described here to explain the way for allocating jobs
to different spreading tables, and thus to calculate the make-
span.

In a cutting department with multiple spreading tables, m,
a first-come-first-serve rule is always applied when assign-
ing a sequence of jobs to be processed by different spreading
tables. For a given job sequence, σ , jobs are allocated to
different spreading tables in accordance with the following
placement algorithm.

1. allocate the first m jobs, Ji (i = 1, . . . , m), to the m
spreading tables, set i = m.

2. if any spreading table has enough area for the job Ji+1

(free area > fabric length φ(Ji+1)), allocate Ji+1 to the
first available spreading table and set i = i + 1.

3. if there is no spreading table available (free areas of all
m tables < fabric length φ(Ji+1)), wait until enough
spreading area is obtained by clearing up the cutting jobs
J j queues.

4. repeat the procedures 2 and 3 until all the jobs in the
sequence are allocated.
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According to the described job placement algorithm, indi-
vidual schedules at different spreading tables are defined
for a given job sequence. The system makespan time, that
is the maximal operation duration of the m spreading ta-
bles, can be calculated accordingly. Using this placement
algorithm, the parallel-machine (spreading table) scheduling
problem becomes a single sequencing optimization problem
with multiple objectives to maximize the degree of satisfac-
tion of downstream sewing lines and reduce overall produc-
tion makespan in JIT context.

Genetic optimization of fabric scheduling

In apparel manufacturing, production planners assign a se-
quence of jobs (fabric-lays) to different spreading tables for
spreading, cutting and bundling. According to the job place-
ment algorithm described in ‘Job placement mechanisim’,
the parallel machine scheduling optimization problem in
fabric-cutting department is reduced to a single sequencing
optimization problem. Job sequencing problem is a permu-
tation problem with n jobs, and the total number of possible
solution is n! (e.g., n! = 1.24 × 1061 for n = 48). The
search space significantly expands as the number of jobs, n,
increases, which make attractive to use genetic algorithms
(GAs), a metaheuristic technique, to search for the best job
processing sequence in a manual fabric-cutting department.

In fabric-cutting scheduling problem, a group of jobs
belonging to a defined set of production orders with differ-
ent due times are to be processed on one of the parallel
spreading tables. Earliness/tardiness scheduling with iden-
tical earliness and tardiness penalties for all jobs has showed
NP-complete (Baker & Schudder, 1990). In the more com-
plex case when each job has its own earliness and tardiness
weightings, it is implausible that optimal schedule for real
sized problem can be obtained by conventional time poly-
nomial algorithms. However, GAs solve complex industrial
optimization by iterations.

Individual representation

To apply GAs in solving an industrial optimization problem,
it is usually assumed that a potential solution to the prob-
lem may be represented as a set of variables. These variables
(‘genes’) are joined together to form a string of values (‘chro-
mosome’). The string can be of binary digits, integers, or
real numbers. Although the binary representation proposed
by Holland (1975) is most widely employed, GAs are not
restricted to binary representation. The choice of representa-
tion depends on the nature of the problem. In this job sequenc-
ing problem, integer chromosome representation is proposed

Chromosome: 3 7 10 1 2 5 8 4 6 9

Job Sequence: J3 J7 J10 J1 J2 J5 J8 J4 J6 J9

Fig. 4 Chromosome representation

to indicate the job processing sequences. An example of inte-
ger chromosome representation is shown in Fig. 4.

Fitness evaluation

In GAs, a fitness function is defined to measure the fitness
of each individual chromosome so as to determine which
to reproduce and survive into the next generation. Given
a particular chromosome, the fitness depends on how well
that individual solves a specific problem. Maximizing de-
gree of satisfaction of the downstream production units is
prime scheduling objective in JIT production.
In the genetic optimization of fabric-cutting sequence
problem, individual chromosomes represent a job process-
ing sequence. Once a job sequence is defined, jobs are allo-
cated to different spreading tables using the job placement
algorithm described in Job placement mechanism. Thus, the
completion times of individual jobs are accordingly evalu-
ated. Such jobs are belonged to a set of production orders,
and each of these production orders has its distinctive fuzzy
due time. For a job Jk belonging to production order θ, θ

has a fuzzy due time D̃θ . If job Jk completes at time Ck , the
degree of satisfaction with Ck with regard to fuzzy due time
D̃θ is naturally expressed by means of number υ(Ck, D̃θ )

which is defined by

υ(Ck, D̃θ ) = D̃θ (Ck) (3)

Taking Fig. 5 as an example, jobs J1 and J2 are completed at
time C1 = 42 min and C2 = 65 min, the degrees of satisfac-
tion achieved are 0.5 and 0.85, respectively with regard to a
fuzzy due time of D̃(t) =(38, 46, 60, 94).
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Fig. 5 Degree of satisfaction evaluation
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The JIT fabric-cutting schedule can be optimized using
GAs such that the overall degree of satisfaction,

	JIT(σ ) =
( p∑

θ=1

n∑

k=1

υ(Ck(σ ), D̃θ ) · x(Jk, θ)

)
· wDS (4)

is maximized. In (4), wDS is the weight for degree of satisfac-
tion, and x(Jk, θ) is the state value, which indicates whether
job Jk belongs to production order θ . x(θ, Jk) = 1 if job Jk

belongs to production order θ ; x(θ, Jk) = 0.
In a fabric-cutting environment, it is very important that

the production schedule should be optimized in such a way
that the production makespan, the longest completion time
among different spreading tables and operator idle times,
are minimized. With the use of job placement algorithm,
a sequence of fabric-cutting jobs is assigned to different
spreading tables and the production makespan is accordingly
calculated. The fitness on production makespan of the corre-
sponding individual chromosome is defined as

	makespan(σ ) =
(

Ttarget
/
Tmakespan(σ )

)
· wT . (5)

where Tmakespan(σ ) is the production makespan for sequence
σ , Ttarget is the target completion time, and wT is the weight
of production makespan fitness. With reference to (5), a se-
quence with smaller makespan time results in larger make-
span fitness.

Let 
 denote the set of all feasible sequences. For a given
sequence σ ∈ 
, the overall fitness is defined as

	(σ)
σ∈


= 	JIT(σ ) + 	makespan(σ ), (6)

where 	JIT(σ ), and 	makespan(σ ) are the fitnesses for degree
of satisfaction and production makespan, respectively. It is
important to note that genetic optimization methodology can
be applied to multi-objective optimization by defining the
fitness function accordingly. For example, Wong, Kwong,
Mok, Ip, and Chan, (2003) minimized the makespan while
maximized the cut-pieces fulfillment rates using GAs.

Genetic procedures

To optimize fuzzy fabric-cutting schedule by GAs, the opera-
tion procedure begins by randomly generating an initial pop-
ulation of integer strings in which each string represents a
job processing sequence, as shown in Fig. 4. Evolution is
caused to occur in this population of strings in accordance
with the genetic operations of crossover, mutation, and selec-
tion. Applying genetic operations to chromosome may cause
lost features in some genes and result in infeasible solutions.
In order to prevent such infeasible solution in the job sequenc-
ing problem, uniform order-based crossover (see Fig. 6) and
inversion mutation (see Fig. 7) are adopted. In the case of
selection operation, standard biased roulette wheel selection
with elitism (De Jong, 1975; Goldberg, 1989) is employed.

J2J1 J3 J4 J5 J6 J7 J8 J9 J10

J2J8 J3 J4 J5 J6 J7 J1 J9 J10

J7J3 J8 J10 J2 J5 J1 J4 J6 J9

Parent  1

Parent 2

Offspring

Fig. 6 Uniform order based crossover

J2J1 J3 J4 J5 J6 J7 J8 J9 J10

J2J1 J6 J5 J4 J3 J7 J8 J9 J10

Parent

Offspring

Fig. 7 Inversion mutation

In the evolutionary process, the Darwinian fitness of each
chromosome is evaluated by substituting into (7). This evo-
lutionary process is allowed to continue until no significant
further improvement is obtained in the fitness of the fittest
string. This fittest string thus provides the optimal job pro-
cessing sequence for the given batch of fabric-cutting jobs.
Figure 8 outlines the general methodology proposed in this
investigation.

Case studies

Two sets of real production data, denoted as cases A and
B, are used to demonstrate the proposed method. All the
data listed in Table 1 was obtained from the fabric-cutting
department of a Hong Kong-owned apparel manufacturing
company located in mainland China. These two-day spread-
ing production schedules were recorded in the fabric-cutting
department in each of which 48 jobs were spread and cut by a
manual cutting system. The cutting department consists of 4
spreading tables, and the length of each one is 600 feet each,
as shown in Fig. 1.

The fuzzy due times of cases A and B are shown in Figs. 9
and 10. The genetic optimization procedure described in
‘Genetic Optimization & Fabric Scheduling’ is then used to
optimize the production schedules. The schedules generated
by GAs are maximized for the fitness function (6). In case of
complete satisfaction, the degree of satisfaction is 1 when the
job is finished exactly within the required time window. For
48-job sequences, the overall degree of satisfaction, 	JIT, is
a real number being not greater than 48 when there is unit
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Randomly generate initial
population of chromosomes

Meet stopping
criteria?

Yes

Return the best
chromosome as the

optimal solution

No

Fitness evaluation by fuzzy
measurement

Job processing
sequences

Job placement algorithm

Evolutionary
Operations

Termination
Test

Fitness
Evaluation

Initialisation

Biased roulette wheel selection

Uniform order-based crossover

Inversion mutation

Elitism

Spread & cut schedules
on individual

spreading table

Fuzzy due times
of production orders

Fig. 8 Methodology outline

degree of satisfaction weighting, that is wDS = 1. The target
completion time (makespan) is Ttarget = 1200 min, however
the value of Ttarget/Tmakespan is a real number less than 1 since
overtime is foreseen (Tmakespan > Ttarget). Job sequence is
optimized so that Ttarget/Tmakespan is approaching to 1. The
makespan weighting is set as 24 because management re-
gards that the customer satisfaction is twice important as the
production cost reduction (through idle time minimization).
Therefore, the weights of fitness function (6) are wDS = 1
and wT = 24.

Figure 11 depicts the genetic optimization program devel-
oped using MATLAB in this research. The production
schedules generated by GAs with population size of 200
chromosomes, crossover probability of 0.7, mutation proba-
bility of 0.03, and over 200 generations are compared with
those based on industrial practice in Figs. 12 and 13. The part
(a) of the figures shows the production schedules adopted by

industrial practice, and the genetically optimized schedules
are shown in part (b). The evolutionary trajectory of cases A
and B are shown in Figs. 14 and 15. In each of the production
schedule as shown in Figs. 12 and 13, the upper gantt chart
shows the spreading operations while the lower gantt chart
shows the cutting operations.

The performance of the genetically optimized produc-
tion schedules is compared with that of industrial practice
in Table 2. It is evident that the proposed genetic optimi-
zation method is effective in improving the system perfor-
mance in two aspects. First of all, genetically optimized
schedules significantly improve the overall degree of sat-
isfaction, from 38.33 to 42.11 and 41.99 to 45.53 in the
cases A and B, respectively. On the other hand, the improve-
ment of satisfaction does not prolong production makespan.
Instead, slight improvement of 1 min and 12 min were
recorded when compared with industrial practice for the over-
all system makespan in cases A and B, respectively.
Table 3 shows the detail makespan time of different spread-
ing tables with schedules adopted by industrial practice and
those optimized genetically. In conclusion, genetic optimi-
zation method generates production schedules which
improve simultaneously the degree of satisfaction and
production makespan.

Conclusions

In apparel industry, production orders tend to split into
smaller orders with different product features in response
to the growing request on product customization. In order
to shorten products’ time-to-market, apparel manufacturers
work hard towards the direction of just-in-time production.
In apparel manufacturing process, the effectiveness of fabric-
cutting schedule planning extensively influences the down-
stream assembly operations, and thus, in turn, is critical to
the overall system performance. However, the demand from
downstream operation departments may be fuzzy and
resource-competing. In this paper, genetic algorithms and
fuzzy set theory have been used to generate just-in-time
schedules for fabric-cutting process in order to satisfy the
fuzzy and resource-competing requests from downstream
operating units. Two sets of real production data have been
collected to validate the proposed genetic optimization
method. Experimental results have demonstrated that the
genetically optimized schedules simultaneously improve the
internal satisfaction of downstream operation departments
and reduce production cost.

The apparel manufacturing environment is typically dy-
namic. Apart from the uncertainties caused by the fuzzy and
resource-competing internal demands, job processing times



348 J Intell Manuf (2006) 17:341–354

Ta
bl

e
1

D
et

ai
le

d
jo

b
ch

ar
ac

te
ri

st
ic

(A
)-

Jo
b

(X
n
)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

Pr
od

uc
tio

n
or

de
r
(φ

)
4

1
3

7
6

8
8

8
8

7
5

9
2

8
6

2
9

6
2

6
6

2
4

8
Q

ty
of

ga
rm

en
t(

χ
)

30
11

6
11

4
66

15
22

4
22

4
22

4
30

0
11

8
30

0
10

20
0

30
0

98
14

4
20

0
42

52
42

14
0

13
21

M
ar

ke
r

le
ng

th
(ϕ

)
10

3
13

6
13

9
13

2
89

13
0

13
0

13
0

13
0

17
2

15
8

10
6

17
5

13
0

16
9

87
85

17
5

91
17

1
91

17
0

93
73

Sp
re

ad
in

g
tim

e
(s

)
50

90
90

57
30

16
1

16
1

16
1

20
9

10
4

23
3

20
17

0
20

9
87

29
19

17
0

60
53

60
12

1
28

34
C

ut
tin

g
tim

e
(c

)
24

47
47

47
24

47
47

47
47

47
47

47
47

47
47

24
24

47
24

47
24

47
24

24

(A
)-

Jo
b

(X
n
)

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

Pr
od

uc
tio

n
or

de
r

(φ
)

9
6

5
7

2
7

6
3

9
3

9
1

8
4

3
6

6
6

4
2

2
3

4
9

Q
ty

of
ga

rm
en

t(
χ

)
2

33
30

0
94

33
14

14
0

14
6

8
2

3
78

22
4

53
22

8
31

6
14

58
10

4
98

31
6

94
6

5
M

ar
ke

r
le

ng
th

(ϕ
)

68
91

15
8

13
2

91
13

7
17

0
14

0
81

73
72

10
5

13
0

17
1

14
8

17
0

87
17

0
17

1
16

9
17

0
13

2
10

1
81

Sp
re

ad
in

g
tim

e
(s

)
17

48
23

3
77

48
23

12
1

11
3

23
16

18
59

16
1

96
17

2
25

4
29

57
17

4
87

25
4

77
21

20
C

ut
tin

g
tim

e
(c

)
24

24
47

47
24

47
47

47
24

47
24

47
47

24
47

47
24

47
24

47
47

47
24

24

(B
)-

Jo
b

(X
n
)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

Pr
od

uc
tio

n
or

de
r

(φ
)

2
1

1
3

2
2

2
2

2
2

3
4

5
4

3
1

4
1

1
3

1
2

3
3

Q
ty

of
ga

rm
en

t(
χ

)
33

14
0

31
6

22
4

3
8

31
6

4
14

5
21

94
11

8
94

11
6

13
14

6
33

30
30

0
20

0
14

0
22

4
22

4
M

ar
ke

r
le

ng
th

(
ϕ

)
91

17
0

17
0

13
0

72
81

17
0

85
87

81
73

13
2

17
2

13
2

13
6

93
14

0
91

10
3

15
8

17
5

17
0

13
0

13
0

Sp
re

ad
in

g
tim

e
(s

)
48

12
1

25
4

16
1

18
23

25
4

19
29

20
34

77
10

4
77

90
28

11
3

48
50

23
3

17
0

12
1

16
1

16
1

C
ut

tin
g

tim
e

(c
)

24
47

47
47

24
24

47
24

24
24

24
47

47
47

47
24

47
24

24
47

47
47

47
47

(B
)-

Jo
b

(X
n
)

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

Pr
od

uc
tio

n
or

de
r

(φ
)

5
3

1
2

6
6

1
2

4
3

1
1

3
1

2
1

2
4

1
1

5
2

4
2

Q
ty

of
ga

rm
en

t(
χ

)
14

78
58

42
30

0
30

0
42

2
22

8
22

4
6

14
30

0
10

4
10

15
98

11
4

98
53

66
20

0
2

52
M

ar
ke

r
le

ng
th

(ϕ
)

13
7

10
5

17
0

91
13

0
13

0
91

68
14

8
13

0
10

1
87

15
8

17
1

10
6

89
16

9
13

9
16

9
17

1
13

2
17

5
73

17
1

Sp
re

ad
in

g
tim

e
(s

)
23

59
57

60
20

9
20

9
60

17
17

2
16

1
21

29
23

3
17

4
20

30
87

90
87

96
57

17
0

16
53

C
ut

tin
g

tim
e

(c
)

47
47

47
24

47
47

24
24

47
47

24
24

47
24

47
24

47
47

47
24

47
47

47
47



J Intell Manuf (2006) 17:341–354 349

200 250        350 400

0 550  700

700 900 1250 1300

500        600 880       950

0 300 500

350 500 1150 1300

400 550 1100 1250

600 700  800  880

800 9000

de
gr

ee
 o

f s
at

is
fa

ct
io

n
de

gr
ee

 o
f s

at
is

fa
ct

io
n

de
gr

ee
 o

f s
at

is
fa

ct
io

n

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

75

296

297

299

317

321

322

325

426

Fig. 9 Fuzzy due times of production order (Case A)

0

300 350

1100 1200

350  4500

250 300 500 550

700 750 1200 1300

de
gr

ee
 o

f s
at

is
fa

ct
io

n
de

gr
ee

 o
f s

at
is

fa
ct

io
n

1

0

1

0

1

0

1

0

1

0

1

0

900 1000

1

1100  1300

2

0

3

10

11

12

Fig. 10 Fuzzy due times of production order (Case B)



350 J Intell Manuf (2006) 17:341–354

Fig. 11 Matlab genetic optimization program

Table 2 Performance
comparison of industrial
practice and genetically
optimized results

	JIT Tmakespan 	makespan 	total

Ind (case A) 38.33 1237 23.28 61.61
GA (case A) 42.11 1236 23.30 65.41
Ind (case B) 41.99 1245 23.13 65.12
GA (case B) 45.53 1233 23.36 68.89

Table 3 Makespan time
comparison

Table 1 Table 2 Table 3 Table 4 Makespan

Ind (A) 1190 1188 1206 1237 1237
GA (A) 1236 1214 1171 1171 1236
Ind (B) 1164 1217 1245 1165 1245
GA (B) 1160 1227 1233 1170 1233
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Fig. 14 Genetic optimization
performance of case A
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Fig. 15 Genetic optimization
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are fuzzy due to human factors, machine breakdowns, and
insertion of rush orders, etc. (Mok et al., 2004). The research
on the optimization of JIT schedules with fuzzy job process-
ing time and production order due times is currently under
investigation by the research team.
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