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Abstract
As a popular graph learning technique, graph neural networks (GNN) show great advantages
in the field of personalized recommendation. Existing GNN-based recommendation meth-
ods organized user-item interactions (e.g., click, purchase, review, etc.) as the bipartite graph
and captured the higher-order collaborative signal with the aid of the GNN to achieve per-
sonalized recommendation. However, there exists two limitations in existing studies. First,
core features activating user-item interactions were not be identified, which causes that user-
item interactions fail to be accurately exploited at the feature level. Second, existing GNNs
ignored the mutual association among neighbors in information propagation, which results
in structural signal in the bipartite graph not being sufficiently captured. Towards this end, we
developed the core features activated graph dual-attention network, namely C-GDN, for per-
sonalized recommendation. Specifically, C-GDN firstly identifies core user and item features
activating user-item interactions and employs these core features to initialize the bipartite
graph, which effectively optimizes the utilizing of user-item interactions at the feature level.
Furthermore, C-GDN designs a novel graph dual-attention network to conduct information
propagation, which captures more sufficient structural signal in the bipartite graph by consid-
ering information from neighbors as well as their mutual association. Extensive experiments
on three benchmark datasets shows that C-GDN outperforms state-of-the-art baselines.

Keywords Core features · Dual-attention mechanism · Information propagation ·
Graph neural network · Personalized recommendation

1 Introduction

In the age of information explosion, various technologies have been developed to assist online
users in informationfiltering anddecision-making.As one of themostwidely applied decision
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support systems, recommender systems conduct in-depth mining of interactive records to
infer user preferences and recommend items that users interested in He et al. (2022). With
the advantages of personalization, recommender systems have been applied to many online
services such as e-commerce, social media, location services and so on.

In order to effectively achieve recommender systems, a large number of recommendation
methods (e.g., collaborative filtering, content-based methods, hybrid methods, etc.) contin-
ually emerge (Wu et al., 2022a). Recently, with the ability of non-liner modeling of deep
learning (Gan&Ma, 2022), deep recommendationmethods gainwide attention. Deep recom-
mendation methods adopt neural networks to model either representations of users and items
or the matching between users and items (Wu et al., 2022b). As typical deep recommendation
methods, graph neural networks (GNN)-based recommendation methods are getting popular
with the advantage to learn graph data (Wu et al., 2022b). Existing GNN-based methods
usually organized user-item interactions as the bipartite graph and captured higher-order col-
laborative signal with the aid of GNN to achieve personalized recommendation. For example,
NGCF (Wang et al., 2019) employed the GNN considering node interactions to mine higher-
order collaborative signal in the bipartite graph and effectively enriched representations of
users and items in recommender systems. LightGCN (He et al., 2020) effectively improved
the efficiency and performance of NGCF by simplifying the GNN in NGCF. For fine-grained
decoupling of user preference, MA-GNNs (Zhang et al., 2023) proposed the multi-aspect
enhanced GNN to capture multi-aspect collaborative signal in the bipartite graph.

Although some success, existing studies onGNN-based recommendationmethods usually
directly organized user-item interactions as the bipartite graph, but failed to explore core users
and item features activating user-item interactions. Since users’ interactive behaviors are
drivenby specificuser and item features (Zhang et al., 2019), ignoring core features causes that
user-item interactions fail to be accurately exploited at the feature level. In addition, existing
GNNs only focused on integrating information from neighbors in conducting information
propagation, but ignored the mutual association among neighbors. Since there is not only
user-item interactions but also user-user associations (e.g., the user social relationship) or
item-item associations (e.g., the item complementary relationship) (Liu et al., 2022) in real
recommender systems, existing GNNs only integrating neighbor information are not enough
to capture sufficient structural signal in the bipartite graph. Due to these limitations, there is
a certain research space to improve existing GNN-based recommendation methods. Below,
we employ Fig. 1 to comb the research motivation.

From Fig. 1, we observe that: (1) User-item interactions are activated by core user
and item features. Specifically, Fig. 1(a) shows an example on the core features activated
recommender system, where u1 represents the target user, i1 represents the candidate item
and there exists the interaction between u1 and i1. The reason why u1 interacts i1 is because
the target user is a “Nike fan” and the brand of the candidate item is correspondingly “Nike”.
In this case, “Nike fan” and “Nike” can be treated as core features to activate the interaction
between u1 and i1. Compared with core features, other user features (e.g., “Male”, “Student”,
etc.) or item features (“Shoes”, “Black and white”, etc.) may interfere with the understanding
of the user-item interaction, which leads to the utilization of the user-item interaction be
redundant. (2) The information propagation in the bipartite graph not only needs to
integrate neighbor information into the center node but also needs to consider the
mutual association among neighbors. Specifically, the bipartite graph showed in Fig. 1(a)
contains not only user-item interactions but also the mutual association among users or
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Fig. 1 The toy example to illustrate research motivations

items (e.g., the user social relationship, the item complementary relationship, etc.), which
inspires us that capturing structural signal in the bipartite graph needs to comprehensively the
association among neighbors. Taking the learning of the representation of u1 as an example,
Fig. 1(b) amplifies the information propagation process in the bipartite graph. Obviously, the
information propagation not only needs to integrate propagated information from neighbors
(i1, i2 and i3) to u1 but also needs to consider the mutual association (e.g., the complementary
relationship, etc.) among these neighbor items. However, information propagation in existing
GNNs (e.g., GraphSage (Wu et al., 2022b), GAT (Wang et al., 2019), etc.) only focuses on
integrating information from neighbors to the center node, which fails to capture sufficient
structural signal in the bipartite graph.

Inspired by the above observations, we aim to identify core features activating user-
item interactions and optimize the information propagation of existing GNNs to improve
performance of existing GNN-based recommendation methods. To achieve this goal, our
research mainly makes the following contributions:

1. We develop the core features activated graph dual-attention network named C-GDN for
personalized recommendation. On one hand, C-GDN explores user-item interactions
with core user and item features. On the other hand, C-GDN more sufficiently captures
structural signal in the bipartite graph.

2. In order to more accurately explores user-item interactions at the feature level, we design
the core feature identifying layer to identify core user and item features activating user-
item interactions, which discards the interference of irrelevant features to the utilization
of user-item interactions.

3. In order to more sufficiently captured structural signal in the bipartite graph, we develop
a novel GNN, graph dual-attention network (GDN), to conduct information propagation
in the bipartite graph. Compared with existing GNNs, GDN adopts the dual-attention
mechanism to consider not only different contributions fromneighbors but also themutual
association among neighbors.
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2 Related work

2.1 Feature-aware GNN-based recommendationmethods

Feature information is important auxiliary information used in recommender systems (Deng
et al., 2022). In relevant studies, common feature information in recommender systems
includes context information (Forestiero, 2022), attribute information (Deng et al., 2022),
unstructured text information (Hu et al., 2020) and so on. With the increasing popular-
ity of GNN-based recommendation methods, feature-aware GNN-based recommendation
method have also attracted wide attention in recent years. Using feature information to enrich
representations of users and items is a common practice in feature-aware GNN-based recom-
mendationmethods. For example,GNewsRec (Hu et al., 2020) firstly employed convolutional
neural network (CNN) to learn text of news, and then input learned text feature into the
heterogenous GNN for personalized news recommendation. Some knowledge graph-based
recommendation methods including Ke-LinUCB (Gan & Kwon, 2022) employed knowl-
edge features to enrich item representations for achieve knowledge-aware recommendation.
Besides, another way to utilize feature information to improve GNN-based recommendation
is modeling higher-order feature interactions with GNN. For example, Fi-GNN (Li et al.,
2019) represented the multi-field features in a graph structure and modeled feature interac-
tions with GNN for the task on click-through rate (CTR) prediction. Similarly, GMCF (Su
et al., 2021) exploited GNN to model two types of feature interactions, the inner interac-
tions and the cross interactions, and then achieved personalized recommendation by graph
matching. Although existing studies have tried to integrate feature information to enhance
GNN-based recommendation methods, existing studies have not effectively identified the
core user and item features activating user-item interactions. Since the intention of a user’s
interaction to an item is driven by specific user or item features (Zhang et al., 2019), ignoring
core user and item features makes the modeling of user interest interfered by irrelevant user
and item features. Different from the existing studies, we design the core feature identify-
ing layer in our research to identify the core features of uses and items, which effectively
improves feature-aware GNN-based recommendation.

2.2 GNN-based recommendation

Since GNN-based recommendation mainly relies on the information propagation mecha-
nism of GNN to capture higher-order structural signal in the graph (Gan & Zhang, 2023),
different information propagation mechanisms evolve into different GNN-based recommen-
dation methods. Common information propagation of GNNs is to integrate information from
neighboring nodes to the central node without difference. For example, GCMC (Berg et al.,
2017) and PDA-GNN (Wu et al., 2023) adopted the pooling operation to aggregate neighbor
information without difference. Furthermore, in order to avoid the central node representa-
tion be redundant, some studies conducted information propagation by considering different
contributions of neighbor nodes. NGCF (Wang et al., 2019) differently integrated neighbors
by improving graph convolutional network (GCN) with information interactions between
nodes. MGAT (Tao et al., 2020) designed the gated attention network to learn embeddings of
users and items in the multimodal information-aware bipartite graph, which performs well
on multimodal recommendation. MAF-GNN (Song et al., 2022) adopted graph attention net-
work (GAT) to respectively multiple user-related and item-related graphs for personalized
recommendation. Despite some success, the information propagation of existing GNNs only
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focus on integrating neighbor information into the center node. Since there exists mutual
potential association among users or items (Liu et al., 2022), only integrating neighbor infor-
mation into the center node fails to sufficiently capture structural signal in the bipartite graph.
Different from existing works, we designed a novel GNN named GDN with dual-attention
mechanism to capture structural information in a graph, which considers not only different
contributions of neighbors but also mutual association between neighbors in the information
propagation.

3 Problem statement

Before proposing our model, we define key concepts and present the task formulation. In
addition, the key notations referred to the model are listed in Table 1.

3.1 Key concepts

Definition 1 (Core features) Core features in our research refer to user and item-related
features that drive the user interaction with the item. For example, suppose a user u with
features {Teenager, Student, Nike fans} purchased an item i with features {Shoes, Black and
white, Nike}, and the purchase motivation is that i is the product of the favorite brand of u.
In this case, “Nike fans” is the core user feature to represent u, while “Nike” is the core item
feature to represent i . Certainly, there may be also multiple core features for a user or an
item when the user-item interaction activated by multiple user and item features.

Definition 2 (Structural signal) Structural signal in our research refers to the captured
higher-order signal along with the structure of the bipartite graph by multiple layers of

Table 1 The list of key notations

Notations Meaning

Eu = {eu1 , ..., eum } Initial embedding of users.

Ei = {ei1 , ..., ein } Initial embedding of items.

Eu
f = {e f u1 , ..., e f ua } Initial embedding of user features.

Ei
f = {e f i1 , ..., e f ib

} Initial embedding of item features.

γ f uk
; γ f ik

Gate scores of features f uk and f ik .

ecoreu ; ecorei Core feature-aware embeddings of u and i .

et Bii
; et Bij

Initial embeddings of neighbors t Bii and t Bij .

ehBi Initial embedding of the center node h.{
e′t Bi1

, e′t Bi2
, ..., e′t Bio

}
Association-aware embeddings of neighbors of the center node h.

βBi
hti

The attention score of t Bii to h in the bipartite graph

e(l)
hBi

Embedding of center node h after performing l times of GDNs.

e∗
hBi

The final embedding of the center node h .

ỹui The predicted probability of the user-item interaction.
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GNNs. In particular, we design a novel GNN, named GDN, to learn the structure of the
bipartite graph. Compared with existing GNNs, structural signal captured by GDN con-
siders not only higher-order neighbor information of the center node but also the mutual
association among neighbors.

3.2 Task description

Our main objective is to achieve the personalized recommendation by identifying the core
features of users and items as well as more sufficiently capturing structural signal in the
bipartite graph. Suppose the user set is U , the item set is I , the user feature set is Fu and the
item feature set is Fi , the task of our research is to predict users’ interaction probability on
items, which is mathematically expressed as:

Ỹ = f (U , I , FU , F I ) (1)

Where Ỹ is the predicted interaction probability of all users on items, f (·) denotes the predict-
ing function to predict the interaction probability. With the predicted interaction probability,
the Top-N item list is recommended for each user.

4 Methodology

4.1 Overview of C-GDN

The overview of C-GDN is illustrated in Fig. 2. According to in Fig. 2, we observe that
C-GDN consists of four key parts: a) Core feature identifying layer, which is used to
identify core features of users and items and initialize the bipartite graph. b) Information
propagation layer, which is used to conduct information propagation in the bipartite graph
with the designed GDN. c) Embedding fusion layer, which is used to fuse different order
embeddings of users or items and generate final embeddings of users and items.d) Prediction

Fig. 2 Overview of C-GDN
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and train layer, which is used to predict the probability of users interacting with items and
train parameters of the whole model.

4.2 Core feature identifying layer

The core feature identifying layer is used to generate core feature-aware embeddings of users
and items. For this goal, we firstly encode users, items, user attributes and item attributes
with their ID information to generate their initial embeddings. And then, we adopt the gate
mechanism to decide whether the feature would be the core feature to represent the user
or the item. Finally, we use core features to represent the bipartite graph built on user-item
interactions. Accordingly, this layer contains three steps, embedding initializing, core feature
identifying and bipartite graph initializing. Next, we illustrate these steps in detail.

4.2.1 Embedding initializing

The embedding initializing essentially is to learn low-dimensional initial embeddings of all
users, items, and their features. Based on ID information, we adopt widely used embedding
layer (Kang et al., 2021) to generate initialized embeddings of users, items and their features.
Suppose there are m users, n items, a user features and b item features, the initialized
embeddings are expressed as:

Eini tial = {Eu;Ei ;Eu
f ,E

u
f } (2)

Where, Eini tial denotes the initialized embedding matrix including the initial user embed-
ding Eu = {eu1 , ..., eum }, the initial item embedding Ei = {ei1 , ..., ein }, the initial feature
embedding Eu

f = {e f u1
, ..., e f ua } and Ei

f = {e f i1
, ..., e f ib

}.

4.2.2 Core feature identifying

The process of core feature identifying is to control the introduction of features for repre-
senting users and items, which is essentially a process of information control to extracts core
features and discards irrelevant features from multiple features of users and items (Zhang
et al., 2019). Since the improved gated mechanism proposed by Tao et al. (2020) has the
natural advantage of information control and more flexibly decides information representing
the target object, we adopt the improved gating mechanism proposed by Tao et al. (2020) to
realize the core feature identifying.

To be specific, suppose a user u includes x features, an item i includes y features, initial
feature embeddings of u are written as {e f u1

, e f u2
, ..., e f ux }, and initial feature embeddings of

i are written as {e f i1
, e f i2

, ..., e f iy
}, the gate scores feature f uk and feature f ik based on the

improved gated mechanism are calculated as:

γ f uk
= softmax(

Wu(e f uk
‖eu ) + e f uk

� eu√
d

) (3)

γ f ik
= softmax(

Wi (e f ik
‖ei ) + e f ik

� ei√
d

) (4)

Where γ f uk
and γ f ik

respectively represent gate scores of f uk and f ik . d is the embedding
size, (· ‖· ) is the concatenation operation, � denotes the element-wise product, e f uk

� eu
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represents the information interaction between f uk and u, while e f ik
� ei represents the

information interaction between f ik and i . (e f uk
‖eu ) and (e f ik

‖ei ) are introduced to reserve
the original features of the user and the item.

Furthermore, with gate scores of user features and item features, we generate core feature-
aware embeddings of u and i as follows:

ecoreu =
x∑

k=1

γ f uk
e f uk

(5)

ecorei =
y∑

k=1

γ f ik
e f ik

(6)

Where ecoreu and ecorei are core feature-aware embeddings of u and i . Compared with initial-
ized embeddings of users and items, core feature-aware embeddings emphasize core features
activating user-item interactions.

4.2.3 Bipartite graph initializing

Initializing the bipartite graph is the basic to apply GNN (Wu et al., 2022b). Similar with
existing studies (Wang et al., 2019;He et al., 2020), we construct the bipartite graph according
to user-item interactions. To be specific, if a user interacted with an item, there exists the edge
between the user node and the item node in the bipartite graph.Wewrite the bipartite graph as
GBi = (V , E), where V represents the node set including users and items and E represents
the edge set determined by user-item interactions. Since user or item nodes contained inGBi ,
the initialization of GBi essentially is to represent user nodes and item nodes in the graph.
In our research, we initialize user nodes and item nodes with core feature-aware embeddings
of users and items learned at Section 4.2.2, which aims to support the learning of GBi at the
feature level.

4.3 Information propagation layer

The information propagation layer is used to sufficiently capture structural signal in the
bipartite graph. For this goal, we designed the GDN to conduct information propagation
in the bipartite graph. GDN contains three steps, neighbors’ mutual association modeling,
neighbor information integrating and higher-order connectivity modeling. Next, we illustrate
these steps in detail.

4.3.1 Neighbors’ mutual association modeling

Since the self-attention mechanism has the advantage on modeling associations of different
embeddings (Zhang et al., 2019),we exploit the self-attentionmechanism tomodel themutual
association among neighbors. Assuming that local neighbors of center node h in a bipartite
graph is N Bi

h = {
t Bi1 , t Bi2 , ..., t Bio

}
.Wemodel themutual association by defining the attention

weight αi j between two neighbors, t Bii and t Bij , as follows:

αi, j =
et Bii

(et Bij
)T

o∑
j=1

et Bii
(et Bij

)T
(7)
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Where et Bii
and et Bij

are initial embeddings of t Bii and t Bij . o represent the number of

neighbors of h. Further, we obtain the association-aware embedding of t Bii as follows:

e′
t Bii

=
o∑
j=1

αi jet Bij
(8)

According to (8), embeddings of neighbors of center node h are reprehensively updated

as
{
e′
t Bi1

, e′
t Bi2

, ..., e′
t Bio

}
.

4.3.2 Neighbor information integrating

Inspired by GAT (Wang et al., 2019), we use attention mechanism to integrate neighbors with
their different contributions. To be specific, based on obtained association-aware embeddings
of neighbors at Section 4.3.1, we calculate attention score of neighbor t Bii to the center node
h with (9):

βBi
hti =

exp(LeakyReLU(W3[W1ehBi
∥∥∥W2e′

t Bii
]))

n∑
t=1

exp(LeakyReLU(W3[W1ehBi
∥∥∥W2e′

t Bii
]))

(9)

Where, βBi
hti

is the attention score of t Bii , ehBi is the initial embedding of h, LeakyReLU(·)
represents the nonlinear transformation function,W1,W2 andW3 are all the trainable weight
matrices.

4.3.3 Higher-order connectivity modeling

Based on the dual-attention mechanism at Sections 4.3.1 and 4.3.2, we model the high-order
connectivity to capture higher-order structural signal as following:

e(l)
hBi

= LeakyReLU(T(l−1)
1

∑
ti∈N Bi

h

βBi
hti e

′(l−1)
t Bihi

+ T(l−1)
2 e(l−1)

hBi
) (10)

Where, e(l)
hBi

represents the embedding of h after performing l times of GDNs, which captures

structural signal for represent node hBi in the bipartite graph. LeakyRelu(·) represents the
nonlinear activation function, T(l−1)

1 and T(l−1)
2 are both trainable parameter matrices.

4.4 Embedding fusion layer

The embedding fusion layer is used to fuse different order embeddings within the bipartite
graph to generate the final user and item embeddings. Suppose the center node h gets l
different embeddings, i.e., e(0)

hBi
, e(1)

hBi
, …, e(l)

hBi
, after L times of GDNs in the bipartite graph,

then the final embedding of h is formalized as:

e∗
hBi =

L∑
l=0

τ (l)e(l)
hBi

(11)

Where, e∗
hBi

represents the final embedding of h. τ (l) denotes the importance of the specific

order embeddings. Inspired by LightGCN (He et al., 2020), we set τ (l) uniformly as 1
L+1 .
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When h represents the useru,we obtain thefinal embeddingofu, e∗
u .While,when h represents

the item i , we obtain the final embedding of i , e∗
i .

4.5 Prediction and training layer

Based on obtained final embeddings of users and items, we further exploit the Multiple
Layer Perceptron (MLP) to predict the interaction of users on items. To be specific, based on
the final user embedding e∗

u and the final item embedding e∗
i , the prediction process of the

interaction is expressed as:
ỹui = f (e∗

u

∥∥e∗
i ) (12)

Where, (· ‖· ) represents the concatenation operation, f (·) is the MLP. It is worth mentioning
that, the MLP is composed of multiple layers of full connect network. If the full connect
network is the last layer of the MLP, the activation function is set Sigmoid, and if not, the
activation function is set ReLU. ỹui represents the predicted probability of the user-item
interaction.

To learnmodel parameters, we optimized the pairwise BPR loss (Wang et al., 2019), which
has been intensively used in recommender systems. The objective function is as follows:

Loss =
∑

(u,i, j)∈O
− ln σ(ỹui − ỹu j ) + λ ‖�‖ (13)

Where, O = {(u, i, j)
∣∣(u, i) ∈ R+ , (u, j) ∈ R−} represents the pairwise training data,

R+ denotes the observed data, and R− represents the unobserved data, σ(·) is the sigmoid
function, � represents all parameters involved in our model, λ controls the L2 regularization
strength to prevent overfitting. In addition, we update model parameters with the gradients
of the loss function.

5 Experiments

In this section, we first introduced datasets (see Section 5.1), and then described experiment
settings including baselines, evaluation metrics and parament settings (see Section 5.2).
Furthermore, we conducted comparation experiments (see Section 5.3), ablation experiments
(see Section 5.4), parameter sensitivity analysis(see Section 5.5).

5.1 Datasets

We used the three benchmark datasets, Movielens-100K1, Movielens-1M2 and Taobao3,
commonly used in the recommender system to verify the validity of the proposed model.
These three datasets are mainly used to verify the effectiveness of recommendation methods
in different recommendation scenarios (the movie recommendation and the electronic com-
merce recommendation), so as to prove that research results can be generalizable to different
domains. The statistical information of three datasets is shown in Table 2. Where, U-feature

1 https://www.kaggle.com/prajitdatta/movielens-100k-dataset
2 https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
3 https://www.kaggle.com/datasets/pavansanagapati/ad-displayclick-data-on-taobaocom
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Table 2 Statistics of the datasets

Dataset Movielens-100k Movielens-1M Taobao

Users 943 6,040 85,518

Items 1,682 3,952 11,822

Interaction 100,000 1,000,209 178,314

UI-Sparsity 93.70% 95.81% 99.98%

U-features types 4 4 3

I-features types 3 3 3

types and I-features types respectively denotes the number of user features types and item
feature types in corresponding datasets.

The details of each dataset are as follows:

(1) Movielens-100K and Movielens-1M are movie-oriented recommendation datasets
(Harper & Konstan, 2015), which include not only the rating data of users to movies,
but also rich fields on user and movie features. For our research, we determined the
interaction relationship of a user to a movie according to the rating data. In addition, we
selected three fields (“Age”, “Gender”, “Occupation” and “Zip code”) to determine user
features and two fields (“Release date”, “Genres”, “Average rating”) to determine movie
features.

(2) Taobao is an advertising-oriented recommendation dataset (Zhou et al., 2018), which not
only includes click data of users to advertisings, but also includes rich features of users
and advertisings. For this dataset, we determined the interaction relationship of a user
to an advertising according to the click data. In addition, we selected three fields (“Age
level”, “Gender code” and “Shopping level”) to determine user features and two fields
(“Campaign”, “Category” and “Brand”) to determine advertising features.

In order to ensure the quality of datasets, we use 20-core setting (Gan & Ma, 2022) to
ensure that each user and item have at least 20 interactions during the experiment. For each
processed dataset, we randomly selected 80% of the historical interaction items of each user
as the training set and the remaining interaction items as the test set. For the training set, 10%
of the interaction items are randomly selected as the validation set.

5.2 Experiment setting

5.2.1 Baselines

To demonstrate the effectiveness, we compare C-GDNwith six mainstream baselines. These
six baselines are mainly from three categories of recommendation methods, including tradi-
tional deep recommendation methods (NFM and GCMC),GNN-based recommendation
methods without feature information (NGCF and LightGCN) and GNN-based recom-
mendation methods with feature information (Fi-GNN and GMCF). Specifically, the
reason to introduce NFM and GCMC to test whether GNN-based recommendation methods
is better than traditional deep recommendation methods, so as to prove that GNN are supe-
rior than traditional neural networks to achieve recommendation. In addition, the reason to
introduce NGCF and LightGCN to test whether GNN-based recommendation methods with
feature information are superior than methods without feature information, so as to prove
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that feature information is beneficial for GNN-based recommendation. Moreover, the reason
to introduce Fi-GNN and GMCF to test whether C-GDN proposed by us is superior than
existing GNN-based recommendation methods with feature information, so as to prove that
our innovations are beneficial for improve existing research. The following introduces these
baselines:

• NFM (He et al., 2017): This model is a mainstream collaborative filtering method based
on deep learning. It captures the nonlinear feature interaction between the user and the
item by using multiple hidden layers and concatenation operations.

• GCMC (Berg et al., 2017): Thismodel is a classic graph-based recommendationmethod.
It adopts the graph encoder to generate the representations for users and items, where
only the first-order neighbors are considered.

• NGCF (Wang et al., 2019): This model is a mainstream GNN-based method. It uses the
improved GCN to model the high-order connectivity between users and items.

• LightGCN (He et al., 2020): This model is a simplified version of NGCF by removing
feature transformation and nonlinear activation modules. It makes GNN-based methods
more concise and appropriate for personalized recommendation.

• Fi-GNN (Li et al., 2019): This model is a feature interaction-based CTR prediction
method, which represents each data sample as a feature graph that each node in the graph
is a feature field. Then, it models the interactions among features with GNN. In our
research, we deployed this model in the Top-N recommendation scenario.

• GMCF (Su et al., 2021): This is also a feature interaction-based GNN recommendation
method,which explicitlymodels the inner and cross feature interactions to represent users
and items, and then performs personalized recommendation by the graph matching.

5.2.2 Evaluation metrics

We adopted four widely used evaluation metrics (Wang et al., 2019), Recall@N (Rec@N),
Precision (Pre@N), Hit Ratio (HR@N) and Normalized Discounted Cumulative Gain
(NDCG@N), to evaluate the Top-N recommendation performance of different models.
Where, Rec@N measures the proportion of the number of user interactions in the recom-
mended N items to the entire interaction set. Pre@N measures the fraction of the items the
user will click among the recommended N items. HR@N is a recall-based metric, mea-
suring the proportion of users who have at least one interact on the recommended items.
NDCG@N differentiates the contributions of the accurately recommended items based on
their ranking positions. The larger values of Rec@N, Pre@N, HR@N and NDCG@N, the
better the recommendation performance. In our research, we report the value of N as 10
and 20.

5.2.3 Parameter settings

The experimental environments for our researchwereLinux, Python 3.7.4, TensorFlow1.16.1
on Nvidia Geforce GTX 1080 Ti GPU. We conduct the grid searching for the embedding
dimension in {32, 64, 128}, the sample number of local neighbors in {5, 10, 15, 20}, the
dropout ratio in {0.1, 0.2, 0.3, 0.4}, the learning ratio in 0.0001, 0.0005, 0.001, 0.005, the
decay rate in {0.97,0.98,0.99} and the regularization weight in {10e-1, 10e-2, 10e-3, 10e-
4, 10e-5}. After searching, the embedding dimension is determined as 64, and the dropout
ratio is determined as 0.1, the initial learning rate is determined as 0.001, the decay rate is
determined as 0.98, and the regularization weight is determined as 10e-2. For baselines, we
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adjusted the parameters to a better value suitable for the experimental data set by referring
to the original paper. For parameters, we employ Xavier initializer to initialize parameters.
We choose the Mini-Batch Adam to optimize parameters. The batch size is 256 for the
Movielens-100K dataset and 1024 for the Movielens-1M dataset and the Taobao dataset.
The epoch size is set 200 for convergence. The important hyper-parameters including the
number of GDN layers and the number of MLP layers are reported in Section 5.5.

5.3 Comparation experiments

Wecompared the proposedC-GDNwith baselines and obtained comparative results as shown
inTables 3, 4, and 5.According to these tables, we observe that C-GDNoutperforms baselines
on three datasets with the p-value of all metrics rejecting the null hypothesis with a level of
significance of α=0.01. These results prove the ability of C-GDN in improved all evaluation
metrics significantly (p<0.01) compared to the baselines. The superior performance is due
to: a) Compared with NMF and GCMC, C-GDN not only captures higher-order structural
signals, but also employs feature information to enhance representations of users and items. b)
Compared with NGCF and LightGCN, C-GDN employs core feature information to enhance
representations of users and items. c) Compared with Fi-GNN and GMCF, C-GDN not only
identifies core features activating user-item interactions, but also improves the information
propagation in the bipartite graph with designed GDN. Moreover, we find that almost of all
metrics of C-GDN have more significant improvement on Top-10 than Top-20. Since online
users usually pay more attention to the top recommendations, C-GDN more matches actual
demand of online users. There are also some findings by comparing all baselines:

(1) Traditional deep recommendation methods (i.e., NMF and GCMC) show worse per-
formance than other methods on three datasets. The reason for this result is that these
two baselines fail to consider higher-order collaborative signal, while other baselines
all employ GNN to consider higher-order collaborative signal to learn representations
of users and items. It is also confirmed that GNN-based recommendation methods are
superior to traditional deep recommendation methods.

(2) GNN-based methods without features (i.e., NGCF, LighGCN) are better than traditional
deep recommendation methods but worse than feature-aware GNN-based recommen-

Table 3 Overall performance comparison on Movielens-100K

Model Rec@10 Rec@20 Pre@10 Pre@20 HR@10 HR@20 NDCG@10 NDCG@20

NMF 0.0194 0.0723 0.2539 0.2317 0.8490 0.8868 0.2287 0.3092

GCMC 0.0338 0.0817 0.3008 0.2988 0.8821 0.9293 0.3234 0.4140

NGCF 0.0358 0.1192 0.4440 0.3692 0.9071 0.9469 0.3571 0.4591

LightGCN 0.0394 0.1485 0.5300 0.4369 0.9306 0.9474 0.4261 0.569

Fi-GNN 0.0429 0.1584 0.7741 0.6561 0.9138 0.9642 0.4433 0.5683

GMCF 0.0431 0.1626 0.7329 0.6412 0.9116 0.9557 0.4462 0.5693

C-GDN 0.0460* 0.1696* 0.8211* 0.6946* 0.9422* 0.9722* 0.4860* 0.5764*

Imp 6.73% 4.31% 6.07% 5.87% 1.25% 0.83% 8.92% 1.25%

P-value 2.18e-4 4.11e-5 2.12e-6 2.35e-5 6.01e-5 2.04e-4 3.21e-5 1.09e-5

Note: Imp represents the percentage of performance improvement shown by our model compared to the
best baseline. Bold scores are the best in each row, while underlined scores are the second best. * denotes
statistically significant improvement by t-test with p<0.001. The same below
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Table 4 Overall performance comparison on Movielens-1M

Model Rec@10 Rec@20 Pre@10 Pre@20 HR@10 HR@20 NDCG@10 NDCG@20

NMF 0.1626 0.2483 0.6747 0.6220 0.6640 0.8167 0.2257 0.2355

GCMC 0.1658 0.2510 0.6838 0.7099 0.7424 0.8842 0.2308 0.2290

NGCF 0.1813 0.2690 0.7285 0.7105 0.7901 0.9209 0.2475 0.2550

LightGCN 0.1843 0.2744 0.7527 0.7139 0.8173 0.9280 0.2461 0.2556

Fi-GNN 0.1997 0.2970 0.7398 0.7121 0.8215 0.9295 0.2556 0.2579

GMCF 0.2003 0.2797 0.7450 0.7212 0.8115 0.9203 0.2583 0.2751

C-GDN 0.2069* 0.3062* 0.7709* 0.7295* 0.8441* 0.9494* 0.2677* 0.2792*

Imp 3.30% 3.10% 2.42% 1.33% 2.75% 2.14% 3.64% 1.49%

P-value 5.49e-4 1.13e-4 2.06e-4 2.06e-4 4.08e-5 1.13e-6 6.01e-4 1.14e-5

dation methods (i.e., Fi-GNN and GMCF) on three datasets. This result illustrates that
considering feature information is beneficial to achieve more effective recommenda-
tion. Moreover, LighGCN outperforms NGCF on three datasets, which indicates that
improving GNN is beneficial to improve recommendation performance.

(3) Recommendation performance on two Movielens datasets is better than the Taobao
dataset. This result illustrates that the same recommendation method may have different
performance for different recommendation scenarios. The reason for this phenomenon
may be that users’ rating behaviors in the movie recommendation scenario more directly
reflect users’ interests, while users’ click behaviors in the advertising recommendation
scenario are easily disturbed by the platform operating mechanism. Therefore, the movie
recommendationmore accuratelymodels users’ interests than the advertising recommen-
dation.

5.4 Ablation experiments

5.4.1 The effectiveness of identifying core features

In order to achieve the ablation analysis of the effectiveness of identifying core features, we
generate three variants of C-GDN, which as followings:

Table 5 Overall performance comparison on Taobao

Model Rec@10 Rec@20 Pre@10 Pre@20 HR@10 HR@20 NDCG@10 NDCG@20

NMF 0.0760 0.1097 0.1171 0.0943 0.4530 0.6602 0.0916 0.1157

GCMC 0.0752 0.1089 0.1177 0.0951 0.4589 0.6522 0.1000 0.1189

NGCF 0.0875 0.1262 0.1201 0.1032 0.5337 0.7341 0.1080 0.1249

LightGCN 0.0977 0.1415 0.1310 0.1102 0.5520 0.7727 0.1202 0.1305

Fi-GNN 0.1055 0.1445 0.1386 0.1132 0.5868 0.8018 0.1255 0.1339

GMCF 0.1095 0.1502 0.1485 0.1216 0.6097 0.8637 0.1446 0.1504

C-GDN 0.1154* 0.1533* 0.1542* 0.1289* 0.6227* 0.8731* 0.1503* 0.1553*

Imp 5.39% 2.06% 3.84% 6% 2.13% 1.09% 3.94% 3.26%

P-value 1.67e-3 3.21e-4 2.06e-5 2.95e-5 1.76e-3 1.13e-4 1.45e-3 2.75e-4
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• GDN, this model doesn’t consider the core features of users and items and only initializes
the bipartite graph with embeddings of users and items based on ID information. For
learning of the bipartite graph, we use GDN to conduct information propagation.

• UC-GDN, this model doesn’t consider core item features and only considers core user
features. For the initialization of the bipartite graph, we use embeddings based on core
user features to initialize user nodes, while embeddings based on item ID information
to initialize item nodes. For learning of the bipartite graph, we use GDN to conduct
information propagation.

• IC-GDN, this model doesn’t consider core user features and only considers core item
features. For the initialization of the bipartite graph, we use embeddings based on user
ID information to initialize user nodes, while embeddings based on core item features
to initialize item nodes. For learning of the bipartite graph, we use GDN to conduct
information propagation.

Figure 3 shows performance comparison of C-GDN with three variants and LightGCN (a
typical GNN-based recommendation method) on three datasets. From Fig. 3, we observe that
C-GDNoutperformsGDN,UC-GDN, IC-GDNandLightGCN.This result illustrates that it is
beneficial to identify core features both of users and items for personalized recommendation.
The reason for this result is that C-GDN, compared with other models, not only identifies
core features activating user-item interactions both of users and items. Therefore, C-GDN
more accurately inferred user preference by overcoming the disturbing of irrelevant user and
item features.

In addition, we notice that UC-GDN and IC-GDN have absolute advantages over GDN
on different datasets. This result indicates that either core user features or core item features
are beneficial to improve recommendation performance. Another interesting finding is that
IC-GDN always performs better than UC-GDN, which illustrates that core item features are
more significant to understand user-item interactions than core user features. The reason for

Fig. 3 Ablation analysis on identifying core features
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this result may be due to that core item features is more related to users’ decision motivations
than core user features. Moreover, compared LighGCN, GDN shows better recommendation
performance. This result confirms that our designed GDN provides better recommendation
support than mainstream improved GNN even without considering the feature information.

5.4.2 The effectiveness of the designed GDN

In order to achieve the ablation analysis of the designed GDN, we generate two variants of
C-GDN, which as followings:

• C-GFN, this model removes the second attention mechanism (see Section 4.3.2) model-
ing different contributions of neighbors and only considers the mutual association among
neighbors with the first attention mechanism (see Section 4.3.1) in the information prop-
agation.

• C-GSN, this model removes the first attention mechanism (see Section 4.3.1) modeling
the mutual association among neighbors and only considers the different contributions
of neighbors with the first attention mechanism (see Section 4.3.2) in the information
propagation.

Figure 4 shows performance comparison of C-GDN and its two variants on three datasets.
From Fig. 4, we observe that C-GDN outperforms C-GFN and C-GSN. This result illustrates
that identifying different contributions of neighbors and considering the mutual association
between neighbors are both important. Interestingly, we also observe C-GFN significantly
outperformsC-GSNon different datasets, which indicates that considering themutual associ-
ation of neighbors ismore significant than considering the different contributions of neighbors
in the information propagation.

Fig. 4 Ablation analysis on f the designed GDN
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5.5 Parameter sensitivity analysis

5.5.1 Effect of the number of GDN layers on recommendation performance

The GDN is used to capture structural signal in the bipartite graph. Since the number of GNN
layers determines utilization of higher-order neighbor information (Wang et al., 2019; Liu
et al., 2022), it is important to determine proper number of GDN layers in the bipartite graph.
In order to test the effect of the number of GDN layers on recommendation performance,
we search the number of layers in {1,2,3,4} respectively. Figure 5 shows performance of
C-GDN corresponding to different layers of GDN on different datasets.

FromFig. 5,we have the following observations: a)When L >1,C-GDNachieve improve-
ment over L=1 on three datasets. The reason for this result is that higher-order structural
signal in the bipartite graph is more beneficial for improving recommendation performance.
b)When L=3 on theMovielens-100K dataset, L=2 on theMovielens-1M dataset and L=2 on
the Taobao dataset, C-GDN achieve the better recommendation performance. While, when
L>3 on the Movielens-100K dataset, L>2 on the Movielens-1M dataset and L>2 on the
Taobao dataset, the performance of C-GDN begins to decline. This result illustrates that the
layers of GDN have effect on the performance of C-GDN and the optimal number of GDN
layers on different datasets is different. According to experimental results, we respectively set
L as 3, 2 and 2 for the Movielens-100K dataset, the Movielens-1M datasets and the Taobao
dataset.

5.5.2 Effect of the number of fully connected layers in MLP on recommendation
performance

The MLP is used to model the nonlinear relationship of the final representations of users
or items. We search the number P of fully connected layers in {1,2,3,4,5} respectively and

Fig. 5 Performance of C-GDN with different layers of GDN
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evaluate the performance of our model on three datasets. Figure 6 shows performance of
C-GDN corresponding to different P on three datasets. From Fig. 6, we have the following
observations: As the number of layers increases, the performance of the model tends to be
stable. This result illustrates MLP is beneficial to improve the stability of recommendation
performance. In addition, for the Movielens-100K dataset and the Taobao dataset, C-GDN
has better performance when the number of layers is 2 and begins to decline when the number
is greater than 2. In addition, for the Movielens-1M dataset, C-GDN has better performance
when the number of layers is 1 and begins to decline when the number is greater than
1. Therefore, we respectively set the number of MLP layers as 2 for the Movielen-100K
dataset, 1 for the Movielen-1M dataset and 2 for the Taobao dataset.

6 Case study

In this section, we adopt the case study on Movielen-100K dataset to prove the effectiveness
of identifying core user and item embeddings. The following is a detailed description of the
case study.

6.1 Visual analysis of core features of users and items

In order to prove that C-GDN well identifies core features of users or items, we visualize
gate scores of features of example users and items. Specially, we first randomly select five
users in the test set and randomly select an interacted item for each user to generate five
example users and items. And then, we present gate scores of features of example users
and items, see Fig. 7. In each radar chart, each axis denotes a type of user or item features,
each circle denotes the fixed scale value, data points on each axis represent gating scores

Fig. 6 Performance of C-GDN with different fully connected layers in MLP
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Fig. 7 Visualized gate scores of user and item features

(red font) for specific features, the shaded area with color denotes the combined results of
multiple features to represent a user or an item. The reason why radar charts are chosen to
visualize gate scores of features is that the radar chart has the advantage to visually represent
and compare multidimensional data.

Obviously, in Fig. 7, different features have different contributions to represent the user
or the item. Take user 1 and item 1 as the example, “Age: 24” and “Gender: M” are obviously
more significant than “Occupation: technician” and “Zip code: 85711” to represent user 1,
while “Average rating: 8” and “Genres: Crime” are obviously more significant than “Release
date: 1995”. Therefore, in terms of the interaction between user 1 and item 1, “Age: 24” and
“Gender: M” are core user features while “Genres: Crime” and “Date: 1995” are core item
features. In addition, we also observe that different core feature types play different roles to
activate user-item interactions. To be specific, core features of user 1 emphasize “Gender” and
“Age” while core features of user 2 emphasize “Occupation” and “Age”. Correspondingly,
core features of item 1 emphasize “Genres” and “Average Rating” while core feature of
item 2 only emphasizes “Genres”. According to these findings from the gate scores, we
clearly understand core features activate users’ interaction to items. Therefore, it is enough
to prove that C-GDNwell identify core features of users or items and identifying core features
enhances the interpretability of recommendations to a certain extent.

6.2 Visual analysis of embeddings of users and items

In order to prove that identifying core features is beneficial to represent users and items. We
visually analyze embeddings of users and items of GDN and C-GDN, where GDN removes
the core feature identifying layer of C-GDN. Specially, we randomly selected five users with
more than twenty interacted items and five items with more than twenty interacted users.
Figure 8 visualizes embeddings of interacted items of five users and interacted users of five
items.

According to the nature of collaborative filtering, item embeddings with different user
labels or user embeddings with different item labels should have a higher degree of differ-
entiation, and item embeddings with the same user label or item embeddings with the same
user label should have a higher degree of aggregation. Obviously, item embeddings with
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Fig. 8 Visualized embeddings of users and items on different models

different user labels in Fig. 8(a) are more difficult to distinguish than Fig. 8(b), while item
embeddings with the same user label in Fig. 8(b) are more clustered than Fig. 8(a). Therefore,
it is proved that identifying core item features is more conducive to learning accurate item
representations. On the other hand, user embeddings with different item labels in Fig. 8(c)
are more difficult to distinguish than Fig. 8(d), while user embeddings with the same item
label in Fig. 8(d) are more clustered than Fig. 8(c). Therefore, identifying core user features
is more conducive to learning accurate user representations.

7 Conclusion and discission

In this paper, we proposed the core features activated graph dual-attention network, namely
C-GDN, for personalized recommendation. On one hand, C-GDN identified core features
activating user-item interactions of users and items, which more accurately understands and
explores user-item interactions at feature level. On the other hand, C-GDN designed a novel
GDN to conduct information propagation in the bipartite graph, which considers not only
the different contributions of neighbors but also the mutual association among neighbors in
the bipartite graph learning. We conducted experiments on three benchmark datasets. Exper-
imental results show that C-GDN outperforms mainstream personalized recommendation
methods on multiple metrics.

C-GDN has certain theoretical and practical significance. In theory, C-GDN combines
the advantages of feature-aware recommendation and GNN-based recommendation, which
provides a novel and comprehensive view for personalized recommendation. In practice,
C-GDN more effectively describes profiles of users and items by accurately identifying core
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user and item features. The profiles of users and items are not only beneficial for users to
more efficiently obtain the interested information, but also beneficial for service platforms
to accurately deliver information. Moreover, C-GDN can be extended to other domains. For
example, in the point of interest (POI) recommendation, C-GDN can effectively realize the
personalized POI recommendation by inputting the check-in data, user features (e.g., Age,
Occupation, etc.) and POI features (e.g., Business hours, Longitude and latitude, etc.).

Certainly, C-GDN can be further investigated from the following aspects. For an example,
our research suppose that user preference is stable. However, user preference will change
over time in the multiple specific scenarios. Therefore, our research is difficult to achieve
dynamic recommendation based on users’ dynamic preferences. In the future work, we will
try to develop C-GDN for dynamic recommendation.

Acknowledgements This work was supported by the National Natural Science Foundation of China (nos.
72271024, 71871019).

Author Contributions Xiongtao Zhang: Conceptualization, Methodology, Data Curation, Software, Valida-
tion, Writing - Original Draft, Writing - review & editing. Mingxin Gan: Conceptualization, Writing - review
& editing, Supervision, Funding acquisition.

Funding This work was supported by the National Natural Science Foundation of China (Nos. 72271024,
71871019).

Availability of supporting data Data will be made available on request.

Declarations

Ethics Approval Not Applicable.

Competing interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1–9.
https://doi.org/10.48550/arXiv.1706.02263

Deng, X., Liao, G., & Zeng, Y. (2022). Group event recommendation based on a heterogeneous attribute
graph considering long-and short-term preferences. Journal of Intelligent Information Systems, pp. 1–27.
Springer. https://doi.org/10.1007/s10844-022-00758-w

Forestiero, A. (2022). Heuristic recommendation technique in internet of things featuring swarm intelligence
approach. Expert Systems with Applications, vol. 187, p. 115904. Elsevier. https://doi.org/10.1016/j.
eswa.2021.115904

Gan, M., & Kwon, O. C. (2022). A knowledge-enhanced contextual bandit approach for personalized recom-
mendation in dynamic domains. Knowledge-Based Systems, vol. 251, p. 109158. Elsevier. https://doi.
org/10.1016/j.knosys.2022.109158

Gan, M., & Ma, Y. (2022). Deepinteract: Multi-view features interactive learning for sequential recommen-
dation. Expert Systems with Applications, vol. 204, p. 117305. Elsevier. https://doi.org/10.1016/j.eswa.
2022.117305

Gan,M.,&Zhang,H. (2023). Viga:A variational graph autoencodermodel to infer user interest representations
for recommendation. Information Sciences, vol. 640, p. 119039. Elsevier. https://doi.org/10.1016/j.ins.
2023.119039

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context. Acm Transactions on
Interactive Intelligent Systems, vol. 5, pp. 1–19. Acm New York, NY, USA. https://doi.org/10.1145/
2827872

123

https://doi.org/10.48550/arXiv.1706.02263
https://doi.org/10.1007/s10844-022-00758-w
https://doi.org/10.1016/j.eswa.2021.115904
https://doi.org/10.1016/j.eswa.2021.115904
https://doi.org/10.1016/j.knosys.2022.109158
https://doi.org/10.1016/j.knosys.2022.109158
https://doi.org/10.1016/j.eswa.2022.117305
https://doi.org/10.1016/j.eswa.2022.117305
https://doi.org/10.1016/j.ins.2023.119039
https://doi.org/10.1016/j.ins.2023.119039
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872


338 Journal of Intelligent Information Systems (2024) 62:317–338

He, X., Deng, K., Wang, X., & et al. (2020). Lightgcn: Simplifying and powering graph convolution network
for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 639–648. https://doi.org/10.1145/3397271.3401063

He, X., Liao, L., Zhang, H., & et al. (2017). Neural collaborative filtering. In: Proceedings of the 26th Inter-
national Conference on World Wide Web, pp. 173–182. https://doi.org/10.1145/3038912.3052569

He, Y., Mao, Y., Xie, X., & et al. (2022). An improved recommendation based on graph convolutional net-
work. Journal of Intelligent Information Systems, vol. 59, pp. 801–823. Springer. https://doi.org/10.1007/
s10844-022-00727-3

Hu, L., Li, C., Shi, C., & et al. (2020). Graph neural news recommendation with long-term and short-term
interest modeling. Information Processing & Management, vol. 57, p. 102142. Elsevier. https://doi.org/
10.1016/j.ipm.2019.102142

Kang,W. C., Cheng, D. Z., Yao, T., & et al. (2021). Learning to embed categorical features without embedding
tables for recommendation. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 840–850. https://doi.org/10.1145/3447548.3467304

Li, Z., Cui, Z., Wu, S., & et al. (2019). Fi-gnn: Modeling feature interactions via graph neural networks for ctr
prediction. In: Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, pp. 539–548. https://doi.org/10.1145/3357384.3357951

Liu, H., Zheng, C., Li, D., & et al. (2022). Multi-perspective social recommendation method with graph repre-
sentation learning. Neurocomputing, vol. 468, pp. 469–481. Elsevier. https://doi.org/10.1016/j.neucom.
2021.10.050

Song, Y., Ye, H., Li, M., & et al. (2022). Deep multi-graph neural networks with attention fusion for recom-
mendation. Expert Systems with Applications, vol. 191, p. 116240. Elsevier. https://doi.org/10.1016/j.
eswa.2021.116240

Su, Y., Zhang, R. M., Erfani, S., & et al. (2021). Neural graph matching based collaborative filtering. In: Pro-
ceedings of the 44th International ACMSIGIR Conference on Research and Development in Information
Retrieval, pp. 849–858. https://doi.org/10.1145/3404835.3462833

Tao, Z., Wei, Y., Wang, X., & et al. (2020) Mgat: Multimodal graph attention network for recommendation.
Information Processing&Management, vol. 57, p. 102277. Elsevier. https://doi.org/10.1016/j.ipm.2020.
102277

Wang, X., He, X., Wang, M., & et al. (2019) Neural graph collaborative filtering. In: Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 165–174. https://doi.org/10.1145/3331184.3331267

Wu, L., He, X., Wang, X., & et al. (2022a). A survey on accuracy-oriented neural recommendation: From
collaborative filtering to information-rich recommendation. IEEE Transactions on Knowledge and Data
Engineering, vol. 35, pp. 4425–4445. IEEE. https://doi.org/10.1109/TKDE.2022.3145690

Wu, X., He, H., Yang, H., & et al. (2023). Pda-gnn: propagation-depth-aware graph neural networks for
recommendation. World Wide Web, pp.1–22. Springer. https://doi.org/10.1007/s11280-023-01200-z

Wu, S., Sun, F., Zhang, W., & et al. (2022b). Graph neural networks in recommender systems: a survey. ACM
Computing Surveys, vol. 55, pp. 1–37. ACM New York, NY. https://doi.org/10.1145/3535101

Zhang, C., Xue, S., Li, J., & et al. (2023). Multi-aspect enhanced graph neural networks for recommendation.
Neural Networks, vol. 157, pp. 90–102. Elsevier. https://doi.org/10.1016/j.neunet.2022.10.001

Zhang, T., Zhao, P., Liu, Y., & et al. (2019). Feature-level deeper self-attention network for sequential rec-
ommendation. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pp. 4320–4326. https://doi.org/10.5555/3367471.3367642

Zhou, G., Zhu, X., Song, C., & et al. (2018). Deep interest network for click-through rate prediction. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
mining, pp. 1059–1068. https://doi.org/10.1145/3219819.3219823

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1145/3397271.3401063
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1007/s10844-022-00727-3
https://doi.org/10.1007/s10844-022-00727-3
https://doi.org/10.1016/j.ipm.2019.102142
https://doi.org/10.1016/j.ipm.2019.102142
https://doi.org/10.1145/3447548.3467304
https://doi.org/10.1145/3357384.3357951
https://doi.org/10.1016/j.neucom.2021.10.050
https://doi.org/10.1016/j.neucom.2021.10.050
https://doi.org/10.1016/j.eswa.2021.116240
https://doi.org/10.1016/j.eswa.2021.116240
https://doi.org/10.1145/3404835.3462833
https://doi.org/10.1016/j.ipm.2020.102277
https://doi.org/10.1016/j.ipm.2020.102277
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1109/TKDE.2022.3145690
https://doi.org/10.1007/s11280-023-01200-z
https://doi.org/10.1145/3535101
https://doi.org/10.1016/j.neunet.2022.10.001
https://doi.org/10.5555/3367471.3367642
https://doi.org/10.1145/3219819.3219823

	C-GDN: core features activated graph dual-attention network for personalized recommendation
	Abstract
	1 Introduction
	2 Related work
	2.1 Feature-aware GNN-based recommendation methods
	2.2 GNN-based recommendation

	3 Problem statement
	3.1 Key concepts
	3.2 Task description

	4 Methodology
	4.1 Overview of C-GDN
	4.2 Core feature identifying layer
	4.2.1 Embedding initializing
	4.2.2 Core feature identifying
	4.2.3 Bipartite graph initializing

	4.3 Information propagation layer
	4.3.1 Neighbors’ mutual association modeling
	4.3.2 Neighbor information integrating
	4.3.3 Higher-order connectivity modeling

	4.4 Embedding fusion layer
	4.5 Prediction and training layer

	5 Experiments
	5.1 Datasets
	5.2 Experiment setting
	5.2.1 Baselines
	5.2.2 Evaluation metrics
	5.2.3 Parameter settings

	5.3 Comparation experiments
	5.4 Ablation experiments
	5.4.1 The effectiveness of identifying core features
	5.4.2 The effectiveness of the designed GDN

	5.5 Parameter sensitivity analysis
	5.5.1 Effect of the number of GDN layers on recommendation performance
	5.5.2 Effect of the number of fully connected layers in MLP on recommendation performance


	6 Case study
	6.1 Visual analysis of core features of users and items
	6.2 Visual analysis of embeddings of users and items

	7 Conclusion and discission
	Acknowledgements
	References


