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Abstract
In the domain of sequence recommendation, contextual information has been shown to
effectively improve the accuracy of predicting the user’s next interaction. However, existing
studies do not consider the dependencies between contextual information and item sequences,
but the contextual information is directly fusing with the item sequences, which brings the
problems described below: (1) Direct fusion fuses contextual information (e.g., time and cat-
egories) with item sequences which increases the dimensionality of the embedding matrix,
thus increasing the complexity of the attention computation. (2) The attention computa-
tion of heterogeneous context information in the same embedding matrix makes it difficult
for the recommendation model to distinguish this heterogeneous information. Therefore,
we propose a bidirectional multi-sequence decoupling fusion method for sequence recom-
mendation (BMDF-SR) to address the above issues. To establish the dependencies between
temporal context sequences and item sequences, we first treat temporal contextual infor-
mation as independent sequences and build bidirectional dependencies between contextual
information sequences and item sequences via a three-layer seq2seq structure. Then, we per-
form attention computation independently for context sequences such as categories, and the
complexity of attention computation can be effectively reduced by this decoupled attention
computation. Moreover, since the attention computation is performed separately for each
sequence, the interference between heterogeneous information during sequence fusion is
reduced, allowing the model to effectively discriminate between different types of informa-
tion. Extensive experiments on four real-world datasets show that the BMDF-SR method
outperforms popular models.
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1 Introduction

Sequential recommendation(SR) has gained significant attention as a critical techniquewithin
recommendation systems(RS) (Lei et al., 2022; Xie et al., 2022). Among the traditional SR
methods, Markov chain-based methods (e.g., FPMC Rendle et al., 2010) are widely used.
Still, they infer user preferences from only one or a few recent user interactions (He et
al., 2017), which makes it difficult for SR models to capture users’ long-term preferences
effectively. Recently, deep learning-based SR methods have received widespread attention,
such as recurrent neural network (RNN)-based methods (e.g., GRU4Rec Hidasi et al., 2015
and HRNN Ling et al., 2018) and onvolutional neural network (CNN)-based methods (e.g.,
Caser Tang & Wang, 2018). These methods can capture a more comprehensive dependency
relationship by exploiting users’ long-term continuous interaction behavior (Zhang et al.,
2023).

However, the above approaches do not distinguish the relevance of different user inter-
actions to user preferences (Li et al., 2020). For example, users’ purchasing and browsing
behaviors in e-commerce platforms reflect different levels of user preferences for products.
To distinguish the importance of different user interactions, researchers have incorporated
attention mechanisms into SR models (e.g., SASRec Kang &McAuley, 2018, TiSASRec Li
et al., 2020, BERT4Rec Sun et al., 2019). Recently, the research on improved SR methods
based on attention mechanism mainly focuses on the introduction of additional supervision
signals, which do not only emphasize the ID of the item, but enhance the performance of the
recommendation model by accessing the context data (Zhong et al., 2023).

For instance, FDSA (Zhang et al., 2019) deploys two autonomous attention modules to
merge item and contextual information, whereas S3-Rec (Zhou et al., 2019) capitalizes on
contextual data within the pre-training phase. However, the above methods do not fully
consider the dependency between the context information (such as time, category, etc.) and
the item sequence, but choose to directly fusing with the item sequence (Xie et al., 2022),
which brings the following problems: (1) To introduce more supervised signals, existing SR
methods based on attention mechanisms introduce a large amount of auxiliary information,
which leads to a continuously larger embedding matrix and thus increases the complexity
of subsequent attention computations (Vaswani et al., 2017). The change in computational
complexity is shown in Fig. 1. (2) Heterogeneous information from different sources (e.g.,
time, brand, category, etc.) is fused into the same embedding matrix for attention calculation,
making it difficult for the model to distinguish heterogeneous information from different
sources (Gong et al., 2023). Therefore, further improvement of the method is needed to
better utilize the contextual information and address the above issues.

To solve the previously mentioned problems, we design a Bidirectional Multi-Sequence
Decoupling Fusionmethod for sequence recommendation (BMDF-SR).We treat diverse con-
textual information (e.g., time, category, etc.) as independent sequences and use a seq2seq
model to model the sequential dependencies within different sequences. Then, the bidirec-
tional dependencies between temporal contextual information sequences and item sequences
aremodeled by alternatively overlaying the three-layer seq2seqmodel,which structure allows
themodel to handle noise better andmissing data in the sequences (Sun et al., 2021). A critical
component of BMDF-SR is the multi-sequence decoupling fusion (MDF) module, shown in
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Fig. 1 Computational complexity variation graph. This figure represents the change in computational com-
plexity of different deep learning methods at the same latitude with increasing sequence length

Fig. 2(b). Unlike traditional methods, MDF performs attention matrix computations before
sequence fusion, and the attention matrix computation of each sequence is performed inde-
pendently, which design significantly reduces the complexity of the attention computation
(Vaswani et al., 2017), shown in Fig. 2(b). In addition, because each sequence’s attention com-
putation result is determined independently, interference between heterogeneous data during
attention fusion is minimized, thereby enhancing the expressiveness of the attention matrix
(Gong et al., 2023). As a result, our model can adeptly discriminate these heterogeneous
information elements, resulting in improved RS performance.

It is worth mentioning that the MDF module is a versatile component that can replace
the attention module in traditional SR methods based on attention mechanisms. The MDF
module exhibits flexibility, allowing adaptive decoupling fusion of contextual information
and item sequences based on different application scenarios. Such a design enables attention-

Fig. 2 Schematic diagram of the multi-sequence decoupling fusion module. In the figure, (a) indicates the
traditional method of attentional fusion of contextual information, and (b) indicates the principle of theMADF
module to fuse contextual information
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based methods to better adapt to diverse application scenarios and provides a more flexible
and scalable recommendation solution. The MDF opens new possibilities for improving
personalized RS. In summary, the main contributions of our work can be summarized as
follows:

• BMDF-SR treats contextual information (such as time, category, etc.) as separate
sequences and employs a three-layer seq2seq structure to model the bidirectional depen-
dencies between item and contextual information sequences. This design allows the
model to better manage the presence of noisy and missing data within the sequences.

• The MDF module brings forward the attention calculation of contextual information
sequences and item sequences, utilizing a decoupled approach for the attention matrix
calculation. The MDF effectively reduces the complexity of the attention matrix com-
putation and diminishes the interference between different heterogeneous information
during the fusion of attention matrices. As a result, the model can effectively distinguish
these heterogeneous information sources.

• BMDF-SR showcased outstanding performance on four real-world datasets. Further-
more, we carried out comprehensive ablation and parametric experiments to validate the
efficacy and stability of the model.

2 Related work

In today’s era of exponential information growth, RS have become essential in addressing
information overload issues (Hao et al., 2023; Lei et al., 2022). Traditional RS are primar-
ily based on content-based and collaborative filtering methods, which have proven effective
(Tang et al., 2021). However, these traditional approaches mainly model user-item interac-
tions in a static manner, focusing on capturing general user preferences (Duan et al., 2023;
Lei et al., 2022). In practical applications, user preferences evolve with time (Ren & Gan,
2023), somodeling sequential dependencies within users’ historical interactions is critical for
accurate prediction, which is one of the main reasons SR has garnered significant attention
in recent years (Zhou et al., 2023). By identifying sequential patterns in user behavior, SR
methods can better comprehend the dynamic evolution of user interests and provide accurate
recommendations corresponding to these patterns (Zhang et al., 2023). Consequently, SR
has emerged as an essential and active area of research in RS.

Traditional SR methods often employ the Markov chain (MC) (Zhou et al., 2023; Garcin
et al., 2013) concept to model user interaction sequences. For example, FPMC (Rendle
et al., 2010) combines matrix factorization with MCs to model long-term and short-term
preferences separately, while Fossil (Zhou et al., 2023) extends first-order MCs to higher
orders by aggregating weighted and early interaction item representations. However, above
traditionalmethods struggle to handle complex sequence patterns in today’s scenarios (Garcin
et al., 2013; Hidasi & Karatzoglou, 2018). To better learn user preferences, deep learning-
based methods have been introduced into SR. For instance, Caser (Tang & Wang, 2018)
embeds past interaction records into a vector space and extracts user behavior features for
SR using horizontal and vertical convolutions. Although Caser (Tang & Wang, 2018) is a
special case of MCs-based methods, like MCs-based methods, it fails to capture long-term
dependencies of users, as MCs assume that the user’s current state is only related to the
most recent one or few states (Zhang et al., 2023). As a result, researchers began to use
Recurrent Neural Networks (RNNs) to model sequential patterns in user interaction records.
For example, GRU4Rec (Hidasi et al., 2015) utilizes Gated Recurrent Units (GRUs) to model
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interaction sequences, while HRNN (Ling et al., 2018) designs a hierarchical RNN model to
capture the evolution of user interests within a session. AlthoughRNN-based SRmethods can
capture long-term dependencies by considering the complete user-item interaction sequence,
they still suffer from the issue of neglecting the varying impact of different user behaviors
on user preferences (Ye & Liu, 2022; Guo et al., 2023).

The attentionmechanism, an essential method in deep learning, has beenwidely applied in
the field of SR, which can assign different weights to each interaction in the input sequence
to reflect their importance (Dang et al., 2023). For example, ATEM (Wang et al., 2018)
selects relevant items in transaction-based RS by assigning weights to each observable item
in a transaction. Recently, SASRec (Kang & McAuley, 2018) introduced the self-attention
mechanism into the user-item interaction model, adopting a structure similar to the encoder
part of theTransformermodel. Building onSASRec (Kang&McAuley, 2018), FDSA (Zhang
et al., 2019) separatelymodels item sequences and auxiliary feature sequences using indepen-
dent self-attention modules. BERT4Rec (Sun et al., 2019) employs a bidirectional encoder
structure to learn latent representations in sessions and model the bidirectional dependencies
within each session.

However, modeling only the order of item sequences has become inadequate for increas-
ingly complex application scenarios (Xie et al., 2022). Consequently, researchers have
continuously integrated auxiliary information into their models. For example, ATRank (Zhou
et al., 2018) incorporates timestamps and item sequences, while TiSASRec (Li et al., 2020)
converts time intervals into relative positions and combines them with item sequences (Liu
et al., 2016; Yuan et al., 2020). Although these methods have achieved some success, they do
not fully consider the dependencies between rich context information and item sequences,
treating context information (such as time, category, brand, etc.) as auxiliary information
(Wang et al., 2023). By fusing context information with item sequences during the embed-
ding stage and representing them using attention calculations, it becomes challenging for
models to distinguish these heterogeneous information sources (Xie et al., 2022). Addition-
ally, the computational complexity of the attention mechanism increases with the rank of the
embedding matrix (Vaswani et al., 2017). Therefore, effectively integrating various context
information has become a critical issue in the current field of SR.

When improving attention-based methods, researchers have started to emphasize how
to more effectively integrate auxiliary information (e.g., categories, timestamps,) with item
sequences (Zhou et al., 2019; Liu et al., 2021; Yuan et al., 2021), rather than relying solely on
item IDs as themodel’s sole input. Specifically, early methods like FDSA (Zhang et al., 2019)
treated items and auxiliary information as two independent self-attention branches and then
merged them in later stages. S3-Rec (Zhou et al., 2019) used self-supervised attribute pre-
diction tasks during the pre-training phase to better handle auxiliary information. However,
these methods often didn’t fully consider the correlations between auxiliary information and
items. Recently, some research has proposed a solution that involves directly embedding aux-
iliary information into item representations to achieve more precise attention mechanisms.
For example, ICAI-SR (Yuan et al., 2021) used heterogeneous graph computation to embed
items and categories before the attention layer, training item representations with incorpo-
rated category information in models with independent attribute sequences. Additionally,
NOVA (Liu et al., 2021) introduced an approach that simultaneously provides pure item
ID representations and integrated representations of auxiliary information to the attention
layer. However, these methods didn’t fully leverage auxiliary information to enhance item
representation and prediction.

In recent years, several researchers have proposed various solutions in the field. For
instance, Le et al. (2018) developed the Concurrent Basket Sequence (CBS) framework,
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featuring a dual-network structure that enhances model performance by capturing the col-
laborative dynamics between support sequences and target sequences. Rakkappan and Rajan
(2019) introduced the Stacked Temporal Context-Aware RNN method, which models item
and context sequences separately through stacked RNNs. Zhang et al. (2023) proposed the
TAT4Rec approach, utilizing an encoder-decoder structure to model time context sequences
and item sequences individually while employing a window function module to preserve the
continuous dependency relationships within the sequences.

3 Problem formulation

We define the set of all users U = {u1, u2, u3, . . . , un} and the set of all items I =
{i1, i2, i3, . . . , il}, where n represents the total number of users and l represents the total
number of items. In the BMDF-SR problem, we define two sets: C represents the category
context set and T represents the time context set. Specifically, within the item sequence, each
item i has its own category context ci .When a user interactswith item i at a specific time θi , we
map θi to a 24-hour categorical feature space to represent the time context of item i . Therefore,
for each user u ∈ U , there is a items sequence Su = {i1, i2, i3, . . . , im} arranged in chrono-
logical order, which corresponds to the category context sequence Sc = {c1, c2, c3, . . . , cm}
and the time context sequence St = {t1, t2, t3, . . . , tm}, where m represents the length of the
sequence. Given the user’s historical item sequence Su , category context sequence Sc, and
time context sequence St , our goal is to predict the next item that user u is most likely to
interact with at time step t(m+1). In the embeddingmodule of themodel, the input sequences
Su , Sc, and St are passed through an embedding layer to obtain the item embedding sequence
Seu = {i e1, i e2, i e3, . . . , i em}, category context embedding sequence Sec = {ce1, ce2, ce3, . . . , cem},
and time context embedding sequence Set = {te1 , te2 , te3 , . . . , tem}.

We employ the principles of Neural Machine Translation (NMT) to establish a bidirec-
tional dependency between the item embedding sequence Seu and the time context embedding
sequence Set Due to the phenomenon of semantic asymmetry between context and items, we
introduce a Semantic Balance Module (SBM) to mitigate the issue of semantic asymme-
try between context and items. The SBM can learn a compressed representation zk of the
input sequence, and after passing through the SBMmodule, a forward transformed sequence
Z = {z1, z2, z3, . . . , zm} with semantic relative balance is generated. In the SBM module,
we utilize a conventional loss function, formulated as follows:

LSBM = D(q(z|x)‖p(z)) − Eq(z|x)[log(p(x |z))]. (1)

Where x represents the observable input data, z denotes the latent factor, q(z|x) and p(x |z)
respectively represent the distribution of the inference model and the generative model.
D(q‖p) represents the divergence between the two distributions, which employs relative
entropy to measure the similarity between them. E can be regarded as the mathematical
expectation of the reconstruction loss. In the MDF module, for each input sequence, let Wh

denote the weight matrix of the h attention head, ahi represent the attention weight of the h
head, and ei denote the embedding vector of the i element of the input sequence. The output
of the multi-head attention mechanism can be expressed as (2).

Li =
H∑

h=1

ahi Whei (2)
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Where H represents the number of attention heads. To compute the loss function, we need
to perform dot product operation between the output and the embedding vector of the target
item, followed by normalization using the softmax function. Ren and Gan (2023) Let mi

denote the embedding vector of the target item. The loss function of the multi-head attention
mechanism can be expressed as (3).

LMDF = − 1

N

N∑

i=1

exp(Li • mi )∑N
j=1 exp(Li • m j )

(3)

Where N represents the number of elements in the sequence, and ”•” denotes the dot
product operation. The objective is to minimize the loss function, allowing the model to
effectively integrate the item sequence with other auxiliary context sequences.

4 Method

4.1 Overall architecture

Our model employs a three-layer seq2seq architecture, where each layer forms the sequen-
tial transformation relationship within its respective sequences. By stacking three layers of
seq2seq modules, we effectively capture the bidirectional dependencies between the item
and time context sequences (Sun et al., 2021). To further enhance the model’s predictive
capacity, we introduce a versatile MDF module after the first seq2seq layer to decouple and
fusion various context sequences containing auxiliary information (e.g., time and brand).
The MDF module allows for the decoupling and fusion of disparate context sequences and
item sequences. Instead of merely concatenating these sequences for attention computation,
the MDFmodule performs attention calculation in advance through a decoupling calculation
method, obtaining attention matrices for each sequence before fusing them. This approach
reduces computational complexity and increases the expressive power of the attention matri-
ces, mitigating the impact of heterogeneous information on model performance (Xie et al.,
2022; Vaswani et al., 2017). Moreover, it accounts for both the sequential transformation
relationship in the item sequence and considering the sequential transformation relationship
existing in the context sequence.

In our follow-up research, we identified semantic asymmetry between the time context and
item sequences (Sun et al., 2021). Directly linking these sequences could lead to information
loss and negatively affect model performance. We introduced an SBM before inputting the
item sequence into the second seq2seq layer to address this issue. This module helps balance
the semantic relationship between the time context and item sequences.Additionally, to tackle
the influence of cold start and static preferences on the model’s performance, we developed
a PF (Preference Fusion) module that combines the user’s static and dynamic preferences
(Li et al., 2023). This integration enhances the prediction capability of a user’s subsequent
interaction behavior, ultimately improving the model’s overall performance.

4.2 Multi-sequence decoupling fusionmodule

TheMDFmodule, as depicted in Fig. 3, is comprised of multi-sequence decoupling attention
calculation, attention fusion, and stacked feed-forward networks, which module receives two
inputs: the hidden vector sequence H (1), obtained after the first layer of seq2seq, and the cat-
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Fig. 3 The overall structure of BMDF-SR model. It mainly consists of a three-layer seq2seq module, an MDF
module, a semantic balancing module and a fusion recommendation module

egory context embedding sequence Sec . Designed as a general module, it can merge multiple
sequence representations. Specifically, we perform attention calculations on the sequences
H (1), obtained through the forward transformation of the first layer of seq2seq, and the cat-
egory context sequence Sce , resulting in their respective attention matrices ASu

multihead and

ASc
multihead . Subsequently, we employ an approach akin to the multi-head attention mech-

anism to fuse these two attention matrices together. This fused result is then fed into a
feedforward neural network to obtain the fused category context sequence F . The detailed
implementation steps of MDF are illustrated in (4) to (7). It’s important to emphasize that
MDF, as a versatile module, has the capability to fuse various context information sequences
as per the requirements of the application scenario, thus offering the potential for BMDF-SR
to be applicable in diverse contexts.

We input the sequences into the multi-head attention mechanism for calculating attention
scores, where h represents the number of attention heads, and d denotes the dimension of
the item input sequence. The attention matrix for each sequence is computed using (4). This
calculation allows the MDF module to effectively fuse the context sequences and learn their
importance, enhancing the model’s ability to make accurate predictions.

Mi
attention = (RWi

Q)(RWi
K ) (4)

Where Mi
attention ∈ R

d∗d represents the attention matrix, Wi
Q,Wi

K ∈ R
d∗d represents

the query and key projection matrix, R ∈ R
m∗d represents the input sequence, m represents

the length of the input sequence, and i represents one branch of the multi-head attention
mechanism. Then, according to (5), we obtain the attention output for each head.

Mi
head = so f tmax(

Mi
attention√

d
)(RWi

V ) (5)
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Where Mi
head ∈ R

d∗d represents the attention output for attention head i , and Wi
V repre-

sents the value projection matrix. Then, for each attention output, we perform concatenation
according to (6) to obtain the final attention matrix for the input sequence.

AS
multihead = concact(M1

head , M
2
head , . . . , M

h
head)W

O (6)

Where AS
multihead ∈ R

(d∗h)∗(d∗h) represents the attention scores for sequence S, andWO ∈
R

(d∗h)∗(d∗h) represents a learnable equal weight matrix. Following the above-mentioned
approach, we obtain the attention matrix ASu

multihead and ASc
multihead for the hidden vector

sequence H (1) and the category context embedding sequence Sec . Next, we fuse the attention
matrices from different source inputs using (7) to obtain the attention matrix A ∈ R

d∗d∗m .

A = ASu
multihead ⊗ ASc

multihead (7)

After performing the aforementioned steps, we achieve the decoupled fusion of attention
calculation for multiple sequence inputs. Finally, we pass the attention matrix through a feed-
forward layer to obtain the hidden vector sequence F = { f1, f2, . . . , fm}, which represents
the fused category context sequence.

4.3 Semantic balancemodule

During our research, we discovered that the time context representation refers to the con-
textual relationships formed between each item in the time sequence and its preceding and
succeeding items. On the other hand, the item sequence representation represents the user’s
interaction records over a specific period of time. Additionally, in our model, the item
sequence incorporates other context sequences. Gong et al. (2023) Unlike NMT, there is
no direct correspondence between these two types of sequences in our model, which results
in a semantic asymmetry issue during the forward translation process from the item sequence
Su to the time context sequence St . To address this issue, we introduced a SBM to balance
the semantic relationship between the two sequences, thereby achieving forward dependency
modelling from the project sequence to the time context sequence. The SBMmainly consists
of a Variational Autoencoder (VAE). The reason for choosing the VAE lies in its capacity
as a generative model that can effectively learn latent representations within sequence data,
thus generating sequences that are semantically similar to the target sequence. Li et al. (2023)
The structure of the SBM module is illustrated in Fig. 3.

We feed the hidden vector sequence F into a VAE (Li et al., 2023) to compute the forward
transformation vector zk . This vector follows a normal distribution and is conditioned on the
previous actions of the sequence.

q(zk | fk) = N (μ( fk), diag{σ 1( fk)}) (8)

Where μ( fk) and σ 2( fk) denote the standard normal distribution parameters [47] gener-
ated from fk , respectively, and can be simply defined as (9).

μ( fk) = W (1)
fk

+ bμ, σ 2( fk) = exp(W (2)
fk

+ bσ ) (9)

WhereW (1) ∈ R
(d/2∗1) andW (2) ∈ R

(d/2∗1) are two weight matrices that can be learned,
the bμ and bσ are balance factors, respectively. By sampling the potential factor zk from the
above posterior probability distribution and using a reparameterization technique to avoid
possible non-differentiation problems during training, the representation of item i is enhanced
from a fixed-length vector fk to a variable-length vector zk by such a process, which in turn
allows the semantics of the item sequence to be extended accordingly.
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4.4 Three-layers seq2seqmodule

We feed the embedded sequence of item sequences Seu = {i e1, i e2, i e3, . . . , i em} generated by
user u in the past time into the first layer of the seq2seq neural network and output the hidden
state h(1)

k ∈ R
(d∗1) of each item i ek at each time step kth according to (10).

h(1)
k = RNN (h(1)

h−1, i
e
k ) (10)

The sequence of items Seu is obtained as a sequence of hidden vectors H (1) =
{h(1)

1 , h(1)
2 , h(1)

3 , . . . , h(1)
m } after the first layer of the seq2seq network, in addition, as (11)

uses h(1)
k in the loss function of the first layer of the recurrent neural network to maintain its

ability to predict the next item.

L(1) = −log(p(ik+1|h(1)
k )) + D(q(h(1)

k |x)‖p(h(1)
k )) (11)

Then, we input it into the MDF module to obtain the hidden vector sequence F that
fuses multiple sequence features into the SBM module to expand the semantics of the item
sequences to obtain the forward transformation vector sequence Z = {z1, z2, z3, . . . , zm}.
Next, we input the forward transformation sequence Z that achieves the semantic balance
and fusion of multiple sequence features into the second layer of the seq2seq neural network
together with the temporal context embedding sequence Set . The hidden state h(2)

k ∈ R
(d∗1)

with a forward dependence from the item sequence Su to the temporal context sequence St
is obtained after (12).

h(2)
k = RNN (h(2)

k−1, t
e
k ,W

(2)zk) (12)

WhereW (3) ∈ R
(d∗d/2∗1) is a learnable equal weight matrix, d denotes the dimensionality

of the matrix. Then, as in (13) we modify the standard VAE loss function acting on the
translation between the sequence of items to the sequence of contexts in the second layer.

L(2) = L(2)
t + K L(2)

t (13)

Where K L(2)
t = D(q(zk |x)‖p(zk)) is the relative entropy scattering regularization

term from the VAE loss function and L(2)
t = −log(p(tek |h(2)

k )) is used to predict the
next context of the item. After the second layer, we obtain the hidden vector sequence
H (2) = {h(2)

1 , h(2)
2 , . . . , h(2)

m } with positive dependence from the item sequence Su to the
temporal context sequence St . In order to keep consistent with the elemental input, we input
the initial item embedding sequence Seu with the hidden vector sequence H (2) into the third

layer of the recurrent neural network, and obtain the hidden state vector h(3)
k ∈ R

(d∗1) with
bidirectional dependence after (14).

h(3)
k = RNN (h(3)

k−1, i
e
k , h

(2)
k ) (14)

After the third layer of seq2seq neural network, we obtained the sequence of hidden
vectors H (3) = {h(3)

1 , h(3)
2 , . . . , h(3)

m }. Similarly, we adopted (15) as the loss function of the
third layer of seq2seq, which uses the same principle as (10).

L(3) = −log(p(ik+1|h(3)
k )) + D(q(h(3)

k |x)‖p(h(3)
k )) (15)
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4.5 Preference fusionmodule

We create a bidirectional dependency between the time context and item sequences using
three stacked seq2seq modules, capturing dynamic user preference patterns. Recent research
highlights the importance of including user static preferences for predicting the next item
(Tang et al., 2021). Therefore, we initialise each user’s most recent interactions as their static
preference and have designed a PF module to integrate dynamic and static preferences. First,
we fuse static preferences with dynamic preferences using a Kronecker product. Then, the
user’s final preference is generated using a VAE. The specific implementation steps are as
follows:

For each user u ∈ U , a randomly initialized vector Sstatic ∈ R
(d∗1) represents their

general preferences. We obtain a hidden vector h(3)
k ∈ R

(d∗1) from H (3), denoting dynamic
preferences. Then, we combine static and dynamic preferences to obtain the user’s fused
preferences hk ∈ R(d∗1), using (16).

hk = h(3)
k

⊗
Sstatic (16)

In the fusion process, we simply fuse the static and dynamic preferences at the end,
ignoring the effect of the dynamic preference h(3)

k and easily back-propagating the gradient.
Therefore we again engage the VAE module to generate the final representation ŷ from the
approximate posterior probability q(ŷ|hk), as shown in (17).

q(ŷ|hk) = N (μ(hk), diag{σ 2(hk)}) (17)

Where μ(hk) and σ 2(hk) are generated from hk against the standard normal distribution,
as shown in (18).

μ(hk) = W (3) + bμ, σ 2(hk) = exp(W (4) + bσ ) (18)

Where W (3) ∈ R
(d∗2d) and W (4) ∈ R

(d∗2d) are two weight matrices that can be trained.
Finally, as in (19) we obtain the loss of the FP module by modifying the standard VAE loss.

LPF = L( f ) + K L( f ) (19)

Where L( f ) = −log(p(hk |̂y)) is introduced to consider the static interest of the user and
K L( f ) = D(q(ŷ|hk)‖p(ŷ)) is the regularization term.

4.6 Optimize

There are five loss functions LSBM , L(1), L(2), L(3), LPF , and LMDF in our model, so we
define the loss function of the BMDF-SR model as (20).

LBMDF−SR = LSBM+L(1)+L(2)+L(3)+LPF+LMDF+λ(K L(2)
c +K L(2)

i +K L(2)
t ) (20)

Where λ is a hyperparameterK L(2)
c , K L(2)

i and K L(2)
t is a regularization term, and

λ(K L(2)
c + K L(2)

i + K L(2)
t ) will gradually converge to zero in our training, so its effect

can be ignored. To optimize all the model parameters including the trainable weight matrix,
we use the widely used Adam optimizer (Sun et al., 2021).

In addition, to reduce the risk of overfitting to noise in the training data and to prevent
excessive dependence on certain neurons, thereby enhancing the model’s generalization to
unseen data, we introduced a dropout layer and set its rate to 0.2. Tang et al. (2021)
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Table 1 Statistical information
on datasets

Datasets Samples Sparsity l m

MovieLens-1M 999,611 0.9516 5 0

Gowalla 896,506 0.9971 10 20

JDshop 1,151,117 0.9983 5 20

Taobao 2,437,886 0.9985 20 0

5 Experiments

5.1 Database and evaluationmetrics

Our experiments will be conducted on four public datasets:

• MovieLens-1M is one of the most classic datasets in the field of recommender systems.
It is widely used for a variety of recommendation tasks and contains 1,000,209 rating
records for 3,900 movies in 18 categories from 6,040 users, with each record associated
with a specific timestamp.

• Gowalla is a public location-based social network dataset for point-of-interest recom-
mendation tasks collected between February 2009 and October 2010.Each record in
Gowalla consists of a user ID, a point-of-interest ID, a corresponding GPS location, and
a timestamp.

• Taobao and JDshop are two large datasets on e-commerce from Taobao and JD, the two
largest e-commerce platforms in China. Each record in these two datasets consists of a
timestamp, a category ID, an item ID and a user ID. Other information such as brands
and stores is also provided in the JDshop dataset.

During the data preprocessing phase, we removed records with user interaction counts of
less than ’l’ and records with item user participation counts of less than ’l’. We retained some
users inGowalla,MovieLens-1M, JDshop, and Taobao datasets with record counts exceeding
20, as previous deletions might have caused short interaction sequences. To address this, we
used the item sequence’s category change sequence as a category context sequence, which
was fused with the item sequence in the MDF module for additional supervision signals.
Additionally, we used the item sequence interactions’ time information to create the time
context sequence, described as a latent transition pattern in the model’s second part. We
selected the last user interaction sequence item for testing, the second-to-last for validation,
and the others for training. To prevent excessively large embedding matrices and model
misinterpretation, we limited interaction sequence length to the dataset’s top 5%, ensuring
its validity and authenticity. The preprocessed data for the four datasets are presented in
Table 1. In addition, the hardware environment we used in our experiments is shown in
Table 2.

Table 2 Information of the
machine Operating System Ubuntu 18.04.5 LTS

CPU Intel(R) Xeon(R) CPU E5-2640 v4

GPU Tesla V100

GPU Memory 16GB

Memory 256GB
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For evaluation metrics, we employ normalized discounted cumulative gain (NDCG@K),
hit rate (HIT@K), and F-metric (F1@K). To ensure a comprehensive evaluation, we set K
to 5 and 10, measuring the model’s performance based on NDCG, HIT, and F1.

5.2 Baselinemethods

We selected several serially recommended methods that have been widely used in the last
five years as baseline methods:

• SASRec (Kang & McAuley, 2018) is an RNN-based sequential recommendation model
that uses a dual network to model a set of targets and their corresponding interaction
sequences, which is the first approach that divides the conversation into target and aux-
iliary sequences.

• BERT4Rec (Sun et al., 2019) is anRNN-based sequence recommendationmodel that uses
a dual network to model a set of targets and their corresponding interaction sequences.
This is the first approach that divides the conversation into target and auxiliary sequences.

• CBS (Le et al., 2018) is a sequential recommendation model that uses a dual network to
model a set of goals and their corresponding interaction sequences. Notably, it is the first
approach that divides the conversation into target and auxiliary sequences.

• STAR (Rakkappan & Rajan, 2019) is a multi-sequence sequential recommendation
model that incorporates contextual information. It exploits the dependencies between
item sequences and temporal and interval contexts by stacking multiple RNN structures
to achieve high performance sequential recommendations.

• ATRank (Zhou et al., 2018) is a generic architecture designed to achieve a comprehensive
user representation by widely fusing heterogeneous user behaviors. It employs attention
mechanisms to model diverse user behaviors and incorporates behavioral information
through behavior grouping and time interval encoding.

• CORE (Hou et al., 2022) is a session-based sequential recommendation method empha-
sizing representational consistency based on users’ short-term behaviors within a session.
It ensures that both sessions and items exist in the same representation space.

• S3Rec (Zhou et al., 2019) is a self-supervised learning framework for sequential recom-
mendations, utilizing multiple information sources such as user behavior sequences and
item attributes to learn item representations. By leveraging mutual information maxi-
mization, it fully exploits the connections among the inputs.

To effectively experimentwith the baselinemethods used in our experiments,we employed
the RecBole (Zhao et al., 2021) library, an open-source repository for RS. This library offers
access to various experimental datasets and enables efficient implementation of baseline
experiments in a consistent environment. To maintain consistency with the baseline com-
parison experiments, we kept the latent state vector and embedding vector dimensions at
64 and did not alter other parameters. We added a dropout layer to the model and set it
to 0.2 to reduce overfitting during training. For model training, we segmented the training
sequences using a sliding window with a length of 5, setting the window size to 550 for the
MovieLens-1M dataset, 200 for Gowalla, 130 for the JDshop dataset, and 120 for the Taobao
dataset.Additionally, we set the batch size to 128 and the learning rate to 0.001. Hyperpa-
rameters were set to 1 for MovieLens-1M, 20 for Gowalla and JDshop, and 40 for Taobao.
We also employed an annealing strategy to optimize performance.
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5.3 Contrast experiment

We carried out comparative experiments on four datasets to evaluate the performance of the
BMDF-SR method against the baseline methods using the metrics NDCG@K, HIT@K, and
F1@K, where K is set to 5 and 10. The experimental results are presented in Table 3 and
Fig. 4. The results demonstrate that the BMDF-SR method significantly outperforms all the
baseline methods across the four datasets.

In addition, theCBSandSTARmethods in the comparison experiments are both sequential
recommendation methods with multiple sequences, and they show suboptimal performance
on the datasets MovieLens-1M and Taobao. However, they do not dominate compared with
S3Rec and CORE methods on the four datasets. There are two main reasons for this phe-
nomenon: First, they only consider the one-way dependence of item sequences on auxiliary
sequences. Second, they ignore the semantic asymmetry problem that exists between dif-
ferent source sequences. Finally, among the non-multi-sequence approaches, SASRec and
BERT4Rec achieved excellent performance by exploiting the properties of the attention
mechanism. However, BERT4Rec outperforms SASRec on four datasets by establishing
bidirectional dependencies on item sequences. this result demonstrates in another dimension
that establishing bidirectional dependencies can improve model performance.

5.4 Ablation study

We designed ablation experiments for the SBM module, PF module and MDF module to
examine the effects of semantic balancing, decoupling fusion of multiple sequences and
preference fusion on model performance, and these ablation studies can be divided into:

• -SBM: indicates that the SBM is excluded.
• -PF: indicates that the PF module is excluded.
• -V: indicates that the SBM and PF module are excluded.
• -MDF: indicates that the MDF module is excluded, and the model will only model the
bi-directional dependencies between item sequences and temporal contexts.

• -ALL: indicates that the SBM, MDF, and PF module are excluded.

The ablation experiments will compare the performance on four evaluation metrics
HIT@K, NDCG@K, and F1@K, where the values of K are taken as 5 and 10. The experi-
mental results are shown in Table 4.

Fig. 4 Scatter plot of experimental results of BMDF-SR on four data sets. BMDF-SR shows rapid stabilization
after rapid rise on three evaluation indicators, which indicates that BMDF-SR is trainable
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Table 4 The Ablation Experiment On Four Datasets

-SBM -PF -V -MDF -ALL BMDF-SR

MovieLens-1M HIT@5 0.5118 0.5078 0.4978 0.5060 0.4822 0.5149

HIT@10 0.6316 0.6207 0.6017 0.6318 0.5927 0.6349

NDCG@5 0.3721 0.3721 0.3689 0.3820 0.3583 0.3873

NDCG@10 0.4108 0.4087 0.4036 0.4030 0.3919 0.4223

F1@5 0.1656 0.1621 0.1602 0.1653 0.1545 0.1713

F1@10 0.1101 0.1078 0.1055 0.1094 0.0998 0.1153

Gowalla HIT@5 0.7579 0.7541 0.7501 0.7576 0.7439 0.7627

HIT@10 0.8401 0.8392 0.8362 0.8392 0.8276 0.8434

NDCG@5 0.6499 0.6428 0.6398 0.6518 0.6297 0.6545

NDCG@10 0.6781 0.6726 0.6698 0.6779 0.6658 0.6886

F1@5 0.2526 0.2477 0.2468 0.2525 0.2421 0.2576

F1@10 0.1522 0.1520 0.1520 0.1526 0.1488 0.1551

JDshop HIT@5 0.7456 0.7431 0.7348 0.7461 0.7267 0.7648

HIT@10 0.7952 0.7896 0.7795 0.7876 0.7701 0.8185

NDCG@5 0.6671 0.6478 0.6478 0.6688 0.6389 0.6792

NDCG@10 0.6742 0.6711 0.6603 0.6824 0.6524 0.6981

F1@5 0.2455 0.2356 0.2275 0.2421 0.2188 0.2554

F1@10 0.1425 0.1387 0.1291 0.1426 0.1201 0.1493

Taobao HIT@5 0.5121 0.5074 0.5017 0.5112 0.4989 0.5151

HIT@10 0.5919 0.5892 0.5872 0.5928 0.5796 0.6017

NDCG@5 0.4169 0.4179 0.4146 0.4128 0.4127 0.4206

NDCG@10 0.4428 0.4452 0.4307 0.4438 0.4289 0.4469

F1@5 0.1641 0.1656 0.1501 0.1632 0.1581 0.1713

F1@10 0.1065 0.1055 0.0998 0.1050 0.0967 0.1102

The best results of the model are shown in bold, and the second-best result is underlined

The results of the six groups of ablation experiments show a clear reduction in performance
when core components such as the SBM or MDF modules are omitted, or when changes are
made to other essential modules within the BMDF-SR framework. Firstly, when comparing
the -ALL and -MDF models, it’s clear that the experimental results for -MDF exceed those
for -ALL. However, both models show a significant drop in performance over the four data
sets. However, they still outperform themainstream SRmodels mentioned in the comparative
experiments, highlighting the effectiveness of the three-layer seq2seq structure of BMDF-
SR and the MDF module in SR. Secondly, comparing the -V, -PF, and -SBM models, it
is evident that the -V and -PF models show a noticeable drop in performance, especially
on the sparsely populated MovieLens-1M dataset. However, the model that retains the PF
module and removes the SBMmodule does not show a significant drop in performance,which
suggests that the PFmodule has a particular advantage in dealingwith the commonproblemof
data sparsity in RS. Finally, whenwe compare the performance of -SBMwith the full BMDF-
SR model, we observe that the performance degradation is less pronounced on the simple
MovieLens-1M dataset. However, as the complexity of the dataset increases, especially in
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Table 5 Experimental results of hyperparameters for the number of sliding windows L

Gowalla JDshop
L HIT@10 F1@10 NDCG@10 HIT@10 F1@10 NDCG@10

2 0.7655 0.1406 0.5909 0.7647 0.1390 0.6358

3 0.7975 0.1459 0.6255 0.7713 0.1403 0.6434

4 0.8027 0.1515 0.6431 0.7889 0.1435 0.6676

5 0.8434 0.1551 0.6786 0.8185 0.1493 0.6981

6 0.8441 0.1549 0.6771 0.8185 0.1451 0.6933

7 0.8301 0.1529 0.6743 0.8196 0.1425 0.6933

8 0.8293 0.1505 0.6664 0.8050 0.1392 0.6837

9 0.8148 0.1488 0.6598 0.7923 0.1356 0.6721

10 0.8041 0.1421 0.6445 0.7872 0.1298 0.6673

The best results of the model are shown in bold, and the second-best result is underlined

challenging scenarios, the performance drop for -SBM becomes more noticeable, which
suggests that the SBM is better suited to handle complex situations.

5.5 Parametric experiment

We designed multiple sets of experiments to test the complexity of the model and find the
optimal parameters based on the characteristics of the BMDF-SR model. Due to the limited
length of the article, we only show the results of the parametric experiments on the Gowalla
and JDshop datasets.

Firstly, to scrutinize the impact of hyperparameters on themodel, we executed experiments
concerning the number of sliding windows, L. This is crucial as excessive sliding windows
might exacerbate the dataset’s sparsity issue, thereby affecting the model’s training efficacy
and recommendation performance. Conversely, too few sliding windows could hinder the
model from effectively capturing valuable information embedded in lengthier user behavior
sequences, consequently diminishing recommendation performance. As a result, we devised
multiple experimental sets across four datasets to gauge the influence of the hyperparameter
L on the BMDF-SR model’s performance. We varied the L value between 2 and 10, and
assessed the findings using three evaluation metrics (HIT@10, NDCG@10, and F1@10). As
shown in Table 5 and Fig. 5(a, b), the performance of the model is relatively balanced when
the number of sliding windows is set to 5.

Next, we establishedmultiple hyperparameter experiments for the slidingwindow size.On
the one hand, a smaller sliding window size may hinder the model from capturing the long-
term user interest evolution and could disrupt the integrity of the sequence pattern. On the
other hand, a larger sliding window size may make it difficult for the model to extract useful
information from the long-term user behavior sequence, potentially introducing additional
noise and resulting in performance degradation. We set the sliding window size to take a
range of values from 60 to 600, with an increment of 10 and assessed the results using
four evaluation metrics (HIT@K, NDCG@K, F1@K, and AUC). The experimental results
are shown in Table 6 and Fig. 5(c, d), the sliding window size should be set to 550 on the
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Fig. 5 Results of three sets of parametric experiments. Where (a), (c) and (e) are the results of experiments
on the Gowalla dataset and (b), (d) and (f) are the results of experiments on the JDshop dataset

MovieLens-1M dataset, 200 on the Gowalla dataset, 120 on the JDshop dataset, and 120 on
the Taobao dataset.

Finally, we devised multiple experimental sets to assess the impact of the balance factor λ
on the BMDF-SR model’s performance. We set the balancing factor λ to ”1, 10, 20, 30, 40,
50, 60” and carried out experiments on four datasets, with the results displayed in Table 7
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Table 6 Hyperparametric experimental results for sliding window size

Gowalla JDshop
WindowSize HIT@10 F1@10 NDCG@10 HIT@10 F1@10 NDCG@10

60 0.8131 0.1478 0.6555 0.8021 0.1411 0.6824

80 0.8186 0.1487 0.6596 0.8098 0.1453 0.6887

100 0.8233 0.1496 0.6635 0.8136 0.1479 0.6956

120 0.8288 0.1505 0.6687 0.8185 0.1493 0.6981

140 0.8313 0.1515 0.6721 0.8187 0.1468 0.6948

160 0.8321 0.1516 0.6754 0.8168 0.1448 0.6901

180 0.8356 0.1518 0.6785 0.8105 0.1422 0.6887

200 0.8434 0.1521 0.6886 0.8057 0.1398 0.6824

220 0.8432 0.1518 0.6885 0.7978 0.1366 0.6796

240 0.8287 0.1501 0.6787 0.7901 0.1321 0.6716

The best results of the model are shown in bold, and the second-best result is underlined

and Fig. 5(e, f). The λ has minimal influence on the MovieLens-1M dataset, and the best
performance is achieved when λ = 1. This is because the dataset has fewer categories, and
semantic balancing is not necessary for datasets with fewer categories. However, signifi-
cant semantic imbalance is observed in the Taobao, JDshop, and Gowalla datasets, making
semantic balancing a crucial component for these datasets. Furthermore, we discovered that
the regularization parameter results in better overall performance when encountering rela-
tively large values of λ, thereby preventing overfitting. Consequently, we choose λ as 20 for
the Gowalla and Taobao datasets and λ as 40 for the JDshop dataset.

5.6 Complexity study

We also explored the training efficiency of the BMDF-SR model by analyzing the learning
rate of seq2seq and MDF modules at each layer across four differen We illustrated the loss
variation curves for these modules on the four datasets, as displayed in Fig. 6. The relative

Table 7 Experimental results for the equilibrium factor λ

Gowalla JDshop
λ HIT@10 F1@10 NDCG@10 HIT@10 F1@10 NDCG@10

1 0.7921 0.1429 0.6476 0.7571 0.1379 0.6474

10 0.8096 0.1472 0.6588 0.7747 0.1408 0.6560

20 0.8434 0.1551 0.6886 0.7844 0.1428 0.6771

30 0.8439 0.1488 0.6836 0.8188 0.1455 0.6842

40 0.8322 0.1445 0.6239 0.8146 0.1493 0.6981

50 0.8189 0.1432 0.6125 0.7890 0.1435 0.6432

60 0.8021 0.1407 0.6021 0.7522 0.1377 0.6321

The best results of the model are shown in bold, and the second-best result is underlined
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Fig. 6 The variation curves of loss, where (a), (b), (c) and (d) indicate the variation of KL loss on MovieLens-
1M, Gowalla, JDshop and Taobao datasets, respectively; (e), (f), (g) and (h) indicate the variation of loss
per layer of seq2seq and MDF modules on MovieLens-1M, Gowalla, JDshop and Taobao datasets, respec-
tively.Where X-axis denotes epoch and Y-axis denotes the calculated value of loss

entropy loss of each layer can be observed to decrease rapidly and converge following a brief
increase, indicating that the model is easy to train.

In addition, we compared the computational cost with the mainstream 5 baseline mod-
els, and the comparison results are shown in Table 8. In this experiment, we used the same
equipment as in Table 2 for the experiment to ensure consistency of the experimental envi-
ronment. The experimental results show that the CBS, SASRec, and CORE methods have
similar training efficiency,while the S3Rec andSTARmethods have significantly increased in
computational cost. In general, BMDF-SR achieves better performance than CBS, SASRec,
and CORE methods without a significant increase in computational cost, while BMDF-SR
achieves better performance and a reduction in computational cost compared to S3Rec and
STAR methods.

Table 8 Time consumption statistics for the main baseline model on the Gowalla dataset

Methods Time-Consuming/Epoch Converge Epoch Total Time-Consuming

SASRec 87.48s 100 8748.0s

CBS 99.35s 100 9935.0s

CORE 52.21s 200 10442.0s

S3Rec 6636.90s 10 66369.0s

STAR 1389.27s 20 27785.4s

BMDF-SR 253.1s 40 10123.0s

When the evaluation metrics are relatively stable, we obtain the converged Epoch by rounding
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6 Conclusion

We propose a bidirectional multi-sequence decoupling fusion model for sequential recom-
mendation. (BMDF-SR)Unlike traditional SRmodels that simplymerge context information
with item sequences during the embedding phase, our approach treats context information as
independent sequences and computes attention matrices for each of them separately, which
effectively reduces the complexity of attention matrix computation. Additionally, the atten-
tion matrices for each context sequence are independently calculated, reducing interference
between heterogeneous information when merging attention matrices, which enables the
model to distinguish between these diverse elements of information effectively. Furthermore,
we adopt a stacked three-layer seq2seq approach to model the bidirectional dependency rela-
tionship between item sequences and context sequences, thereby enhancing the model’s
robustness to noise and missing data in the sequences. Moreover, to address the cold-start
issue,we design a preference fusionmodule (PF) to integrate users’ static preferences, thereby
improving the model’s accuracy in predicting the next interaction. We conducted extensive
experiments on four real datasets, demonstrating the superiority of our proposed BMDF-SR
method over baseline approaches.

Acknowledgements Thanks to Professor Qin Jiwei for his help and support during the research process.

Author Contributions -Aohua Gao: Writing, Main idea, Experiments, Analysis
-Jiwei Qin: Provide guidance
-Chao Ma and Tao Wang: Analysis

Funding Thisworkwas supported by the Science Fund forOutstandingYouth ofXinjiangUygurAutonomous
Region under Grant No. 2021D01E14.

Data Availability -MovieLens-1M: Availabile at https://grouplens.org/datasets/movielens/1m/.
-Gowalla: Availabile at https://snap.stanford.edu/data/loc-gowalla.html/.
-JDshop: Availabile at https://www.jd.com/.
-Taobao : Available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=649/.

Code Availability The code will be released at https://github.com/WayneHuahua/BMDF-SR.git.

Declarations

Ethical Approval Not applicable as this study did not involve human participants.

Consent for Publication The authors grant the Publisher an exclusive licence to publish the article

Competing interests The authors declare no competing interests.

References

Dang, Y., Yang, E., & Guo, G., et al. (2023). Uniform sequence better: Time interval aware data augmentation
for sequential recommendation. In: Proceedings of the AAAI conference on artificial intelligence. AAAI,
Washington DC, USA. https://doi.org/10.1609/aaai.v37i4.25540

Duan, J., Zhang, P. F., Qiu, R., et al. (2023). Long short-term enhancedmemory for sequential recommendation.
World Wide Web, 26, 561–583. https://doi.org/10.1007/s11280-022-01056-9

Garcin, F., Dimitrakakis, C., & Faltings, B. (2013). Personalized news recommendation with context trees. In:
Proceedings of the 7th ACM conference on recommender systems. ACM, Hong Kong, China. https://doi.
org/10.1145/2507157.2507166

123

https://grouplens.org/datasets/movielens/1m/
https://snap.stanford.edu/data/loc-gowalla.html/
https://www.jd.com/
https://tianchi.aliyun.com/dataset/dataDetail?dataId=649/
https://github.com/WayneHuahua/BMDF-SR.git.
https://doi.org/10.1609/aaai.v37i4.25540
https://doi.org/10.1007/s11280-022-01056-9
https://doi.org/10.1145/2507157.2507166
https://doi.org/10.1145/2507157.2507166


506 Journal of Intelligent Information Systems (2024) 62:485–507

Gong, J., Wan, Y., Liu, Y., et al. (2023). Reinforced moocs concept recommendation in heterogeneous infor-
mation networks. ACM Transactions on the Web, 17, 1–27. https://doi.org/10.1145/3580510

Guo, L., Zhang, J., Chen, T., et al. (2023). Reinforcement learning-enhanced shared-account cross-domain
sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 35, 7397–7411.
https://doi.org/10.1109/TKDE.2022.3185101

Hao,Y.,Ma, J., Zhao, P., et al. (2023).Multi-dimensional graph neural network for sequential recommendation.
Pattern Recognition, 139, 109504. https://doi.org/10.1016/j.patcog.2023.109504

He, R., Kang,W.C., &McAuley, J. (2017). Translation-based recommendation. In:Proceedings of the eleventh
ACMconference on recommender systems.ACM,Como, Italy. https://doi.org/10.1145/3109859.3109882

Hidasi, B., & Karatzoglou, A. (2018). Recurrent neural networks with top-k gains for session-based recom-
mendations. In: Proceedings of the 27th ACM international conference on information and knowledge
management. ACM, Torino, Italy. https://doi.org/10.1145/3269206.3271761

Hidasi, B., Karatzoglou, A., & Baltrunas, L., et al. (2015). Session-based recommendations with recurrent
neural networks. arXiv preprint arXiv:1511.06939, https://doi.org/10.48550/arXiv.1511.06939

Hou, Y., Hu, B., & Zhang, Z., et al. (2022). Core: simple and effective session-based recommendation
within consistent representation space. In: Proceedings of the 45th international ACM SIGIR confer-
ence on research and development in information retrieval. ACM, Madrid, Spain. https://doi.org/10.
1145/3477495.3531955

Kang, W.C., & McAuley, J. (2018). Self-attentive sequential recommendation. In: 2018 IEEE International
conference on data mining (ICDM). IEEE, Singapore. https://doi.org/10.1109/ICDM.2018.00035

Le, D.T., Lauw, H.W., & Fang, Y. (2018) Modeling contemporaneous basket sequences with twin networks
for next-item recommendation. In: Proceedings of the twenty-seventh international joint conference on
artificial intelligence. IJCAI, Stockholm, Sweden. https://doi.org/10.24963/ijcai.2018/474

Lei, J., Li, Y., Yang, S., et al. (2022). Two-stage sequential recommendation for side information fusion and
long-term and short-term preferences modeling. Journal of Intelligent Information Systems, 59, 657–677.
https://doi.org/10.1007/s10844-022-00723-7

Li, J., Wang, Y., & McAuley, J. (2020). Time interval aware self-attention for sequential recommendation. In:
Proceedings of the 13th international conference on web search and data mining. ACM, Houston, TX.
https://doi.org/10.1145/3336191.3371786

Ling, Z. H., Ai, Y., Gu, Y., et al. (2018).Waveformmodeling and generation using hierarchical recurrent neural
networks for speech bandwidth extension. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 26, 883–894. https://doi.org/10.1109/TASLP.2018.2798811

Li, P., Que, M., & Tuzhilin, A. (2023). Dual contrastive learning for efficient static feature representation in
sequential recommendations. IEEE Transactions on Knowledge and Data Engineering, 1, 1–13. https://
doi.org/10.1109/TKDE.2023.3289469

Liu, C., Li, X., & Cai, G., et al. (2021). Noninvasive self-attention for side information fusion in sequential
recommendation. In: Proceedings of the AAAI conference on artificial intelligence. AAAI, Palo Alto,
California. https://doi.org/10.1609/aaai.v35i5.16549

Liu, Q., Wu, S., & Wang, D., et al. (2016). Context-aware sequential recommendation. In: 2016 IEEE 16th
International conference on data mining. IEEE, Barcelona, Spain. https://doi.org/10.1109/ICDM.2016.
0135

Li, L., Xiahou, J., Lin, F., et al. (2023). Distvae: distributed variational autoencoder for sequential recommen-
dation. Knowledge-Based Systems, 264, 110313. https://doi.org/10.1016/j.knosys.2023.110313

Rakkappan, L., & Rajan, V. (2019). Context-aware sequential recommendations withstacked recurrent neu-
ral networks. In: The world wide web conference. ACM, San Francisco, CA. https://doi.org/10.1145/
3308558.3313567

Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-
basket recommendation. In: Proceedings of the 19th international conference on world wide web. ACM,
Raleigh, North Carolina. https://doi.org/10.1145/1772690.1772773

Ren, J., & Gan, M. (2023). Mining dynamic preferences from geographical and interactive correlations for
next poi recommendation. Knowledge and Information Systems, 65, 183–206. https://doi.org/10.1007/
s10115-022-01749-7

Sun, F., Liu, J., & Wu, J., et al. (2019). Bert4rec: sequential recommendation with bidirectional encoder rep-
resentations from transformer. In: Proceedings of the 28th ACM international conference on information
and knowledge management. ACM, Beijing, China. https://doi.org/10.1145/3357384.3357895

Sun, K., Qian, T., Chen, X., et al. (2021). Context-aware seq2seq translation model for sequential recommen-
dation. Information Sciences, 581, 60–72. https://doi.org/10.1016/j.ins.2021.09.001

Tang, J., & Wang, K. (2018). Personalized top-n sequential recommendation via convolutional sequence
embedding. In: Proceedings of the eleventh ACM international conference on web search and data
mining. ACM, Marina Del Rey, CA. https://doi.org/10.1145/3159652.3159656

123

https://doi.org/10.1145/3580510
https://doi.org/10.1109/TKDE.2022.3185101
https://doi.org/10.1016/j.patcog.2023.109504
https://doi.org/10.1145/3109859.3109882
https://doi.org/10.1145/3269206.3271761
http://arxiv.org/abs/1511.06939
https://doi.org/10.48550/arXiv.1511.06939
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1145/3477495.3531955
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.24963/ijcai.2018/474
https://doi.org/10.1007/s10844-022-00723-7
https://doi.org/10.1145/3336191.3371786
https://doi.org/10.1109/TASLP.2018.2798811
https://doi.org/10.1109/TKDE.2023.3289469
https://doi.org/10.1109/TKDE.2023.3289469
https://doi.org/10.1609/aaai.v35i5.16549
https://doi.org/10.1109/ICDM.2016.0135
https://doi.org/10.1109/ICDM.2016.0135
https://doi.org/10.1016/j.knosys.2023.110313
https://doi.org/10.1145/3308558.3313567
https://doi.org/10.1145/3308558.3313567
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1007/s10115-022-01749-7
https://doi.org/10.1007/s10115-022-01749-7
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1016/j.ins.2021.09.001
https://doi.org/10.1145/3159652.3159656


Journal of Intelligent Information Systems (2024) 62:485–507 507

Tang, H., Zhao, G., Bu, X., et al. (2021). Dynamic evolution of multi-graph based collaborative filtering for
recommendation systems. Knowledge-Based Systems, 228, 107251. https://doi.org/10.1016/j.knosys.
2021.107251

Vaswani, A., Shazeer, N., & Parmar, N., et al. (2017). Attention is all you need. In: roceedings of the 31st
international conference on neural information processing systems. CurranAssociates, Inc., LongBeach,
California. https://doi.org/10.48550/arXiv.1706.03762

Wang, S., Hu, L., & Cao, L., et al. (2018). Attention-based transactional context embedding for next-item
recommendation. In: Proceedings of the AAAI conference on artificial intelligence. AAAI, New Orleans,
Lousiana. https://doi.org/10.1609/aaai.v32i1.11851

Wang, C., Ma, W., Chen, C., et al. (2023). Sequential recommendation with multiple contrast signals. ACM
Transactions on Information Systems, 41, 1–27. https://doi.org/10.1145/3522673

Xie, Y., Zhou, P., & Kim, S. (2022). Decoupled side information fusion for sequential recommendation. In:
Proceedings of the 45th international ACMSIGIR conference on research and development in information
retrieval. ACM, Madrid, Spain. https://doi.org/10.1145/3477495.3531963

Ye, X., & Liu, D. (2022). A cost-sensitive temporal-spatial three-way recommendation with multi-granularity
decision. Information Sciences, 589, 670–689. https://doi.org/10.1016/j.ins.2021.12.105

Yuan,X., Duan,D.,&Tong, L., et al. (2021). Icai-sr: Item categorical attribute integrated sequential recommen-
dation. In: Proceedings of the 44th international ACM SIGIR conference on research and development
in information retrieval. ACM, Virtual Event, Canada. https://doi.org/10.1145/3404835.3463060

Yuan, W., Wang, H., Yu, X., et al. (2020). Attention-based context-aware sequential recommendation model.
Information Sciences, 510, 122–134. https://doi.org/10.1016/j.ins.2019.09.007

Zhang, T., Zhao, P., & Liu, Y., et al. (2019). Feature-level deeper self-attention network for sequential recom-
mendation. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence.
IJCAI, Macao, China. https://doi.org/10.24963/ijcai.2019/600

Zhang, Y., Yang, B., Liu, H., et al. (2023). A time-aware self-attention based neural network model for
sequential recommendation. Applied Soft Computing, 133, 109894. https://doi.org/10.1016/j.asoc.2022.
109894

Zhao, W.X., Mu, S., & Hou, Y., et al. (2021). Recbole: Towards a unified, comprehensive and efficient
framework for recommendation algorithms. In: Proceedings of the 30th ACM international conference
on information & knowledge management. ACM, Virtual Event, Queensland. https://doi.org/10.1145/
3459637.3482016

Zhong, C., Xiong, F., Pan, S., et al. (2023). Hierarchical attention neural network for information cascade
prediction. Information Sciences, 622, 1109–1127. https://doi.org/10.1016/j.ins.2022.11.163

Zhou, C., Bai, J., & Song, J., et al. (2018). Atrank: An attention-based user behavior modeling framework for
recommendation. In: Proceedings of the AAAI conference on artificial intelligence. AAAI, New Orleans,
Lousiana. https://doi.org/10.1609/aaai.v32i1.11618

Zhou, K., Wang, H., & Zhao, W.X., et al. (2019). S3-rec: Self-supervised learning for sequential recommenda-
tionwithmutual informationmaximization. In:Proceedings of the 29th ACM international conference on
information & knowledge management. ACM, Virtual Event, Ireland. https://doi.org/10.1145/3340531.
3411954

Zhou, W., Liu, Y., Li, M., et al. (2023). Dynamic multi-objective optimization framework with interactive
evolution for sequential recommendation. IEEE Transactions on Emerging Topics in Computational
Intelligence, 7, 1228–1241. https://doi.org/10.1109/TETCI.2023.3251352

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.knosys.2021.107251
https://doi.org/10.1016/j.knosys.2021.107251
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1609/aaai.v32i1.11851
https://doi.org/10.1145/3522673
https://doi.org/10.1145/3477495.3531963
https://doi.org/10.1016/j.ins.2021.12.105
https://doi.org/10.1145/3404835.3463060
https://doi.org/10.1016/j.ins.2019.09.007
https://doi.org/10.24963/ijcai.2019/600
https://doi.org/10.1016/j.asoc.2022.109894
https://doi.org/10.1016/j.asoc.2022.109894
https://doi.org/10.1145/3459637.3482016
https://doi.org/10.1145/3459637.3482016
https://doi.org/10.1016/j.ins.2022.11.163
https://doi.org/10.1609/aaai.v32i1.11618
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1145/3340531.3411954
https://doi.org/10.1109/TETCI.2023.3251352

	BMDF-SR: bidirectional multi-sequence decoupling fusion method for sequential recommendation
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Method
	4.1 Overall architecture
	4.2 Multi-sequence decoupling fusion module
	4.3 Semantic balance module
	4.4 Three-layers seq2seq module
	4.5 Preference fusion module
	4.6 Optimize

	5 Experiments
	5.1 Database and evaluation metrics
	5.2 Baseline methods
	5.3 Contrast experiment
	5.4 Ablation study
	5.5 Parametric experiment
	5.6 Complexity study

	6 Conclusion
	Acknowledgements
	References


