
J Intell Manuf (2006) 17:285–299
DOI 10.1007/s10845-005-0005-x

Data mining for improving the quality of manufacturing: a feature set
decomposition approach

Lior Rokach · Oded Maimon

Received: September 2004 / Accepted: September 2005
© Springer Science+Business Media, LLC 2006

Abstract Data mining tools can be very beneficial for
discovering interesting and useful patterns in complicated
manufacturing processes. These patterns can be used, for
example, to improve manufacturing quality. However, data
accumulated in manufacturing plants have unique character-
istics, such as unbalanced distribution of the target attribute,
and a small training set relative to the number of input fea-
tures. Thus, conventional methods are inaccurate in quality
improvement cases. Recent research shows, however, that a
decomposition tactic may be appropriate here and this pa-
per presents a new feature set decomposition methodology
that is capable of dealing with the data characteristics associ-
ated with quality improvement. In order to examine the idea,
a new algorithm called (Breadth-Oblivious-Wrapper) BOW
has been developed. This algorithm performs a breadth first
search while using a new F-measure splitting criterion for
multiple oblivious trees. The new algorithm was tested on
various real-world manufacturing datasets, specifically the
food processing industry and integrated circuit fabrication.
The obtained results have been compared to other methods,
indicating the superiority of the proposed methodology.

Keywords Data mining · Quality engineering · Feature
set-decomposition · Splitting criterion · F-measure

L. Rokach (B)
Department of Information System Engineering,
Ben-Gurion University of the Negev, Israel
e-mail: liorrk@bgu.ac.il

O. Maimon
Department of Industrial Engineering, Tel-Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel
e-mail: maimon@eng.tau.ac.il

Introduction

Data mining is a collection of tools that explore data in order
to discover previously unknown patterns. The accessibility
and abundance of information today makes data mining a
matter of considerable importance and necessity.

One of the most practical techniques used in data mining
is classification. The aim of classification is to build a classi-
fier (also known as a classification model) by induction from
a set of pre-classified instances. The classifier can be then
used for classifying unlabelled instances. Given the long his-
tory and recent growth of the field, it is not surprising that
several mature approaches to induction are now available to
the practitioner. Decision tree induction is one of the most
widely used approaches in data mining and machine learning
for classification problems (see, for instance Quinlan, 1993).
Decision Trees are considered to be self-explained models
and easy to follow when compacted.

In many modern manufacturing plants, data that charac-
terize the manufacturing process are electronically collected
and stored in the organization’s databases. Thus, data mining
tools can be used for automatically discovering interesting
and useful patterns in the manufacturing processes. These
patterns can be subsequently exploited to enhance the whole
manufacturing process in such areas as defect prevention
and detection, reducing flow-time, increasing safety, etc. The
literature presents several studies that examine the imple-
mentation of data mining tools in manufacturing (Fountain,
Dietterich & Sudyka 2000; Gardner & Bieker 2000; Kusiak,
2001; Kusiak & Kurasek, 2001; Last & Kandel, 2001).

This paper focuses on mining quality-related data in man-
ufacturing. Quality can be measured in many different ways.
Usually the quality of batches of products is measured and
not that of a single product. The quality measure can ei-
ther have nominal values (such as “Passed”/“Not Passed”)

286 J Intell Manuf (2006) 17:285–299

or continuously numeric values (Such as the number of good
chips obtained from silicon wafer or the pH level in a cream
cheese). Even if the measure is numeric, it can still be re-
duced to a sufficiently discrete set of interesting ranges. In
the cases that we examined, the goal was to find the relation
between the quality measure (target attribute) and the input
attributes (the manufacturing process data).

Classification methods can be used to improve the learn-
ing curve both in the learning rate, as well as in the target
quality that is reached at the mature stage. The idea is to
find a classifier that is capable of predicting the quality mea-
sure of a certain product or batch, based on its manufacturing
parameters. Subsequently, the classifier can be used to set up
the most appropriate parameters or to identify the reasons for
the defects.

The distinction of data mining for quality improvement
should be clarified. As opposed to classical methods such as
design of experiment, data mining is considered as a “sec-
ondary data analysis of large databases” (Hand, 1998). The
term “secondary” emphasizes the fact that the primary pur-
pose of the database was not data analysis. That is to say,
there is no control whatsoever on the data collected. Other
classical methods, such as control charts, aim to monitor the
process and not to infer the relationship between the target
attribute and the input attributes.

The manufacturing parameters obviously include the char-
acteristics of the production line (such as which machine has
been used in each step, how each machine has been setup,
etc.) and other parameters (if available) relating to the raw
material that is used in the process; the environment (moist-
ness, temperature, etc); the human resources that operate the
production line (the experience level of the worker, which
have been assigned on each machine in the line, the shift
number) and other such significant factors.

Since the data accumulated in manufacturing plants has
unique characteristics, conventional data mining methods are
ineffective. More specifically, the following properties are
considered problematic:

1. Imbalanced Distribution: The quality measure (target
attribute) has imbalanced distribution. This happens as
most of the batches pass the quality assurance examina-
tions and only a few are considered invalid. On the other
hand, the quality engineer is more interested in identify-
ing the invalid cases (the less frequent class).
Traditionally, the objective of the classification method
is to minimize the misclassification rate, i.e. to maximize
accuracy. However, for the unbalanced class distribution,
accuracy is not an appropriate metric. A classifier work-
ing on a population where one class (“not passed QA”)
represents only 1% of the examples can achieve a sig-
nificantly high accuracy of 99% by just predicting all
the examples to be of the prevalent class (“passed QA”).

Thus, the goal is to identify as many examples of the
“not passed QA” class as possible (high recall) with as
little false alarms (high precision). Traditional methods
fail to obtain high values of recall and precision for the
less frequent classes, as they are oriented toward finding
global high accuracy (Joshi, 2002).

2. “Curse of Dimensionality”: Usually in manufacturing
plants there are many input attributes that may affect
quality and the required number of labelled samples for
supervised classification increases as a function of
dimensionality (Jimenez & Landgrebe, 1998). The re-
quired number of training samples is linearly related to
the dimensionality for a linear classifier and to the square
of the dimensionality for a quadratic classifier.
In terms of nonparametric classifiers, such as decision
trees, the situation is even more severe. It has been esti-
mated that as the number of dimensions increases, the
sample size needs to increase exponentially in order to
have an effective estimate of multivariate densities
(Hwang, Lay, & Lippmann, 1994). In quality engineering
mining problems, we would like to understand the quality
patterns as soon as possible in order improve the learning
curve. Thus, the training set is usually too small relative
to the number of input features. Bellman (1961), work-
ing on complicated signal processing, was the first to de-
fine this phenomenon as the “curse of dimensionality”.
Techniques like decision trees that are efficient in low
dimensions fail to provide meaningful results, when the
number of dimensions increases beyond a “modest” size.
Furthermore, humans generally more easily understand
smaller classifiers, involving less features (probably less
than 10). Smaller classifiers are also more appropriate
for user-driven data mining techniques such as visuali-
zation.

3. “Mixed-Type”: Usually the input attributes in manufac-
turing data are of mixed type, namely some of the attri-
butes are numeric (such as temperature or duration) while
other are categorical (such as the machine’s model used
in the process). A suitable solution should be capable of
addressing both types in the same model.

There have been several attempts to address the class
imbalance distribution problem. Most of these attempts are
considered to be “external”, namely the internal inducer (such
as the decision tree algorithm) is not changed. Japkowicz and
Stephen (2002) divide these “external” attempts into three
categories:

1. “Re-sampling” methods in which the under-represented
class gets over- sampled so as to match the size of the
other class (Chawla, Bowyer, Hall, & Kegelmeyer,
2002; Estabrooks, Jo, & Japkowicz, 2004; Nickerson,
Japokowicz, & Milios, 2001; Weiss & Provost, 2003);

J Intell Manuf (2006) 17:285–299 287

2. “Downsizing” methods in which the over-represented
class is downsized to match the size of the under-
represented class (Kubat & Matwin, 1997);

3. “Learning by recognition” methods in which one of the
two classes is ignored. With these methods, recognition-
based, rather than discrimination-based schemas are used
(Nugroho, Kuroyanagi, & Iwata, 2002).

Most methods for dealing with high dimensionality focus
on feature selection techniques, i.e. selecting a single subset
of features upon which the inducer (induction algorithm) will
run, while ignoring the rest. The selection of the subset can be
done manually using prior knowledge to identify irrelevant
variables or feature selection algorithms. In the last decade,
many researchers have shown increased interest in feature
selection. Consequently many feature selection algorithms
have been proposed, with some demonstrating remarkable
improvements in accuracy. Since the subject is too wide to
survey here, the reader is referred to Liu and Motoda (1998)
for further reading.

Despite the popularity of feature selection methodologies,
there are several drawbacks in using them in overcoming the
“Curse of Dimensionality”:

• The assumption that a large set of input features can be
reduced to a small subset of relevant features is not always
true; in some cases the target feature is actually affected
by most of the input features and removing features will
cause a significant loss of important information.

• The outcome (i.e. the subset) of many algorithms for fea-
ture selection (for example almost any of the algorithms
that are based upon the wrapper methodology) is strongly
dependent on the training set size. That is, if the train-
ing set is small, the size of the reduced subset will be
small also. Consequently, relevant features might be lost.
Accordingly, the induced classifiers might achieve lower
accuracy compared to classifiers that have access to all
relevant features.

• In some cases, even after eliminating a set of irrelevant
features, the researcher is left with a relatively large num-
ber of relevant features.

• The backward elimination strategy, used by some meth-
ods, is extremely inefficient for working with large-scale
databases, where the number of original features is more
than 100.

A number of linear dimension reducers have been devel-
oped over the years including projection pursuit (Friedman
& Tukey, 1973); factor analysis (Kim & Mueller, 1978);
and principal components analysis (Dunteman, 1989). These
methods are not aimed directly at eliminating irrelevant and
redundant features, but are rather concerned with transform-
ing the observed variables into a small number of

“projections” or “dimensions”. The underlying assumption
in these methods is that the variables are numeric and the
dimensions can be expressed as linear combinations of the
observed variables (and vice-versa). Each discovered dimen-
sion is assumed to represent an unobserved factor and thus
provides a new way of understanding the data (similar to the
curve equation in the regression models).

The linear dimension reducers are enhanced constructive
induction systems that use a set of existing features and a
set of predefined constructive operators to derive new fea-
tures (Pfahringer, 1994). These methods are effective for high
dimensionality applications only if the original domain size
of the input feature can be in fact decreased dramatically.
There are several induction methods (such as support vec-
tor machines and neural networks) that deal directly with
high-dimensional data. However, the resulting classifiers are
usually incomprehensible to end-users.

Several researchers have shown that the decomposition
methodology can be appropriate for mining manufacturing
data (Kusiak, 2000; Maimon & Rokach, 2001). This paper
focuses on feature set decomposition for generalizing the
task of feature selection. Feature selection aims to provide a
single representative set of features from which a classifier
is constructed. On the other hand, feature set decomposition
decomposes the original set of features into several subsets,
and builds a classifier for each subset. Thus, a set of classifiers
are trained such that each classifier employs a different sub-
set of the original features set. Subsequently, an unlabelled
instance is classified by combining the classifications of all
classifiers. This method potentially facilitates the creation
of a classifier for high dimensionality data sets without the
above mentioned drawbacks of feature selection.

Although the feature set decomposition methodology can
be useful in the problem discussed here, there is no literature
that seeks for the best feature set decomposition structure.
Moreover, there is no feature set decomposition algorithm
to explicitly cope with the imbalanced distribution property.
The main contribution of this paper is a novel algorithm that
automatically seeks for the best mutually exclusive feature
set decomposition by employing a new F-measure splitting
criterion suited for oblivious decision trees. The superiority
of the suggested algorithm over other methods is illustrated
on various real-world manufacturing datasets.

Problem formulation

In a typical classification problem, a training set of labelled
examples is given and the goal is to form a description that
can be used to predict previously unseen examples. The train-
ing set can be described in a variety of languages, most fre-
quently, as a collection of records that may contain duplicates.
Each record is described by a vector of attribute values.

288 J Intell Manuf (2006) 17:285–299

The notation A denotes the set of input attributes contain-
ing n attributes: A = {a1, . . . , ai , . . . , an}-and y-represents
the class variable or the target attribute. Attributes (some-
times referred to as fields, variables or features) are typi-
cally one of two types: categorical (values are members of
a given set), or numeric (values are real numbers). When
the attribute ai is categorical, it is useful to denote its do-
main values by dom(ai) = {vi,1, vi,2, . . . , vi,|dom(ai)|}, where
|dom(ai)| stands for its finite cardinality. In a similar way,
dom(y) = {c1, . . . , c|dom(y)|}, represents the domain of the
target attribute. Numeric attributes have infinite cardinalities.

The instance space (the set of all possible examples) is
defined as a Cartesian product of all the input attributes do-
mains: X = dom(a1)× dom(a2)×· · ·× dom(an). The Uni-
versal Instance Space (or the Labelled Instance Space) U is
defined as a Cartesian product of all input attribute domains
and the target attribute domain, i.e.: U = X × dom(y).

The training set consists of a set of m records and is de-
noted as S = (〈x1, y1〉, . . . , 〈xm, ym〉), where xq ∈ X and
yq ∈ dom(y).

Usually, it is assumed that the training set records are gen-
erated randomly and independently according to some fixed
and unknown joint probability distribution D over U. Note
that this is a generalization of the deterministic case, when a
supervisor classifies a record using a function y = f (x).

Consider a set of examples labeled positive and negative,
and a classifier predicting the label for each example (the
choice as to which class is called positive is usually arbitrary.
In this case the “not passed QA” class will be considered as
positive). A positive (negative) example that is correctly clas-
sified by the classifier is called a true positive (true negative);
a positive (negative) example that is incorrectly classified is
called a false negative (false positive). These numbers can be
organized in a confusion matrix shown in Table 1.

The accuracy measure that is usually employed for eval-
uating the performance of classifiers is defined as:

Accuracy

= True Positive+True Negative

True Positive+False Positive+True Negative+False Negative
(1)

However, when there are many negative examples (many
examples that “passed QA”) it is useful to measure the clas-
sification performance by ignoring the correctly predicted
negative data. Well-known performance measures in this case

Table 1 Confusion matrix for binary classification problem
∖

Classification Classified as positive Classified
Actual as negative

Actually positive True positive False negative
Actually negative False positive True negative

Precision

Recall

Fig. 1 A Typical precision-recall diagram

are precision (P) and recall (R). Precision measures how
many examples classified as “not passed QA” class are indeed
“not passed QA”. Recall measures how many examples of
“not passed QA” class are correctly classified. Mathemati-
cally these measures are defined as:

P = True Positive

True Positive + False Positive
, (2)

R = True Positive

True Positive + False Negative
. (3)

The notion of “precision” and “recall” are widely used in
information retrieval (Van Rijsbergen, 1979) and data min-
ing (Weiss & Zhang, 2003). Statistics uses complementary
measures known as “type-I error” and “type-II error”.

Usually there is a tradeoff between the precision and the
recall. Trying to improve one measure often results in a dete-
rioration of the second measure. Figure 1 shows a typical
precision-recall graph. This two-dimensional graph is closely
related to the well-known receiver operating characteristics
(ROC) graphs in which the true positive rate (recall) is plot-
ted on the Y -axis and the false positive rate is plotted on the
X -axis (Ferri, Flach, & Hernández-Orallo, 2002). However
unlike the precision-recall graph, the ROC diagram is always
convex.

Given a probabilistic classifier, this trade-off graph may
be obtained by setting different threshold values. In a binary
classification problem, the classifier prefers the class “not
pass” over the class “pass” if the probability for “not pass” is
at least 0.5. However, by setting a different threshold value
other than 0.5, the trade-off graph can be obtained.

The problem described here is in fact a multi-criteria deci-
sion-making (MCDM). The simplest and the most commonly
used method to solve MCDM is the weighted sum model.
This technique combines the criteria into a single value by
using appropriate weighting. The basic principle behind this
technique is the additive utility assumption. The criteria mea-
sures must be numerical, comparable and expressed in the
same unit. Nevertheless, in the case discussed here, the arith-
metic mean can mislead. Instead, the harmonic mean pro-
vides a better notion of “average”. More specifically, this
measure is defined as (Van Rijsbergen, 1979):

J Intell Manuf (2006) 17:285–299 289

Fig. 2 A graphic explanation of the F-measure

F = 2 · P · R

P + R
. (4)

The intuition behind the F-measure can be explained using
Fig. 2. Figure 2 presents a diagram of a common situation
in which the right ellipsoid represents the set of all defective
batches and the left ellipsoid represents the set of all batches
that were classified as defective by a certain classifier. The
intersection of these sets represents the true positive (TP),
while the remaining parts represent false negative (FN) and
false positive (FP). An intuitive way of measuring the ade-
quacy of a certain classifier is to measure to what extent the
two sets match, namely to measure the size of the unshaded
area. Since the absolute size is not meaningful, it should be
normalized by calculating the proportional area. This value
is in fact the F-measure:

Proportion of unshaded area

= 2 · (True Positive)

False Positive+False Negative + 2 · (True Positve)
= F. (5)

The F-measure can have values between 0 to 1. It obtains
its highest value, when the two sets presented in Fig. 2 are
identical and it obtains its lowest value when the two sets are
mutually exclusive. Note that each point on the precision-
recall curve may have a different F-measure. Furthermore,
different classifiers have different precision-recall graphs.

The problem of decomposing the input feature set can be
formally phrased as follows:

Given a training set S with input feature set A = {a1, a2,

. . . , an}, and a target feature y from an unknown distribution
D over the labelled instance space, the goal is to maximize
the value of the F-measure by combining a set of ω (ω ≥ 1)
classifiers, such that the feature subsets used by the classifiers
are mutually exclusive.

It should be noted that the optimal is not necessarily
unique. Furthermore it is not obligatory that all input fea-
tures will actually belong to one of the subsets.

This paper focuses on decision trees classifiers, which are
combined using the Naive Bayes combination (Duda & Hart,
1973). The Naive Bayes combination assumes that each fea-
tures subset used by a certain classifiers is independent of the

rest given the value of the target attribute. Consequently an
unlabeled instance x is assigned to class ci with probability
of:

�

P(ci |x) = α · P̂(ci) ·
ω∏

k=1

P̂(ci |Ik, x)

P̂(ci)
, (6)

where:

• P̂(ci) is the a priori probability to be assigned to class ci .
P̂(ci)can be easily estimated by counting the frequency
with which the target value ci occurs in the training set.

• P̂(ci |Ik, x) is the probability of class ci given an instance
x and a particular classifier Ik . In case of decision trees, it
can be estimated by using the appropriate frequencies in
the relevant leaf. However, using the frequency as is, will
typically over-estimate the probability. In order to avoid
this phenomenon, it is useful to perform the Laplace’s
correction (Niblett, 1987).

• α is a normalization factor that ensures that the condi-
tional probabilities of all possible class labels sums up to
1. (In practice we do not need to explicitly evaluate this
factor because it is constant for a given instance x).

The BOW algorithm

Overview

In order to solve the problem defined in Section “Problem
formulatin”, we suggest using a hill-climbing, search pro-
cedure—breadth-oblivious-wrapper (BOW). This heuristic
algorithm begins with a single empty subset. Each iteration
of the algorithm considers changing the current decompo-
sition structure by adding an unused feature to one of the
existing subsets or to a newly created subset.

Classifier representation

Each subset is represented by an oblivious decision tree
(ODT) in which all nodes at the same level test the same fea-
ture (Last, Maimon, & Minkov, 2002). Figure 3 demonstrates
a typical ODT with three input features: the slicing machine
model used in the manufacturing process; the rotation speed
of the slicing machine and the shift (i.e. when the item was
manufactured); and the Boolean target attribute representing
whether that item passed the quality assurance test. The arcs
that connect the hidden terminal nodes and the nodes of the
target layer are labeled with the number of records that fit
this path. For instance, there are twelve items in the training
set, which were produced using the old slicing machine that
was setup to rotate at a speed greater than 1000 rpm and that
were classified as “good” items (i.e. passed the QA test).

290 J Intell Manuf (2006) 17:285–299

0

Bad

1

2

3

4

6

5

GoodNew Slicing
Machine

Slicing
Machine
Layer

Old Slicing
Machine

Shift

Night

Morning

Rotation
Speed
Layer

<= 1000 RPM

> 1000 RPM

Target
LayerLayer

105

23 12

3

8

31

98

11

Fig. 3 Oblivious decision tree for quality assurance

Search space

The algorithm iteratively searches for the best decomposition
structure. Moving forward to the next iteration is performed in
twophases. In thefirstphase, thealgorithmenumeratesoverall
attributes.For eachattribute, it checks the feasibility ofadding
it to one of the existing subsets or to a newly created a subset.
Adding an attribute to an existing subset is performed by add-
ing a new layer in the suitable ODT and connecting it to the
nodes of the last layer. The nodes of a new layer are defined
as the Cartesian product combinations of the previous layer’s
nodes with the values of the new added feature. In order to
avoid unnecessary splitting, the algorithm splits a node only
if it increases a certain performance measure. If no node has
beensplit, then thisattributeshouldnotbeaddedto that subset.

In the second phase the algorithm compares the perfor-
mance of all feasible changes. For each change, it evalu-
ates the global performance measure obtained by the entire
decomposition structure. That is to say, it compares the con-
tributing effect of each change on the Naïve Bayes combi-
nation of all ODTs. The change with the best performance
measure is selected for the next iteration.

In order not to be trapped in a local optimum, the algo-
rithm may select the best change and continue to the next
iteration, even if the selected addition does not improve the
global performance or even worsens it. The output of the
algorithm is the structure with the highest performance found
during the process and not necessarily the last structure. The
search stops when there is no feature left. Nevertheless, if the
computational resources are limited, then the search can be
stopped when no improvement is achieved.

Figure 4 shows the search space of a 3-feature set decom-
position. Note that each layer in this graph stands for a differ-
ent iteration and that in each run, only one path starting from
the root is examined.

The F-measure splitting criterion

As mentioned in the previouis section, the proposed algo-
rithm begins with a single-node decision tree representing

an empty set of input attributes. A node is split if it pro-
vides an increase in the F-measure. A new input attribute
is selected to maximize the total increase of the F-measure
{ XE “Entropy”} as a result of splitting the nodes of the last
layer. The nodes of the new layer are defined as a Cartesian
product of split nodes of the previous layer and values of the
new input attribute.

Based on Eq. 4 the maximum F-measure obtained by
splitting the dataset S according the categorical values of
the attribute ai for any threshold value is:

κ(i, S, cref) = max
t

F_Measure(i, S, cref , t)

= max
t

2 · P(i, S, cref , t) · R(i, S, cref , t)

P(i, S, cref , t) + R(i, S, cref , t)
, (7)

where:

• S is the dataset to be split (the set of records belonging to
the discussed node).

• i is the index of the input attribute according to which the
split is performed.

• Cref is the referred class. In the context of this paper it is
the “Not Passed QA” class.

• P(i, S, cref , t) and R(i, S, cref , t) are the precision and re-
call obtained by splitting the training set according to val-
ues of dom(ai). These values may be calculated according
to the following equations:

P(i, S, cref , t) =

∑
vi, j ∈dom(ai)

mcref ,i, j · �(i, j, S, cref , t)

∑
vi, j ∈dom(ai)

m.,i, j · �(i, j, S, cref , t)
, (8)

R(i, S, cref , t) =

∑
vi, j ∈dom(ai)

mcref,i, j · �(i, j, S, cref , t)

mcref

, (9)

�(i, j, S, c, t) =
{

1 if mc,i, j ≥ t · m.,i, j

0 otherwise,
(10)

where:

• mcref is the number of records in S satisfying y = cref ,
• m.,i, j is the number of records in S satisfying ai = vi, j ,
• mcref ,i, j is the number of records in S satisfying y = cref

and ai = vi, j , and
• t is the threshold for favoring a certain class.

The denominator in Eq. 8 represents the number of records
in S that were classified as

Cref assuming threshold t and that S was split according
to attribute ai . The nominators in Eqs. 8 and 9 represent the
number of records in S that belong to class Cref and that were

J Intell Manuf (2006) 17:285–299 291

{a1,a2} {a1}{a2} {a1,a3} {a1}{a3} {a2,a3} {a2}{a3}

{a1} {a2} {a3}

{}

{a1,a2,a3} {a1,a2}{a3} {a1}{a2}{a3} {a1}{a2,a3} {a1,a3}{a2}

Fig. 4 Breadth first search for a 3-feature set decomposition

Table 2 Illustrative dataset with two categorical input attributes and a
binary target attribute

a1 Slicing machine a2 Shift y Quality measure

New Morning Good
New Night Bad
Old Night Bad
New Night Good
Old Night Bad
Old Morning Good
New Morning Bad
Old Night Good
Old Morning Bad
New Night Good

classified correctly assuming threshold t and that S was split
according to attribute ai

An important issue arises when one of the above equa-
tions is not defined (the denominator is equal to zero). If the
recall is not defined, then it means that there are no records
that belong to the referred class. In other words, there is no
use in splitting the node. If the precision is not defined (the
threshold is too high), we simply set the F-measure to zero
and by that the algorithm ignores this point.

Table 2 presents a small dataset S having two categori-
cal input attributes: a1 (slicing machine) and a2 (shift) and a
binary target attribute which represents the quality
measure. Note that in this case dom(a1)={“New”,“Old”},
dom(a2)={“Morning”, “Night”}, dom(y)={“Good”,

Good

Bad

Bad

3

3

2

2
New

Old

Slicing Machine
Layer

Target Layer

Good
2

3

3

2
Morning

Night

Shift Layer Target Layer

Fig. 5 Tree obtained by splitting dataset in Table 2 according to Slicing
Machine and Shift

“Bad”}. Figures 5(a) and 5(b) present the tree obtained by
splitting S according to a1 (slicing machine) and a2 (shift)
respectively.

292 J Intell Manuf (2006) 17:285–299

Assuming that Cref = “Bad” and the threshold t = 0.5,
then the following values can be obtained for attribute a1

(slicing machine):

P(1, S, “Bad”, 0.5)

=

2∑
j=1

m“Bad”,1, j · �(1, j, S, “Bad”, 0.5)

2∑
j=1

m.,1, j · �(1, j, S, “Bad”, 0.5)

= 2 · 0 + 3 · 1

5 · 0 + 5 · 1
= 0.6,

R(1, S, “Bad”, 0.5)

=

2∑
j=1

m“Bad”,1, j · �(1, j, S, “Bad”, 0.5)

m“Bad”

= 2 · 0 + 3 · 1

5
= 0.6,

F_Measure(1, S, “Bad”, 0.5)

= 2 · P(1, S, “Bad”, 0.5) · R(1, S, “Bad”, 0.5)

P(1, S, “Bad”, 0.5) + R(1, S, “Bad”, 0.5)

= 2 · 0.6 · 0.6

0.6 + 0.6
= 0.6.

Assuming that Cref = “Bad" and the threshold t=0.3 then
the following values can be obtained for attribute a1 (slicing
machine):

P(1, S, “Bad”, 0.3)

=

2∑
j=1

m“Bad”,1, j · �(1, j, S, “Bad”, 0.3)

2∑
j=1

m.,1, j · �(1, j, S, “Bad”, 0.3)

= 2 · 1 + 3 · 1

5 · 1 + 5 · 1
= 0.5,

R(1, S, “Bad”, 0.3)

=

2∑
j=1

m“Bad",1, j · �(1, j, S, “Bad", 0.3)

m“Bad"

= 2 · 1 + 3 · 1

5
= 1,

F_Measure(1, S, “Bad”, 0.3)

= 2 · P(1, S, “Bad”, 0.3) · R(1, S, “Bad”, 0.3)

P(1, S, “Bad”, 0.3) + R(1, S, “Bad”, 0.3)

= 2 · 0.5 · 1

0.5 + 1
= 2

3
.

Assuming that Cref =“Bad” and the threshold t=0.1 then the
following values can be obtained for attribute a2 (shift):

P(2, S, “Bad”, 0.1)

=

2∑
j=1

m“Bad”,2, j · �(2, j, S, “Bad”, 0.1)

2∑
j=1

m.,2, j · �(2, j, S, “Bad”, 0.1)

= 2 · 1 + 3 · 1

5 · 1 + 5 · 1
= 0.5,

R(1, S, “Bad”, 0.1)

=

2∑
j=1

m“Bad”,1, j · �(1, j, S, “Bad”, 0.1)

m“Bad”

= 2 · 1 + 3 · 1

5
= 1,

F_Measure(2, S, “Bad”, 0.1)

= 2 · P(2, S, “Bad”, 0.1) · R(2, S, “Bad”, 0.2)

P(2, S, “Bad”, 0.1) + R(2, S, “Bad”, 0.1)

= 2 · 0.5 · 1

0.5 + 1
= 2

3
.

Actually there is no need to enumerate all possible thresholds.
Each splitting branch (a certain value of the candidate input
attribute) defines another possible threshold value. By sorting
the thresholds, one can get the desired precision-recall dia-
gram. For instance, if the dataset is divided according to a1,
then the threshold values that must be checked are: 0.6=3/5
and 0.4=2/5. In this case:

F_Measure(1, S, “Bad”, 0.4) = 2

3
,

F_Measure(1, S, “Bad”, 0.6) = 0.6.

Resulting:

κ(1, S, “Bad”) = max
t

F_Measure(1, S, “Bad”, t)

= max(0.6,
2

3
) = 2

3
.

The default maximum F-measure obtained before splitting
is defined as:

κ∗(S, cref) = 2 · P∗(S, cref)

P∗(S, cref) + 1
, (11)

where:

P∗(S, cref) = mcref

|S| . (12)

Note that the algorithm considers splitting the dataset S by
the attribute ai only if:

κ(ai , S, cref) > κ∗(S, cref). (13)

J Intell Manuf (2006) 17:285–299 293

For instance taking the case described in Table 2, the default
maximum F-measure is κ∗(S, “Bad”) = 0.5. Because in this
case κ(1, S, “Bad”) = 2

/
3, then splitting according to a1 is

considered to be a legitimate split. Note that the default max-
imum F-measure is always equal or less than the maximum
F-measure obtained after splitting.

The maximum F-measure presented in Eq. 7 for cate-
gorical attributes can be extended for numerical attributes
as specified in Eqs. 14–18. The idea is to divide the con-
tinuous domain into two sub-domains: ai > v and ai ≤ v.
Although finding the optimal value of ν can be performed in
many ways, it is preferable to use a one-dimensional golden
section search method.

κ(ai , S, cref)

= max
t,v

2 · P(ai , S, cref , t, v) · R(ai , S, cref , t, v)

P(ai , S, cref , t, v) + R(ai , S, cref , t, v)
, (14)

where:

P(ai , S, cref , t, v)

=
µcref ,i,v · �1(ai , S, cref , v, t) + (mcref − µcref ,i,v)

·�2(ai , S, cref , v, t)

µ.,i,v · �1(ai , S, cref , v, t) + (|S| − µ.,i,v)

·�2(ai , S, cref , v, t)

,

(15)

R(ai , S, cref , t, v)

=
µcref ,i,v · �1(ai , S, cref , v, t) + (mcref − µcref ,i,v)

·�2(ai , S, cref , v, t)

mcref

,

(16)

�1(ai , S, c, v, t) =
{

1 if µc,i,v ≥ t · µ.,i,v

0 otherwise,
(17)

�2(ai , S, c, v, t) =
{

1 if (mc − µc,i,v) ≥ t · (|S| − µ.,i,v)

0 otherwise,

(18)

where:

• µc,i,v is the number of records in S satisfying y = c and
ai > v.

• µ.,i,v is the number of records in S satisfying ai > v.

Eqs. 7–18 assume that there is only a single ODT. How-
ever, in case of multiple ODTs as in the case of a feature set
decomposition framework, it should be extended in order to
evaluate its global effect on the entire constellation. In some
cases, splitting a node by a certain attribute has a tremendous
effect on the performance of the ODT in which the node is

contained. It has no effect, however, on the entire decomposi-
tion performance. This situation occurs, for example, when
there are redundant attributes. In such cases, two relevant
attributes may explain the target attribute in the same way
and each attribute can be used for describing the target attri-
bute. However, using both of them in the same ODT or in
two different ODTs does not improve performance.

Rewriting Eqs. 7–10, we obtain:

κ
Global

(ai , S, cref , I1, . . . , Iω−1)

= max
t

2 · PGlobal(ai , S, cref , t, I1, . . . , Iω−1)

·RGlobal(ai , S, cref , t, I1, . . . , Iω−1)

PGlobal(ai , S, cref , t, I1, . . . , Iω−1)

+RGlobal(ai , S, cref , t, I1, . . . , Iω−1)

, (19)

where:

PGlobal(ai , S, cref , t, I1, . . . , Iω−1)

=

∑
vi, j ∈dom(ai)

∑
x∈{S|ai =vi, j , y=cref }

�Global(i, S, cref , j, t, I, I1, . . . , Iω−1, x)∑
vi, j ∈dom(ai)

∑
x∈{S|ai =vi, j }

�Global(i, S, cref , j, t, I, I1, . . . , Iω−1, x)

, (20)

RGlobal(ai , S, cref , t, I1, . . . , Iω−1)

=

∑
vi, j ∈dom(ai)

∑
x∈{S|ai =vi, j , y=cref }

�Global(i, S, cref , j, t, I, I1, . . . , Iω−1, x)

mcref

, (21)

�Global(i, S, c, j, t, I1, . . . ,Iω−1, x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if

mc,i, j
m.,i, j

·
ω−1∏
k=1

P̂(y=c|Ik ,x)

P̂(y=c)

∑
c j ∈dom(y)

mc j ,i, j
m.,i, j

·
ω−1∏
k=1

P̂(y=c j |Ik ,x)

P̂(y=c j)

> t

0 otherwise,

(22)

where I1, . . . ,Iω−1 represents the existing ODTs classifier
(not including the ODT to which the investigated node be-
long). Equation 19 represents the maximum F-measure value
obtained by splitting S according to ai assuming that I1, . . . ,

Iω−1 exists.
Unlike classical splitting criteria (such as Information

Gain, Gain Ratio, Gini Index, etc), the F-measure criterion
does not perform a comparison between the impurity of the
parent node with the weighted impurity of the children after
splitting. Nevertheless, as in the case of Information Gain and
Gini Index, the proposed F-measure never reports a worse
performance after trying a split than before splitting. Con-
sequently, this criterion may not be appropriate for deciding
when to stop growing the tree.

The F-measure criterion can be also compared to the re-
cently area under curve (AUC) splitting criterion proposed

294 J Intell Manuf (2006) 17:285–299

in Ferri et al. (2002). The AUC criterion is based on the area
generated under the ROC graph. The attribute that obtains
the higher AUC criterion is selected as the splitting attri-
bute. Note that for computing the area under the curve, it
is sufficient to compute the area between two consecutive
points, representing two different branches of the candidate
attribute.

In order to avoid over-fitting, the F-measure is not eval-
uated over the training set as is. Instead we apply the wrap-
per approach (John, Kohavi, & Pfleger, 1994). With this
approach, the decomposition structure is evaluated by repeat-
edly sampling the training set and measuring the F-measure
of the inducers obtained for this decomposition on an unused
portion of the training. After the best change is selected, the
suitable ODT is updated, this time using the entire training
set.

Making a classification

In order to classify an unlabelled instance, the following steps
should be performed
A. For each ODT:

• Locate the appropriate leaf for the unseen instance.
• Extract the frequency vector (how many instances relate

to each possible value of the target feature).
• Transform the frequency vector to a probability vector

according to Laplace’s law of succession.

B. Combine the probability vectors using the Naive Bayes
combination.
C. Select the target value according to what maximizes the
Naive Bayes combination.

Experimental study

Overview

To illustrate the potential of the feature set decomposition
approach in data mining quality assurance problems and to
evaluate the performance of the proposed algorithm, a com-
parative experiment was conducted on three real-life data-
sets obtained from two manufacturers with an average yearly
income of more than one billion dollars. The first dataset was
obtained from a manufacturer of dairy products. The last two
datasets were obtained from a wafer manufacturer.

This experiment compares the BOW algorithm to the
Naive Bayes and C4.5 (Quinlan, 1993) algorithms. The Naïve
Bayes was chosen since it represents a specific point in the
search space of the BOW algorithm. The C4.5 algorithm was
selected because it is considered as a state-of-the-art decision
tree algorithm, which is widely used in many other compara-

tive studies. The following subsections describe each one of
the case studies and the results.

Manufacturing Cottage Cheese

Objective

Manufacturing cottage cheese is one of the most compli-
cated processes in producing dairy products. The process,
which may take up to 20 h, usually involves many stages.
In the first stage, milk is skimmed using a centrifuge. This
phase also produces a cream, which will be used later as
the “dressing” to be added to the skimmed cheese. Once
the skimmed milk is pasteurized, the milk is cooled and then
transferred to a cheese vat. Here, lactic acid culture, to initiate
a partial acidification process, and a coagulating enzyme are
added.

The milk is left for several hours to allow acidity devel-
opment as well as curd formation. During this time, the pH
level in the milk drops to the desired level and a coagulum
(or curd) is formed. Longitudinal and vertical stainless still
knives cut the curd to create small curd cubes. In the curd
cutting, whey separates from the curd cubes.

Prior to the next step, a slow scalding process, by steam
injection of the entire double-jacket vat, the cubes are held
for a short period of time enabling them to become firmer.
During the scalding process, the curd cubes become more
grain-like and more whey is released. At the end of this stage,
the contents of the vat are transferred to the curd drainer
where the curd grains are mechanically separated from the
whey. The curd grains are then transferred to the washer-
cooler where they are washed from the acid that developed
during the acidification process and cooled by the cold water.
The cold grains are then further moved to the creamer where
fresh cream (“dressing”) and salt are added to form the final
product—fresh cottage cheese. The cheese is then pumped
to the filling machine and the final packages are palletized
and transferred to cold storage ready for distribution. During
this long process, a few hundred parameters can be measured
or adjusted.

As in every dairy product, there is a chance that a specific
batch will be found sour when consumed by the customer,
prior to the end of the product’s shelf-life. During its shelf-
life, the product’s pH value normally drops. When it reaches
a certain value, the consumer reacts to it as a spoiled prod-
uct; even though there is no any bacteriological problem. For
every batch manufactured, the dairy department performs
randomly tests for pH as well organoleptic (taste) at the end
of the shelf-life. The samples are kept in the laboratory at
a temperature of 7 ◦C, compared to 4 ◦C, which is the rec-
ommended storage temperature in a home refrigerator. The
higher laboratory temperature simulates abuse handling of
the product along the cooling chain. The product shelf-life is

J Intell Manuf (2006) 17:285–299 295

determined by the dairy department (generally 12–14 days),
assuming that the product retains its organoleptic properties
to the end of its shelf-life.

The aim of our study of this plant’s production processes
was to identify batches (at the end of the manufacturing pro-
cess) with a high probability of becoming sour (at the end of
shelf-life) based on the process variables.

Data

The training data set includes 800 records. Each record has
70 input attributes representing various manufacturing vari-
ables. Most of the parameters fall into one of the follow-
ing classes: temperature, duration, raw material quantities,
and machines. For example, we have used the following
attributes: average cooling temperature, scalding duration,
calcium quantity, culture quantity, etc. The target attribute
represents the pH value after two weeks. It can have two
values: “Tasty” (pH 4.9–5.3) and “Sour” (below pH 4.9).

Results

The BOW obtained four ODTs using totally 24 different
attributes. In order to compare the results of BOW to other
algorithms, we used the 10-fold cross-validation procedure.
According to this procedure, the training set was randomly
partitioned into 10 disjoint instance groups. Each instance
group was used once in a test set and nine times in a training
set. Since the F-measure and the accuracy on the validation
instances is a random variable, the confidence interval was
estimated by using the normal approximation. Table 3 shows
the mean of the F-measure regarding the “Sour” class and the
overall accuracy obtained by using 10-fold cross-validation
along with their confidence interval.

Table 3 also shows the number of features used by each
algorithm. This table indicates that of the relatively low val-
ues that the three algorithms obtained for the F-measure,
BOW obtained the highest. Although the proposed method
does not mean to improve accuracy but rather the F-measure,
it is interesting to note that it obtained the highest accuracy
as well. This implies that using the F-measure criterion has
not negatively affected overall accuracy. Moreover, BOW
employed a much greater number of features than a single
decision tree. This implies that the proposed decomposition

Table 3 The accuracy and the F-measure for the cottage-cheese dataset

Criterion Naïve Bayes C4.5 BOW

Accuracy 77.81% ± 2.8% 77.52% ± 2.8 85.92% ± 0.5%
F-measure 31.32% ± 3.5% 26.91% ± 2.6% 39.4% ± 2.1%
No of 70 12 ± 3.1 24 ± 4.8
features used

method can address high-dimension problems by letting more
relevant input features affect the classification model. The
Naïve Bayes classifier uses all available input features includ-
ing irrelevant features.

Figure 6 presents two ODTs obtained for the above prob-
lem. In the first ODT there are three layers representing
the parameters: CW_WASH_DUR (Cold Water Wash Dura-
tion); FINAL_COOLING_TEMP; and AVG_COOLING
_TEMP. Each leaf is specified with the most frequent class
(Tasty/Sour) and the appropriate probability vector.

Figure 7 presents the precision-recall diagram. This figure
indicates that BOW and Naïve Bayes are more efficient than
the C4.5, with BOW more efficient than Naïve Bayes in most
of the graph. There are a few points in which Naïve Bayes ob-
tains better results. However, the superiority of Naïve Bayes
in these points is negligible. By analysing the precision-recall
tradeoff graph, one notices that the precision obtained for a
recall value of 100% is identical for all methods. This preci-
sion value indicates that the dataset is seriously imbalanced.

It is worth mentioning that the theoretical complexity of
the BOW algorithm is identical to the complexity of other
oblivious decision algorithms (such as IFN). However,
because the current implementation of the BOW algorithm
continues until all input attributes are used (in order to avoid
local optimum), the actual execution time of BOW is slightly
longer than the time required to build a single decision tree.

Yield of IC manufacturing

Objective

An integrated circuit (IC) is a miniature electric circuit con-
taining large numbers of electronic devices packaged on a
single chip made of semiconductor material. Manufacturing
an IC begins with the production of a semiconductor wafer.
An area on the wafer containing a single discrete device or
IC is called a chip. Depending on the dimensions of the wafer
and the dies, several hundred chips are formed on a single
wafer.

While the number and variety of process steps may change
from manufacturer to manufacturer, fabricating a wafer usu-
ally contains more than 100 steps (Van Zant, 1997). The
wafer manufacturing process is largely mechanical. Mea-
surements (for instance flatness, surface quality verification,
visual inspection) are taken at various stages of the process
to identify defects induced by the manufacturing process,
to eliminate unsatisfactory wafer materials and to sort the
wafers into batches of uniform thickness to increase produc-
tivity.

After the wafer is manufactured, integrated circuits are
fabricated on its surface with a single wafer bearing several
integrated circuits, all produced at the same time. Each lot
undergoes hundreds of individual processing steps, in which

296 J Intell Manuf (2006) 17:285–299

Fig. 6 The first two ODT
obtained by BOW for the
Cottage Cheese Manufacturing

ODT # 1:

CW_WASH_DUR <= 286
| FINAL_COOLING_TEMP <= 5.9
| | AVG_COOLING_TEMP <= 10.1: Tasty (0.864,0.136)
| | AVG_COOLING_TEMP > 10.1: Sour (0.323,0.674)
| FINAL_COOLING_TEMP > 5.9
| | AVG_COOLING_TEMP <= 12.3: Tasty (0.682,0.318)
| | AVG_COOLING_TEMP > 12.3: Sour (0.286,0.714)
CW_WASH_DUR > 286: Tasty (0.906,0.094)

ODT # 2:

POOL_CODE = 501: 0 (124.35/17.0)
POOL_CODE = 502: 0 (121.35/18.0)
POOL_CODE = 503: 0 (120.34/16.0)
POOL_CODE = 504
| DELAY_AFTER_COOK <= 49.3: 0 (55.18/5.0)
| DELAY_AFTER_COOK > 49.3
| | ACIDIFICATION_DURATION<= 100: 0 (22.06/2.0)
| | ACIDIFICATION_DURATION > 100
| | | CUT_END_TEMP <= 27.4: 0 (26.07/6.0)
| | | CUT_END_TEMP > 27.4: 1 (25.06/9.06)
POOL_CODE = 505: 0 (93.27/14.0)
POOL_CODE = 506: 0 (115.33/9.0)

Fig. 7 The precision-recall
diagram in Cottage Cheese
manufacturing

different parts of the ICs are etched in thin layers of mate-
rial grown or deposited on the working surface of the wafers.
Each process step must be tightly controlled to ensure dimen-
sional tolerances. After a high-precision diamond saw cuts
the wafers into chips, they are mounted onto packages.

Fabrication of a single lot requires several months. The
data are accumulated for each fabrication tool at both the
wafer and lot level, using an information system known as
“manufacturing execution system”. IC manufacturing lines
provide many data-mining opportunities. In IC manufactur-
ing, data-mining could have tremendous economic impact,
raising profitability by increasing throughput and reducing
costs, consequently (Fountain et al., 2000).

For this paper we examined two different datasets obtained
from a wafer manufacturer providing design support, manu-
facturing and turnkey services for integrated ICs on silicon
wafers in geometries from 1.0 to 0.18µm.

The main goal of data mining in IC manufacturing data-
bases is to understand how different parameters in the process
affect the line throughput. The throughput of IC manufactur-
ing processes is measured by “yield,” which is the number of
good products (chips) obtained from a silicon wafer. Since
the capability of very expensive microelectronics equipment
usually limits the number of wafers processed per time unit,
the yield is the most important criterion in determining the
effectiveness of an IC process.

J Intell Manuf (2006) 17:285–299 297

Table 4 The accuracy and the F-measure for the yield dataset

Criterion Naive Bayes C4.5 BOW

Accuracy 84.28%±2.1% 78.85%±3.6% 92.86%5.3%
F-measure 64.5%±4.9% 17.4%±7.2% 82.8%±4.3%
No of 257 4±1.4 16±7.9
features used

Data

The training dataset includes only 70 records. Each record
represents a single wafer and has 257 input attributes labelled
p1, . . . , p257 that represent the setting of various parame-
ters used in the manufacturing process of this wafer. The tar-
get attribute represents the yield, which the manufacturer’s
quality engineer has manually divided into two groups: High
and Low. More than half of the attributes are numeric. The
input attributes specify several machine parameters (for in-
stance, the rotation speed of the slicing machine or the slic-
ing machine model) that may affect the yield. A distinctive
value (in case of categorical attributes) or the mean value
(in case of numeric values) replace missing values. Due to
the high-commercial confidentiality of the process data, we
will not explain here the specific meaning of the measured
parameters.

Results

Running the BOW on the dataset resulted in five subsets.
The average subset size was 3.2 attributes. Table 4 presents
the F-measure regarding the “Low” yield and the overall
accuracy. The results indicate that the BOW achieved bet-
ter results in both F-measure and accuracy compared to the
C4.5 and Naïve Bayes. Moreover, as in the first case study,
the BOW algorithm employed a greater number of features
than C4.5. Setting the process parameters according to the
classifier obtained by BOW can improve yields by up to 10%.

The IC test

Objectives

The fabricated ICs undergo two series of exhaustive electric
tests that measure the operational quality. The first series of
tests, which is used for reducing costs by avoiding packag-
ing defective chips, is performed while ICs are still in wafer
form. The second series of tests, which is used for quality
assurance of the final chip, is carried out immediately after
the wafers are cut into chips and mounted onto packages.

The electric tests are performed by feeding various combi-
nations of input signals into the IC. The output signal is mea-
sured in each case and compared to the expected behavior.

Table 5 The accuracy and the F-measure for the IC-Test dataset

Criterion Naïve Bayes C4.5 BOW

Accuracy 92.82%±2.5% 89.24%±1.9% 96.81%±0.6%
F-measure 90.3%±3.2% 83.8%±1.6% 95.4%±0.9%
No of 220 9±3.2. 26±2.7
features used

There are wafers that perform well on the first series but fail
later in the second series. The goal is to check whether the
results of the first series can be further analyzed in order to
predict the outcome of the second series. This can be used to
reduce the number of wafers that are unnecessarily sliced and
packed, eliminating the need for a second series of exhaustive
electric tests for most of the devices.

Data

The training data set includes 395 records. Each record has
220 input attributes labeled p1,. . .,p220 representing the
electric result values obtained in the first series of tests. Most
of the input features represent voltage levels. The target attri-
bute is binary representing “pass” and “not pass” devices
according to the functionality of the device in the second test-
ing series. Similar to the yield problem, a distinctive value or
the average value replaces missing values depending on the
data type.

Results

Running the BOW algorithm on the above data has created
seven ODTs containing 26 electronic tests that can be used
as indicators for the results of the second series of tests.
Table 5 shows the mean of the F-measure regarding the “no
pass” class and the overall accuracy obtained by using 10-fold
cross-validation along with their confidence interval (with a
confidence level of 95%). As in the case of the yield dataset,
the BOW algorithm obtained the most encouraging results.

Figure 8 presents the precision-recall diagram for each
algorithm. The graph shows that BOW and Naïve Bayes have
similar performance and that both are much more efficient
than C4.5. The graph also shows that a precision value of
100% can be obtained for a recall value of 67%. In other
words, 67% of the defected devices can be identified in the
first series of tests without having any false alarm (no high-
quality devices will be lost).

Conclusion

Classification problems in quality assurance are character-
ized by many contributing features relative to the training set

298 J Intell Manuf (2006) 17:285–299

Fig. 8 The precision-recall
diagram in IC Test problem

Recall vs. Precision

0.6

0.7

0.8

0.9

1

0.3 0.5 0.7 0.9

Precision
R

ec
al

l

Naïve Bayes

BOW

C4.5

0.4 0.6 0.8 1

size and the imbalanced distribution of the target attribute.
This paper presents a new, mutually exclusive feature set
decomposition methodology designed specifically for these
circumstances. The basic idea is to decompose the original
set of features into several subsets, build a decision tree for
each projection, and then combine them.

This paper proposes the BOW algorithm for discovering
the appropriate decomposition structure. It was tested with
over three real-life datasets. The results show that this frame-
work tends to outperform other comparable methods in the
accuracy and the F-measure. The above leads to the conclu-
sion that feature set decomposition can be used for solving
classification problems in quality assurance.

One limitation with the suggested algorithm is that it has
no backtracking capabilities (for instance, removing a single
feature from a subset or removing an entire subset). Further-
more, the search currently begins from an empty decompo-
sition structure, which may be the reason why the number of
features in each subset is relatively small. It might be useful
to start the search from a better position.

Additional issues to be further studied include: examin-
ing how the feature set decomposition concept can be imple-
mented using other inducers like support vector machines
and by examining other techniques to combine the generated
classifiers (like voting).

References

Bellman, R. (1961), Adaptive control processes: a guided tour. NJ:
Princeton University Press.

Chawla, N.V., Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002).
SMOTE: Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, 16, 321–357.

Duda, R., & Hart, P. (1973). Pattern Classification and Scene Analysis.
New-York: Wiley.

Dunteman, G.H. (1989). Principal Components Analysis. CA, Beverley
Hills: Sage Publications.

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A multiple resampling
method for learning from imbalances data sets. Computational
Intelligence, 20(1), 18–36.

Ferri, C., Flach P., & Hernández-Orallo, J. (2002). Learning decision
trees using the area under the ROC curve. In C. Sammut & A. Hoff-
mann, (Eds.), Proceedings of the 19th International Conference on
Machine Learning. pp 139–146. CA: Morgan Kaufmann.

Fountain, T. Dietterich T., & Sudyka B. (2000). Mining IC test data
to optimize VLSI testing. In J. Simoff & O. Zaiane, (Eds.), Pro-
ceedings 6th ACM SIGKDD Conference. Boston: MA, USA.
pp 18–25.

Friedman, J.H., & Tukey, J.W. (1973). A Projection pursuit algorithm
for exploratory data analysis. IEEE Transactions on Computers,
23(9), 881–889.

Gardner, M., & Bieker, J. (2000). Data mining solves tough semicon-
ductor manufacturing problems. In J. Simoff & O. Zaiane, (Eds.),
Proceedings 6th ACM SIGKDD Conference. Boston: MA, USA.
pp 376–383.

Hand, D. (1998), Data mining—reaching beyond statistics. Research in
Official Statistics, 1(2), 5–17.

Hwang, J., Lay S., & Lippman, A. (1994). Nonparametric multivari-
ate density estimation: A comparative study. IEEE Transaction on
Signal Processing, 42(10), 2795–2810.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: a
systematic study. Intelligent Data Analysis Journal, 6(5), 429–449.

Jimenez, L.O., & Landgrebe D.A. (1998). Supervised classification in
high- dimensional space: geometrical, statistical, and asymptoti-
cal properties of multivariate data. IEEE Transaction on Systems
Man, and Cybernetics — Part C: Applications and Reviews, 28,
39–54.

John, G.H., Kohavi R., & Pfleger, P. (1994). Irrelevant features and
the subset selection problem. In W. Cohen, & H. Hirsh, (Eds.),
Proceedings of the Eleventh International Conference In Machine
Learning. New Brunswick: NJ, pp 121–129. USA, CA: Morgan
Kaufmann.

Joshi, V.M. (2002). On evaluating performance of classifiers for rare
classes. In H. Wang, S.P. Yu, & S. Stolfo (Eds.), Proceedings Sec-
ond IEEE International Conference on Data Mining. IEEE Com-
puter Society Press, pp 641–644. San Jose, California.

Kim, J.O., & Mueller, C.W. (1978). Factor Analysis: Statistical Meth-
ods and Practical Issues. CA: Sage Publications.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced
data sets: one-Sided sampling. Proceedings of the Fourteenth
International Conference on Machine Learning, Nashville, TN,
USA, pp. 179–186.

Kusiak, A. (2000). Decomposition in data mining: An industrial case
study. IEEE Transactions on Electronics Packaging Manufactur-
ing, 23(4), 345–353.

Kusiak, A. (2001). Rough Set Theory: A Data Mining Tool for Semicon-
ductor Manufacturing. IEEE Transactions on Electronics Packag-
ing Manufacturing, 24(1), 44–50.

J Intell Manuf (2006) 17:285–299 299

Kusiak, A., & Kurasek, C. (2001). Data Mining of Printed-Circuit Board
Defects. IEEE Transactions on Robotics and Automation, 17(2),
191–196.

Last, M., & Kandel, A. (2001). Data mining for process and quality con-
trol in the semiconductor industry. In D. Braha (ed.), Data Mining
for Design and Manufacturing: Methods and Applications. Dordr-
echt: Kluwer Academic Publishers, pp 207–234.

Last, M., Maimon, O., & Minkov, E. (2002). Improving stability of
decision trees. International Journal of Pattern Recognition and
Artificial Intelligence, 16(2), 145–159.

Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discov-
ery and Data Mining. Dordrecht: Kluwer Academic Publishers.

Maimon, O., & Rokach, L. (2001). Data mining by attribute decompo-
sition with semiconductors manufacturing case study. In D. Braha,
(ed.), Data Mining for Design and Manufacturing: Methods and
Applications. Dordrecht: Kluwer Academic Publishers, pp. 311–
336.

Niblett, T. (1987). Constructing decision trees in noisy domains. In Brat-
ko, I., & Lavrac, N. (Eds.), Proceedings of the Second European
Working Session on Learning. Sigma Press, Wilmslow: England,
pp 67–78.

Nickerson, A., Japkowicz, N., & Milios, E. (2001). Using unsupervised
learning to guide resampling in imbalanced data sets. Proceedings

of the Eighth International Workshop on Artificial Intelligence and
Statistics, pp 261–265.

Nugroho, A.S., Kuroyanagi, S., & Iwata, A. (2002). A Solution for
Imbalanced Training Sets Problem by CombNET-II and Its Appli-
cation on Fog Forcasting. Transactions on Information and Sys-
tems, The Institute of Electronics, Information and Communication
Engineers, 85(7), 1165–1174.

Pfahringer, B. (1994). Controlling constructive induction in CiPF. In F.
Bergadano, & L. De Raedt (Eds.), Proceedings of the seventh Euro-
pean Conference on Machine Learning. pp 242–256. Springer-
Verlag.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. CA: Mor-
gan Kaufmann.

Van Rijsbergen, C.J. (1979). Information retrieval, butterworth ISBN
0-408-70929-4

Van Zant, P. (1997). Microchip fabrication: a Practical Guide to semi-
conductor processing. New York: McGraw-Hill.

Weiss, G.M., & Provost, F. (2003). Learning when training data are
costly: the effect of class distribution on tree induction. Journal of
Artificial Intelligence Research, 19, 315–354.

Weiss, G.M., & Zhang, T. (2003). Performance analysis and evalua-
tion. In Y. Nong, (ed.), The Handbook of Data Mining. Lawrence
Erlbaum Associates Publishers, pp 425–439.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

