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Abstract This paper focuses on optimization of order due
date fulfillment reliability in multi-echelon distribution net-
work problems with uncertainties present in the production
lead time, transportation lead time, and due date of orders.
Reliability regarding order due date fulfillment is critical
in customer service, and customer retention. However, this
reliability can be seriously influenced by supply chain uncer-
tainties, which may induce tardiness in various stages
throughout the supply chain. Supply chain uncertainty is
inevitable, since most input values are predicted from his-
torical data, and unexpected events may happen. Hence, a
multi-criterion genetic integrative optimization methodology
is developed for solving this problem. The proposed algo-
rithm integrates genetic algorithms with analytic hierarchy
process to enable multi-criterion optimization, and proba-
bilistic analysis to capture uncertainties. The optimization
involves determination of demand allocations in the net-
work, transportation modes between facilities, and produc-
tion scheduling in manufacturing plants. A hypothetical
three-echelon distribution network is studied, and the
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computation results demonstrated the reliability of the pro-
posed algorithms.

Keywords Multi–criterion decision making · Genetic
algorithms · Analytic hierarchy process · Uncertainties ·
Distribution network · Production scheduling

Glossary
The following notation is used in the distribution network
model:
AR average reliability.
ATk mean arrival time (total lead time) of

demand k.
CMDi j delivery unit cost for each unit of prod-

uct transported from warehouse j to cus-
tomer k.

CWD jk delivery unit cost for each unit of prod-
uct transported from manufacturing plant
i to warehouse j .

D(xd) normal probability distribution of the
required due date.

DCk demand quantity from customer k.
DC jk a share of DCk allocated to warehouse j .
DCRm delivery unit cost ratio for each unit of

product transported for delivery mode m.
Dk customer k.
dL lower boundaries of order due date of

D(xd).
DMMi jm transportation mode selected to delivery

product from manufacturing plant i to
warehouse j .

dU upper boundaries of order due date of
D(xd).

DUk due date of demand k.
DW j demand quantity from warehouse j .
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DWi j a share of DW j allocated to manufactur-
ing plant i .

DWM jkm transportation mode selected to delivery
product from warehouse j to customer k.

LMi jm delivery lead-time for each unit of prod-
uct transported from manufacturing plant
i to warehouse j for delivery mode m.

LW jkm delivery lead-time for each unit of prod-
uct delivered from warehouse j to cus-
tomer k for delivery mode m.

m transportation mode.
MCAi maximum production capacity of manu-

facturing plant i .
Mi manufacturing plant i .
MLTi production lead-time per unit product of

manufacturing plant i .
MPCi production unit cost of manufacturing

plant i .
MSik storage unit time of demand k spent in

manufacturing plant i .
MSCi storage unit cost per unit time of manu-

facturing plant i .
MTik mean production lead time of demand k

in manufacturing plant i .
PC penalty cost per unit of product incurred

from tardiness.
PRk probability of demand k being supplied

before due date.
S(xs) normal probability distribution of the

supply date.
SCHik ranking number of demand k in produc-

tion scheduling in manufacturing plant i .
SL lower boundaries of supply date of S(xs).
STD R standard deviation of reliability.
SU upper boundaries of supply date of S(xs).
TC total system cost.
TD total deviation of tardy supplies.
Tk time of tardiness for demand k.
TN total number of tardy supplies.
TT total duration of tardiness times.
UMi capacity utilization of manufacturing

plant i .
UW j capacity utilization of warehouse j .
WCA j maximum inventory storage capacity of

warehouse j .
WHC j inventory handling unit cost of ware-

house j .
W j warehouse j .
WLT j order-processing lead time per order of

warehouse j .
WPRk probability of demand k being supplied

before due date with weighting assigned.
WR weighted reliability.

WSC j storageunitcostperunit timeofwarehouse j .
WS jk storage unit time of demand k spent in ware-

house j .
xd a set of possible required order due date.
xs a set of possible supply arrival date.
µ(∗) mean value of ∗.
σ(∗) standard deviation of ∗.

Introduction

Distribution problems are concerned about with the alloca-
tion of a number of demand points to a number of source
points, such as material suppliers, manufacturing plants,
warehouses, distribution centers, and customers, connected
by with various transportation facilities to form a supply net-
work. Efficient integration of these facilities has been recog-
nized to be an important strategy to increase and maintain
competitive strength (Alshawi, 2001; Marcel & Evers, 1996;
Yrjölä, 2001). A good distribution network can improve the
operational costs, traveling distance, and the customer satis-
faction level, by determining the optimal links between each
pair of points, the product flow routine, transportation pol-
icy, and scheduling of the carrier loading/unloading points.
Meanwhile, it can increase the flexibility, responsiveness,
and reliability (Lumsden, Dallari, & Ruggeri, 1999; Milgate,
2001; Stank & Goldsby, 2000).

Accurate due date fulfillment is critical in winning cus-
tomer orders, and maintaining customer retention. It relies
on the reliability of various supply chain activities including
material supply, production, and transportation. Earliness or
tardiness happened in any activity may affect the completion
time. Managing them as a whole has been recognized as an
important issue (Thomas & Griffin, 1996), including buyer
and vendor, production planning and inventory control, dis-
tribution and logistics, production-distribution, and inventory
and distribution, etc. (Beamon, 1999; Cohen & Lee, 1988;
Lee, Kim, & Moon, 2002). Failure of integration may result
in inefficient utilization of resources, over-loaded/idle capac-
ity, long production lead time, high in-transit inventory level,
larger buffer stock, and unreliable due date assignment (ear-
liness and tardiness).

This paper develops an optimization algorithm to max-
imize the reliability of customer order due date fulfillment
in a demand driven multi-echelon distribution network. The
proposed algorithm simultaneously optimizes demand allo-
cations, transportation, and production scheduling and is
capable of handling uncertain input in the customer due date,
production lead time, and transportation lead time. It adopts
the optimization concept of GA, and multi-criterion decision-
making technique (MCDM) of Analytic Hierarchy Process
(AHP) (Chan & Chung, 2004). The content of this paper is
organized as follows. Next section gives a literature review.
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Third section discusses the order fulfillment reliability with
the probability approach. Section The Problem structure de-
fines the distribution network problem. section Optimization
Methodology presents the proposed optimization methodol-
ogy. Final section analyzes the computation results, and lastly
the paper will be concluded with a conclusion and directions
of future research.

Literature review

Concurrently planning the production capability, production
capacity, production costing, rough production scheduling,
and demand due date, can help in providing products and
services to customers at a lower cost and with a higher cus-
tomer service level (Wu, Fuh, & Nee, 2002). With a set of
demands, the inter-relationship between demand allocations,
inventory management, location of facilities, and determina-
tion of transportation policy has been studied (González &
Fernández, 2000; Wilson, 1995). From a macro view, the
completion time of an order mainly depends on the pro-
duction, warehousing, and transportation deployed between
manufacturing plant and warehouse, and warehouse and cus-
tomer. Among them, production scheduling influences the
most since production capability is limited. In this connec-
tion, during demand allocations, the optimization method-
ology should also determine the production priority of each
demand allocated.

Supply chain uncertainties are inevitable and they will
affect the scheduling(s) (Schmidt & Wilhelm, 2000). Chen
and Paulraj (2004) summarized supply chain uncertainties
into three areas, which are supplier, manufacturing, and cus-
tomer. However, there is a lack of paper studying in concur-
rent optimization of demand allocations, transportation, and
rough production scheduling, especially with the consider-
ation of supply chain uncertainties.

Optimization methodologies

To solve distribution network problems, some researchers ap-
plied linear programming, non-linear programming, mixed
integer programming, fractional programming, and multi-
objective linear fractional programming (Chakraborty &
Gupta, 2002; Mármol, Puerto, & Fernández, 2002; Wilson,
1995). These optimization approaches can generate optimal
solutions. However, they are usually time consuming in com-
putation, and complicated in model construction.

In recent years, near optimal solutions obtained from heu-
ristic approaches such as genetic algorithms (GAs), tabu
search, simulated annealing, neural networks, etc. are more
preferable because of their effective computational time
(Berry, Murtagh, McMahon, Sugden, & Welling, 1998;
Chang & Lo, 2001; Leão & Matos, 1999). Among them,
GAs have been widely adopted by many researchers. Abdin-

nour-Helm (1999) testified the reliability and robustness of
GA, by deploying five different distribution networks with
the geographical layouts of Continental USA, Regional USA,
Canada, and Western Europe. The results obtained were com-
pared with the one obtained from mixed integer programming
and it was proven that GA is reliable and robust. Vignaux
and Michalewica (1991) adopted GA to minimize the oper-
ating cost for a linear transportation problem. Some research-
ers combined GAs with other heuristic methods, such as
Tabu Search to enhance the optimization results (Abdinnour-
Helm, 1998, 1999; Glover, 1986, 1989). GAs can also obtain
good results in Job-shop scheduling problems (Cheung, Gen,
& Tsujimura, 1996, 1999; Sakawa, 2002).

To capture supply chain uncertainties, many researchers
applied probabilistic methods, and fuzzy logic theory
(Cheung et al., 1996, 1999; González & Fernández, 2000;
Miznuma & Watada, 1995). Sakawa (2002) deployed GA
to maximize the fulfillment reliability of job due dates in a
job-shop scheduling problem, in which the uncertainties of
production lead time, and the due dates are represented by
fuzzy sets. Some researchers combined GA with fuzzy the-
ory to overcome uncertainties, such as demand fluctuation,
which always exists in supply chain, (González & Fernández,
2000; Miznuma & Watada, 1995).

Multi-criterion decision-making

Multi-criteriondecisionmakingisusuallyencounteredinsup-
ply chain management. Minimizing operating cost is
crucial to make profit. Analogously, customer service is
important to maintain competition (Hoek & Chong, 2001).
Customerservice levelcanbemeasuredbycustomer response
time, ability to respond to market changes, consistent order
cycle time, accuracy of order fulfillment rate, delivery time,
flexibility in order quantity, flexibility in product specifica-
tion, accuracy of information system, etc. (Ballou, 1999). The
factor of short due dates is critical for winning customer or-
ders (Song, Hicks, & Earl, 2002). However, it usually induces
high operating costs, and unreliable due date because of the
relatively shorter range of tolerance for tardiness.

Tardiness may cause penalty cost and negative impact on
the company’s reputation. Indeed, there is a trade-off between
the length of lead time quoted to the customers and the ful-
fillment reliability (Van and Bertrand, 2001). Gordon, Proth,
& Chu (2002) summarized the literatures in the area of due
date assignment and scheduling, such as those applying the
mean absolute deviation (MAD) of completion time about
a common completion due date, or mean absolute lateness
to minimize the penalty cost on single machine, or paral-
lel machines problems. However, most of the research work
only studied at the level of job-shop scheduling. There is a
lack of studies in the analysis of demand due date factor at
the higher decision level of distribution network problems.
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Improving some factors may affect the others, such as
customer service and operating cost. Thus, trade-offs have to
be taken. Another hottest example is the trade-off between
earliness and tardiness to the demand due date. Early com-
pletion enhances fulfillment reliability, but induces storage
costs, while tardy completion may lower operating cost, but
induces penalty costs in some situations. In other words, the
optimization methodology should be capable of determining
the trade-off between the benefits of due date fulfillment
reliability and the tardiness according to the weightings pre-
defined in a given business situation. This highly complex
relationship further increases the difficulty of decision-mak-
ing, and in this connection, the proposed optimization meth-
odology should allow the modeling of importance weightings
to make it more realistic, and practical.

Order fulfillment reliability

Order fulfillment reliability concerns the reliability of
fulfilling an order on or before the due date required. Unre-
liability can seriously induce extra costs, including those
of tangible or intangible penalty costs, product deprecia-
tion, high inventory level, interruption of production, poor
customer satisfaction, and or even loss of market share. Reli-
ability can be enhanced by a good scheduling and opera-
tion of supply chain activities. However, scheduling in a
deterministic environment is not practical since uncertain-
ties are inevitable. Conventionally, uncertainties are captured
in normal probability distribution density function as stated
in Equation (1). Probability representation, instead of fuzzy
representation, is applied because it gives a numerical value
that indicates the chance of happening of an event. Deci-
sion makers can obtain more information from probability
representation.

f (x) = e−(x−µ)2/2σ 2
/σ(2π)1/2 (1)

Order fulfillment reliability is represented by the probabil-
ity (PR) of supplying the demand on or before the defined
due date. Figure 1 shows the normal probability distribu-
tion of the supply date S(xs) and the normal probability
distribution of the required due date D(xd). By Equation

SL SUdL dU

DemandSupply

x 

f(x)

Fig. 1 A sample of supply date and demand due date in normal prob-
ability distribution

(2), SL and dL are the lower boundaries, while SU and dU
are the upper boundaries of the normal probability distri-
bution of the supply date, and the due date, respectively, in
which Z = 3.4 corresponding to probability of happening of
99.98%.

Z = (x − µ)/σ (2)

The probability of order fulfillment reliability is defined by
Equation (3). The continuous density function D(xd) is con-
sidered as discrete function. An order is fulfilled if the supply
arrives on or before the due date. The probability of happen-
ing equals to the probability of the order required on a partic-
ular date (D(xd)) multiplied by the probability of the supply
arriving on or before that particular date

∫
S(xs)dx .

PR =
dU∑

xc=d L

[

D(xd)

∫ b

a
S(xs)dx

]

(3)

where,
If xd > SU, then a = SL, and b = SU, so that

∫
S(xs)

dx = 1.
If xd > SL and xd < SU, then a = SL, and b = xd.
If xd < SL, then

∫
S(xs)dx = 0.

The problem structure

A typical hypothetical three-tier distribution network model
is testified. It consists of four manufacturing plants Mi (i =
1, 2, 3, 4), four warehouses W j ( j = 1, 2, 3, 4), and ten cus-
tomer demands Dk(k = 1, 2, . . . , 10), with two different
types of transportation modes (m = 1, 2) available between
each link, as shown in Fig. 2. It is assumed that the trans-
portation lead time in delivery mode 1 is shorter than that in
delivery mode 2 for the same delivery arcs, while the deliv-
ery cost is higher. The problems here are to determine which
demands should be produced in which manufacturing plants
and supplied via which warehouses, the type of transporta-
tion mode for each delivery, and the production scheduling in
the manufacturing plants. In this paper, five major criterions
have been chosen—total system cost, total lead time, utiliza-
tion, fulfillment reliability (in mean values), and fulfillment
reliability (in probability), as shown in Fig. 3.

The decision variables are stated as follows:

DCk j – a share of DCk allocated to warehouse j .
DWi j – a share of DW j allocated to manufacturing

plant i .
DWM jkm – transportation mode selected to delivery prod-

uct from warehouse j to customer k.
DMMi jm – transportation mode selected to delivery prod-

uct from manufacturing plant i to warehouse j .
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Mode 2 

Mode 1 

Mode 2 

Mode 1 

Delivery Problem

Mode 2 

Mode 1 

Mode 2 

Mode 1 

Delivery Problem
M1

k

1

Order Demand

Wj

Mi

Handling and 
storage times

W1Production scheduling

Demand allocation
Problem

Mi – Manufacturing plant i

Wj – Warehouse j

Fig. 2 A sample of distribution network model

Level-1

Total
system cost

Level-2
Total

lead time Utilization
Fulfillment Reliability

(In mean value) 
Fulfillment Reliability

(In probability ) 

Manufacturing
plants

Warehouses Total
number of 

tardy
supplies

Total number of
tardiness times

Std. Dev. of
tardy

supplies

Average
reliability

Weighed reliability

Cumulated
reliability

Level-3

Sol 1 

Level-4

Sol n Sol 3 Sol 2 

Optimal solution

Fig. 3 The hierarchy structure of the proposed algorithm

WS jk – storage unit time of demand k spent in ware-
house j .

MSik – storage unit time of demand k spent in man-
ufacturing plant i .

SCHik – ranking number of demand k in production
scheduling in manufacturing plant i .

Objective functions

MinZ = αTC + βTL + χU + δFRM + εFRP, (4)

where α, β, χ, δ, and ε are constants representing importance
weightings.
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Total system cost (TC)

T C = Total production cost in manufacturing plants

+Total inventory handling cost in warehouses

+delivery cost from manufacturing plants to warehouses

+delivery cost from warehouses to customers

+Total storage cost

+Total penalty cost (5)

=
∑

i j
DWi j MPCi +

∑

i j
[(MPCi + CMDi j )WHC j DWi j ]

+
∑

i j
DWi j CMDi j +

∑

jk
DC jkCWD jk

+
∑

i jk
(WSC j WS jk + MSCi MSik)DCk

+
∑

k
TkDCkPC

where

CMDi j =
∑

m
µ(LMi jm)MPCi DCRmDMMi jm

CWD jk =
∑

m
µ(LW jkm)(MPCi + CMDi j )WHC j DCRm

Tk = µ(ATk) − µ(DUk), if ATk > DUk

= 0, if ATk ≤ DUk

Total lead time (TL)

This function aims to minimize the lead time of demands. A
small value implies that the demands can to be delivered to
customer earlier with a higher probability.

TL =
∑

k
µ(ATk) (6)

TL(forDk) = Production lead time + Storage time in

manufacturing plant + Delivery lead time

from manufacturing plant to warehouse

+Inventory handling time + Storage time in

warehouse + Delivery lead time from

warehouse to customer

µ(ATk) =
∑

i jm
[µ(MTik)+MSik +µ(LMi jm)DMMi jm

+WLT j + WS jk + µ(LW jkm)DWM jkm]
σ(ATk) =

∑

i jm
[σ(MTik)

2 + σ(LMi jm)2DMMi jm

+σ(LW jkm)2DWM jkm]1/2,

where the production lead time of demand n(1 ≤ n ≤ k) in
manufacturing plant i ,

µ(MTin) = Queuing time + Production lead time.

=
∑

i j
µ(MLTi )DWi j Xk

σ(MTin) =
∑

jk
σ(MLTi )DWi j Xk

Xk = 1, if SCHik ≤ SCHin, else Xk = 0.

Utilization (U)

This function aims to improve the capacity utilizations equity
between manufacturing plants and between warehouses, rep-
resenting in standard deviation. The smaller the range, the
more balanced is it.
Utilization deviation for manufacturing plants [σ (UM)],

σ(UM) =
{∑

i
[UMi − µ(UM)]2/no. of manufacturing plant

}1/2
,

(7)

where

UMi =
∑

j
DWi j/MCAi

µ(UM) =
∑

j
DW j/

∑

i
MCAi

Utilization deviation for warehouses [σ (UW)],

σ(UW)=
{∑

j
[UW j − µ(UW)]2/no. of warehouse

}1/2
,

(8)

where

UW j =
∑

k
DC jk/WCA j

µ(UW) =
∑

k
DWk/

∑

j
WCA j

Fulfillment reliability in mean value (FRM)

This function aims to minimize the tardiness of customer
demands. The parameters considered are deterministic which
take the mean value of the normal distribution. It is divided
into three sub functions — total number of tardy supplies,
total duration of tardiness, and standard deviation of tardy
supplies. Indeed, these objective functions may conflict each
other in some cases.

Total number of tardy supplies (TN) This sub-function aims
to minimize the number of tardy supplies. It is independent of
the demand quantity, and duration of tardiness, for example
a total of three tardy supplies.

TN = number of tardy supplies. (9)

Total duration of tardiness (TT) This sub-function aims to
minimize the total duration of tardiness, in which the small-
est value is the optimal solution. For example, three tardy
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supplies with a total of 9 days tardiness can be better than 1
tardy supply with 10 days tardiness in some situations.

TT =
∑

k
Tk (10)

Total deviation of tardy supplies (TD) This sub-function
aims to minimize the long tardiness duration of supplies,
which occur only in a few demands, representing in standard
deviation. A large value indicates the difference of tardiness
between demands is large.

TD =
{∑

i
[µ(Tk) − µ(T )]2/k

}1/2
, (11)

where average number of tardiness [µ(T )]

µ(T ) =
∑

k
µ(Tk)/k

Fulfillment reliability in probability (FRP)

This function aims to maximize order fulfillment reliability,
representing in probabilities. It is subdivided into three sub
functions—average reliability, weighed reliability, and stan-
dard deviation of reliability.

Average reliability (AR) This sub-function aims to maximize
the average fulfillment reliability of the system. Every de-
mand has the same importance of weighting.

AR =
∑

k
PRk/k (12)

Weighted reliability (WR) This sub-function aims to maxi-
mize the fulfillment reliability of the demands, but impor-
tance weightings are assigned.

WR =
∑

k
DCkPRk/k (13)

Standard deviation of reliability (STD R) This sub-function
aims to maximize the balance of the fulfillment reliability
between demands. It reduces the chance of sacrificing some
particular demands for the high reliability of others. For
example, to obtain a fulfillment reliability for two demands
in probability 60% and 60% rather than in 99% and 20%.

σ(PR) =
{∑

k
[PRk − µ(PR)]2/k

}1/2
(14)

Constraints

The problem is subject to the following constraints:
Production capacity constraints
∑

j
DWi j ≤ MCAi (∀i) (15)

This constraint ensures the total quantity of demand allo-
cated from warehouses will not larger than the capacity of
the manufacturing plant i .

Warehouse handling capacity constraints

∑

k
DC jk ≤ WCA j (∀ j) (16)

This constraint ensures the total quantity of demand allocated
will not larger than the capacity of the warehouse j .
Demand allocation constraints

∑

jk
DC jk =

∑

k
DCk (17)

This constraint ensures the total demand allocated to ware-
houses equal to the total demand.

∑

i j
DWi j =

∑

jk
DC jk (18)

This constraint ensures the total demand allocated to manu-
facturing plants equal to the total demand allocated to ware-
houses.
Transportation mode

DWM jkm = 1, if the delivery mode is selected, else = 0.

DMMi jm = 1, if the delivery mode is selected, else = 0.

These constraints ensure each demand will be transported by
only 1 type of transportation between each link.

Structure parameters

The input values of the model are expressed as follows:

• Demand is generated between (250–500) units
• Production capacity (2000–2200) units
• Mean production lead time (0.01−0.025) unit times/unit
• Standard deviation of production lead time (0.001 −

0.0025) unit times/unit
• Production unit cost $(1.0–1.5) /unit
• Manufacturing storage cost $(0.2–0.4) /unit per unit times
• Warehouse capacity (2000–2500) units
• Warehouse handling lead time (1.0–2.0) unit times/order
• Warehouse handling cost $(0.1–0.2) /unit of product

value
• Warehouse storage cost $(0.1–0.15) /unit
• Penalty cost $(0.5) /unit per unit times
• Delivery cost of mode 1 $(0.2) of product value
• Transportation cost of mode 2 $(0.8) of product value
• Transportation lead time of mode 1 (0.3–0.5) of trans-

portation lead time of mode 2 per unit times for the same
delivery arc

• Standard deviation of transportation lead time
(0.05–0.15) ratio of the corresponding mean value
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Optimization methodology

Genetic algorithms

Genetic Algorithms (GAs) was developed by John Holland in
1960. It mimics the mechanism of genetic evolution in biolog-
ical nature. To model the studied problem, a chromosome will
be designed. It is composed of genes called alleles, and each
gene represents 1 decision variable. A fixed number of chro-
mosomes form an initial solutions pool. Through evolutions,
new chromosomes (offspring) will be formed, and which is
expected to be stronger than its parents, but this may not al-
ways be true. GA does not rely on analytical properties of the
function to be optimized. In short, GA has two major charac-
teristics. First, GA is re-iteratively and randomly generating
new solutions. Second, these solutions are evaluated for the
optimality according to predefined fitness functions.

This paper proposes an integrative optimization method-
ology to deal with the demand allocations, transportation,
and production scheduling. Due to the complexity of the
problem, the optimization process is divided into two parts,
as shown in Fig. 4. Part I optimizes the demand alloca-
tions, and transportation, while Part II optimizes the pro-
duction schedule. In detail, during each generation in Part I,
each chromosome provides a partial solution for the distri-
bution network, in which the demands have been allocated
to warehouses and manufacturing plants, and the transporta-
tion mode has been decided. Then according to each chro-
mosome, the production scheduling will be determined by
Part II to form a completion solution. After that, these chro-
mosomes will be feedback to Part I to calculate the fitness
values, and to the remaining operators to complete one evo-
lution. The iteration of Part I and Part II will carry on until
the evolution completed.

Structure of the chromosomes

Two types of chromosomes are designed, Type A for Part I
and Type B for Part II. Type A is a two-dimensional matrix,
as shown in Fig. 5a. Region 1 shows the supply of the cus-
tomer order from which warehouse, while Region 2 shows
the assigned production plant, and the corresponding trans-
portation mode adopted is shown in the last row. Type B is
shown in Fig. 5b. The production-scheduling row indicates
the ranking number of demand in the production scheduling
in its assigned manufacturing plant.

Extended segment of chromosome

If a demand is larger than the maximum capacity of a ware-
house or manufacturing plant, this order will be divided into
two individual orders. One is in the quantity of the largest
maximum absolute capacity of supply from the consequent

layer, and the other is in the remaining quantity. If the remain-
ing quantity is still too large to be absorbed, it will be further
split until all absorbed. In practice, this distribution approach
can benefit the supplier since capacity is fully utilized and
also the operating and transportation cost could be reduced.
For example, the administration cost required for each unit
of product is relatively lower.

To model this feature, the chromosome further extends
into two segments—(i) basic segment, and (ii) extended seg-
ment as shown in Fig. 6a, b. The basic segment is discussed
in previous section. The splitting process is defined in the ex-
tended segment. For example, in Fig. 6a the customer order is
larger than the largest absolute capacity of the available man-
ufacturing plants. This customer order will then be split. The
number of genes in the extended segment equals to the num-
ber of available manufacturing plants. Assuming D1 with an
order of 1000 units, which is greater than the largest max-
imum capacity of any individual manufacturing plant, say
M1 (800 units), D1 will be split into two parts—800 units
and 200 units. The first part will be allocated to M1, and the
other will be randomly allocated to other, for example M3.
Type B will also be extended corresponding to Type A for
production scheduling, as shown in Fig. 6c.

Similar to the approach of dealing with manufacturing
plant, if the customer order is larger than the largest absolute
capacity of the warehouses, the extended segment will be
set equal to the warehouse number. However, no change is
required for Type B. In case of more than one order in excess
of the largest maximum capacity of supply, each excess order
will be split as mentioned previously. However, the priority of
allocation among those excess orders is equal and arbitrary.

Genetic operators

Selector operator is applied roulette wheel selection, and the
probability of crossover for optimization Part I is 20%, and
Part II is 10%. Mutation operator deployed only in Part I with
probability of 80%.

Elitist strategy aims to reserve the best chromosomes from
the previous stage to the present stage without changing the
gene structure (DeJong, 1975). This ensures the best chromo-
somes can survive. Similar idea is found in “Isbest strategy”
(Onwubolu & Kumalo, 2001; Onwubolu & Muting, 2001).
In this paper, after each evolution, the chromosome with the
highest fitness value will be identified (more than one chro-
mosome may exist). These chromosomes will be compared
with those recorded in previous evolution. If these chromo-
somes are stronger, then they will be recorded. Otherwise,
the recorded ones will be inserted in the mating pool during
the next crossover. The insertion will be spread out evenly,
i.e. each insertion will be separated equal to the number of
insertion calculated. This ensures the survival of the best chro-
mosomes and gives another chance to make them stronger.
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Fig. 4 An outline of the
proposed optimization
methodology

Evolution until endEvolution until end

Crossover/mutation operator

Selection operator 

Generate chromosomes

(Type B) 

For each chromosome

(Part II) Optimization of

production scheduling

Crossover/mutation operator

(Part I) Optimization of

demand allocation and transportation problem

Selection operator 

Calculate fitness value

by AHP 

Generate chromosomes

(Type A) 

Customer order 1 2 3 4 5 1 2 3 4 5

Supplier W1 W3 W2 W3 W1 M1 M2 M2 M2 M1

Transportation mode 1 1 2 1 1 1 2 1 1 1

*Decision variable – supplier, and transportation mode

Type B 

Type A 

Region 2 Region 1 

M1 M2 M2 M2 M1

Production Scheduling 2 2 1 3 1

*Decision variable – production scheduling pattern 

(a)

(b)

Fig. 5 A sample of chromosome structure. (a) A five demands, three warehouses, and three manufacturing plants allocation and transportation
solution. (b) A five demands production scheduling solution

The number of insertion equals to approximately 10% of the
total number of chromosome. Such a low percentage prevents
the strongest chromosomes dominate the mating pool.

Analytic hierarchy process

Fitness value is a positive numerical value representing the
strength/desirability of a chromosome according to the eval-
uation criteria. For example, in a problem of minimization of
a cost function, if two solutions are found with A is $300, and
B is $700, the expression of fitness values of A and B could
be 0.7 (1–300/1000), and 0.3 (1–700/1000), respectively. In
supply chain management, since multi-objective problems

may usually be encountered, AHP will be applied to calcu-
late fitness value.

AHP is developed by Thomas L. Saaty (1980). It is a well-
proven MCDM methodology, especially powerful for those
complex problems with a set of highly interrelated decision
factors (Saaty, 1994). AHP organizes the complex interrela-
tionships into a hierarchy or a network structure. It integrates
all the criteria (objectives) into a hierarchy of weightings.
These weightings and the hierarchy structure used influence
the decision resulted. AHP needs numbers (quantitative) and
a modicum of mathematics to formalize judgments and make
tradeoffs. It also has the ability to determine which objective
factor outweighs the others.
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Supplier W1 W3 W2 W3 W2 > M1 M2 M2 M2 M3 F E *R

Transportation mode 1 1 2 1 1 1 2 1 1 1 2 1 1

Customer order 1 2 3 4 5 1 2 3 4 5 1 2 3

Basic Segment Extended Segment

E – empty gene

*R – Remaining quantity
F – fully utilized

Customer Demand Warehouse Demand 

1 2 3 4 5 1 2 3

Warehouse er

1 1000 0 0 0 0 800 0 0

2 0 0 200 0 300 0 200

3 0 300 0 200 0 0 300

500

200

M1 M2 M2 M2 M3 M1 M2 M3

Production Scheduling 0 3 1 4 2 1 2 1

Customer Number Manufacturing plant
Number

Customer Number 

Extended SegmentBasic Segment 

(a)

(b)

(c)

Manufactur

1

2

3

Fig. 6 An example of splitting demand. (a) The sample of chromosome
with the customer order 1 greater than the largest production capacity
of manufacturing plant 1. (b) The allocation representation interpreted

from the sample of chromosome as presented in (a). (c) The sample of an
extended segment for chromosome type B with respect to chromosome
type A shown in (a)

Another useful feature is the capability of importance
weighting assignment, which means human knowledge and
experience can directly be input into the system. Users can
vary these weightings according to their desires. Instead of
simply giving weightings to each criterion, AHP relates them
in pair-wise comparison. In this connection, decision makers
can specifically compare criterion A to criterion B and crite-
rion C, and then specifically compare the criterion of B to C,
or simply make changes in sub-criteria level without chang-
ing the weightings in the major criteria level. This weighting
approach allows much more details, convenience, and flexi-
bility on assigning weightings for the decision makers.

With decision maker’s preference, AHP determines which
solution is the most desirable in solution pool and ranks them
in desirability. This value can be applied to represent the fit-
ness value. The example problem in this paper can be mod-
eled into four hierarchy levels, as shown in Fig. 3. Level 1
represents the objective, which is to determine the best solu-
tion among an options pool. Level 2 is the major criterions,
and Level 3 is the sub-criteria under the major criterions.
Lastly, level 4 contains the potential solutions in the solution

pool. The calculation of fitness value is shown as following.
For each potential solution, the values of the optimization
functions will be represented as a relative value, shown in
Equation 19. For example, the optimization function is the
total system cost.

For minimization,

Relative cost

= Total system cost of the solution

Highest total system cost of solution in the pool
(19)

For maximization,

Relative cost =
1 − Total system cost of the solution

Highest total system cost of solution in the pool
(20)

From the above expression, a smaller value represents that
the solution has a better performance under that criterion.
This relative value is then compared with all the others in the
pool. Consider a pool with two solutions, CA and CB in the
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Table 1 A sample of criterion matrix table for total system cost
criterion

TC CA CB

CA 1 RB−RA+1
CB 1/(RB−RA+1) 1

relative cost values, if the relative value of CA (i.e. RA) is
smaller than that of CB (i.e. RB), it means CA is better (with
a lower cost) than CB. This implies CA should be weighted
more. Therefore, the value of weighting of CA to CB is:

Weighting of CA to CB = RB − RA + 1 (21)

In contrast, if RA is larger than RB,

Weighting of CA to CB = 1/(RA − RB + 1) (22)

The numerical constant 1 in the Equations (21) and (22)
serves two functions. First it makes the weighting equal to 1
when RA equals to RB, and also it forces the weighting to
be larger than 1. These calculations form a criterion matrix
table (see Table 1) for total system cost criterion in level-4 of
Fig. 3. Detail calculation could be found in Chan and Chung
(2004). Similar criterion matrix table will be evaluated for
all the other criterions. The evaluation of the AHP value for
each potential solution is completed by the multiplication of
the normalized values found in level 4 with those found in
level-2 and level-3.

Computation results and analysis

In this paper, three experiments have been established with
the same model structure and input parameters as discussed
in section 4. These experiments adopt different sets of weigh-
tings, emphasizing in different objective functions. The
emphasis in Experiment 1 is on TC, Experiment 2 on TN,
and Experiment 3 on AR. The proposed algorithm is imple-
mented in a Java program on a PC, with 500 evolutions in
the optimization Part I, and 10 evolutions in Part II to ob-
tain a steady solution. The purpose of these experiments is
to compare and analyze the different values of the total sys-
tem cost, number of tardy supplies, and fulfillment reliability
obtained.

In these experiments, if the mean completion time is later
than the mean order due date defined, this customer order
is classified as tardy. Penalty cost will be charged. From
Experiments 1 and 2, the comparison shows the extra costs re-
quired to minimize the number of tardy supplies. In
Table 2, Experiment 1 has the lowest TC ($16923.5) with
two tardy supplies, which is the highest among the experi-
ments, detail in Table 3. To minimize the number of tardy
supplies in Experiment 2, the TC is required to increase by

Table 2 Optimization results for experiments 1, 2 and 3

Experiment 1 2 3

Emphasis on TC TN AR
Weighting Value 0.98 0.98 0.98

Results
TC 16923.5 17338.83 27893.43
Lead time 200 194 150
UM 9.2 20.8 24.7
UW 24.9 20.8 29.5
TN 2 0 0
TT 4 0 0
TD 0.917 0 0
AR 0.645 0.74 0.99
WR 1932 2304 3150
STD R 0.237 0.176 0.017

2.45% to $17338.83. All demands can be satisfied by the
assigned due date. This comparison also shows the ability
of the proposed optimization algorithm to take the trade-off
between the objective functions according to the importance
weightings.

Table 3 shows that each demand has a different proba-
bility of fulfillment reliability. For example, in Experiment
1, Orders 5 and 10 are estimated to have tardiness of 1 and
3 unit times, respectively. In numerical analysis, these two
orders still have the probability of 44.23%, and 17.52% to
be supplied on or before the due date required. However,
AR obtained is only 64.5% (Table 4), which is relatively
the lowest. This value is equivalent to have probability of
35.5% of tardiness. This implies high probability of incre-
ment in penalty cost from tardiness. Although Experiment 2
emphasizes on minimizing the number of tardiness, AR only
increases to 74%, since it only considers the parameters in
the mean values. With the emphasis on maximizing the aver-
age reliability function, Experiment 3 has the highest AR of
99%, and STD R has been improved as well.

In Experiments 1 and 2, tardiness could happen more
seriously. In an extreme case, if all orders are required on
the earliest possible due date, and all supplies are finished
on the latest completion time according to their probability
distribution densities, Table 4 shows the potential penalty
cost and tardiness durations that could be incurred. Experi-
ments 1 and 2 incur a relatively higher penalty cost. However,
even with addition of these extra penalty costs in Experi-
ment 1 (i.e. $16923.5 + $17591.6 = $34515.1), the total sys-
tem costs are still lower than that of the Experiment 3 (i.e.
$27893.43 + $8139.49 = $36032.9). However, the potential
tardiness durations in Experiments 1 and 2 may be much
longer than that in Experiment 3 because the supply dates in
Experiment 3 are set relatively earlier to the mean due date
required.
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Table 3 Order fulfillment reliability of demands

Order Due (µ, σ ) Experiment 1 Experiment 2 Experiment 3

Completion Early (+) / Prob. Completion Early (+) / Prob. Completion Early (+) / Prob.
(µ, σ ) Tardy (−) (µ, σ ) Tardy (−) (µ, σ ) Tardy (−)

1 21 2.10 15 0.99 6 0.9967 17 0.98 4 0.9725 9 0.41 6 1
2 22 2.20 22 1.87 0 0.5682 19 1.49 3 0.8183 18 1.33 4 0.9586
3 19 1.90 17 0.97 2 0.7779 17 1.14 2 0.8679 16 0.95 3 0.9485
4 24 2.40 24 1.32 0 0.5719 24 1.52 0 0.5693 17 1.63 7 0.9944
5 24 2.40 25 2.02 −1 0.4423 24 1.99 0 0.5633 18 1.17 6 0.9918
6 18 1.80 17 0.94 1 0.7681 16 0.86 2 0.8924 13 0.69 5 0.9972
7 20 2.00 20 1.15 0 0.5849 20 1.22 0 0.5836 15 0.91 5 0.9870
8 23 2.30 23 1.26 0 0.5676 23 1.38 0 0.5581 17 0.97 6 0.9947
9 19 1.90 13 0.78 6 0.9983 13 0.78 6 0.9983 12 0.67 7 0.9987
10 21 2.10 24 1.64 −3 0.1752 21 1.32 0 0.5793 15 0.98 6 0.9967

Table 4 Penalty cost incurred from possible earliest due date required and tardiest supplies

Order Required due date Experiment 1 Experiment 2 Experiment 3

Completion Potential tardiness Completion Potential tardiness Completion Potential tardiness

1 14 18 −4 20 −6 10 0
2 15 28 −13 24 −9 23 −8
3 13 20 −7 21 −8 19 −6
4 16 29 −13 29 −13 23 −7
5 16 32 −16 31 −15 22 −6
6 12 20 −8 19 −7 15 −3
7 13 24 −11 24 −11 18 −5
8 15 27 −12 28 −13 20 −5
9 13 16 −3 16 −3 14 −1
10 14 30 −16 25 −11 18 −4

Penalty cost induced 17591.6 16010.9 8139.47

Conclusions and future research

Reliability of order due date fulfillment is critical in cus-
tomer service and customer retention. A reliable order ful-
fillment can be achieved by adequately scheduling different
operations in different stages of the supply chain. However,
scheduling in a deterministic environment is not practical
because of supply chain uncertainties, sourcing from pro-
duction, transportation, and forecasting of the coming order.
Uncertainties may induce tardiness and consequently penalty
cost. However, earliness may require higher operating cost
and storage cost. Trade-off between earliness and tardiness
should be determined.

Multi-criterion decision-making is usually required in sup-
ply chain management. This paper discussed the inter-rela-
tionship between total system cost, total lead time, utilization,
fulfillment reliability (in mean value), and fulfillment reli-
ability (in probability). To handle multi-criterion optimiza-
tion, AHP is applied. The proposed integrative optimization
methodology adopts GA for optimization, AHP to calculate
the fitness values, and probabilistic representation to cap-
ture uncertainties. The proposed algorithm reiteratively opti-

mizes the demand allocations and transportation, and produc-
tion scheduling by separately applying GA in two different
stages. A hypothetical three-echelon distribution network has
been solved with three experimental runs. The comparison
of optimal values obtained in each experiment demonstrated
the influence of uncertainties. It also demonstrates the ability
of the proposed algorithm to take the trade-off according to
importance weightings.

Further research

The uncertainties in this distribution network problem only
concerned with the production lead time, transportation lead
time, and order due date. These uncertainties are related only
with time. In practice, there are many other uncertainties exist
in supply chain environment, such as the raw material sup-
ply quantity, production quantity, etc. These uncertainties
increase the complexity of estimation of order fulfillment
reliability of the system. Further research can be studied on
the impact of various uncertainties on the reliability of order
fulfillment.
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