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A review of federated learning: taxonomy, privacy
and future directions
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Abstract
The data generated and stored in mobile devices owned by individuals as well as in various
organizations contains a large amount of valuable and important information that can be
used to improve service quality, user experience, and satisfaction. However, due to privacy
concerns, many entities are reluctant to share their data with others, and this is a major
barrier to developing comprehensive models that can provide accurate predictions. Federated
learning is a state-of-the-art distributed machine learning approach where multiple clients
are allowed to collaboratively train a model while keeping their private training data locally.
Although federated learning seems to be a viable solution for jointly training a machine
learning model without compromising privacy, sensitive privacy information may still be
leaked through shared model parameters and query results. Over the past six years, the
researchers have extensively studied privacy protection enhancements of federated learning,
and they have revealed that general privacy protectionmechanisms can be adopted tomitigate
privacy issues of federated learning. However, protecting privacy through federated learning
while maintaining data utility is still an open issue. This article provides an overview of
federated learning while discussing privacy leakages, possible defense mechanisms, and
future research directions of privacy-preserved federated learning.
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1 Introduction

As a result of the evolution of information and communication technology, people today
are accustomed to using mobile phones, tablets, or any other portable devices with high
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processing power, significant storage capacity, and powerful sensors, not only for communi-
cation purposes but also for primary calculations aswell as data storage and access (Asad et al.,
2021; McMahan et al., 2017). In addition, many banks, supermarkets, hospitals, and other
service providers have adapted to maintain customer databases with their various interac-
tions. Moreover, millions of embedded sensors such as city cameras, car navigation systems,
and somewearable devices generate large amounts of data every day (McMahan et al., 2017).
The data generated and stored by any of the above contains an abundance of important and
beneficial information that can be used to improve user experience, comfort, and satisfaction.
In practice, it is necessary to go through a process of data mining and analysis to identify
hidden patterns and information in the data. However, the privacy-sensitive nature of this data
and its sheer volume have been identified as major barriers to obtaining valuable information
(Asad et al., 2021; Hu et al., 2021). There are a number of different approaches to training a
machine learning model while preserving privacy, and federated learning (McMahan et al.,
2017) is widely recognized as a suitable solution.

Federated learning is an emerging new research topic in machine learning with important
real-world applications and many research challenges, and it provides the promise to learn
from distributed data sources while preserving data privacy. The past six years have seen
rapid growth in federated learning, and many researchers are engaged in improving the
efficiency, effectiveness, and privacy of federated learning based on different settings. Li
et al. (2020) discussed the characteristics and challenges of federated learning andMothukuri
et al. (2021) surveyed the security and privacy of federated learning. Meanwhile, Hu et al.
(2021) reviewed the algorithms and general issues of federated learning while discussing the
architectures and classification. In addition, Yang et al. (2019a) discussed architectures and
applications of federated learning while briefing existing works in the field. Moreover, Liu
et al. (2022) conducted a survey of possible threats, attacks, and defenses at different stages of
federated learning. However, given the short history of the topic and its rapid development,
there is still lacking an upright and comprehensive up-to-date survey paper on federated
learning. Therefore, in this article, we present a review of federated learning by providing
a brief introduction, taxonomy from various aspects, privacy issues and possible defense
mechanisms, simulation frameworks, real-world applications, and future directions.

The remainder of this article is organized as follows. Section 2 provides an overview
of federated learning that would be desirable in understanding the matters discussed in the
following sections. Some of the key general privacy protection mechanisms are discussed in
Section 3. In Section 4, we will review the privacy leakages in federated learning and discuss
possible defense mechanisms for those privacy issues. Then, an outline of frameworks for
implementing and simulating federated learning is provided in Section 5. Section 6 provides
a brief discussion of the applications of federated learning and finally, we point out several
future research directions onprivacy protection in federated learning andprovide a concluding
remark.

2 An overview of federated learning

2.1 Introduction to federated learning

Federated learning is a distributedmachine learning framework inwhichmultiple data owners
train a machine learning model collaboratively without disclosing their private data to each
other (Hu et al., 2021). The term federated learning was first introduced by McMahan et al.
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(2017), and the explosive growth of big data and laws and regulations introduced to protect
data privacy have largely led to its rapid evolution over the past six years (Yin et al., 2021). The
General Data Protection Regulation (GDPR) (Voigt & von dem Bussche, 2017) in European
Union, Personal Data Protection Act (PDPA) (Chik, 2013) in Singapore, Cybersecurity Law
(Aimin et al., 2018) in China, the California Consumer Privacy Act (CCPA) (Pardau, 2018),
and the California Privacy Rights Act (CPRA) (Goldman, 2021) in the United States and
the Health Insurance Portability and Accountability Act of 1996 (HIPAA) (Kulynych &
Korn, 2003) are some of such laws and regulations introduced to protect data privacy. The
initial federated learning framework consisted of data-owning clients and a centralized server
dedicated to coordination and aggregation purposes (McMahan et al., 2017).However, certain
clients perform the functions of the central server in a special federated learning setting (Roy
et al., 2019; Yang et al., 2019c). Hitaj et al. (2017) named federated learning as collaborative
learning because of the jointly training nature of the framework. The ultimate goal of federated
learning is to collectively train a model for a specific application while preserving privacy,
and the performance of the collaboratively learned model should be a good approximation of
the model built with the traditional approach by pooling data from all data owners (Kairouz
et al., 2021). The workflow of federated learning consists of several steps where the model
engineer first needs to clearly identify the problem to be solved, create a prototype of the
model, and test the learning hyperparameters using a sample data set. Next, if there is any
requisite, the clients are instrumented to store the necessary training data locally and the
server sends the initial model to each client device. Thereafter, each data-owning client trains
its own local model using local data and then sends themodel parameters to the central server,
which updates the global model by combining the parameters from all data owners. After
aggregating all model parameters, the server returns the new global model to each device for
the next training round. Once a good model is obtained based on the evaluation, the final step
is the model deployment process. Figure 1 illustrates the workflow of federated learning.

2.2 Advantages of federated learning

Federated learning has several advantages over centralized and distributed machine learning.
One of the main advantages of federated learning is that it can better protect the security and
privacy of user data (Hu et al., 2021). Federated learning can provide better data privacy pro-
tection than traditional and distributed machine learning methods because the model learning
process is performed locally by each client with its own data and only model parameters such
as model weights and gradients are uploaded to the central server for aggregation. Efficient
use of hardware is another advantage of federated learning (McMahan et al., 2017). In most
practical cases, the model update process occurs when the devices are idle. For instance,
language model training on mobile phones takes place when the phone is connected to the
charger or not in excessive use. In addition, the distributed nature of the model updating pro-
cess provides a solution to hardware requirements with a larger storage capacity and higher
processing power. Real-time continuous learning is an outstanding benefit of federated learn-
ing. As models are constantly being improved using local client data, the predictions using
models take high accuracy. Furthermore, federated learning facilitates the efficient develop-
ment of a machine learning model with diverse data of massively distributed data owners.
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Fig. 1 Workflow of federated learning

2.3 Challenges in federated learning

2.3.1 Non-independent and identically distributed data

Non-Independent and Identically Distributed (Non-IID) data is a significant challenge in
federated learning. Model updating with Independent and Identically Distributed (IID) data
is one of the basic assumptions of federated learning. However, in many practical cases, the
above assumption is rarely satisfied as it is difficult to find IID data (Xue et al., 2021). In
such a case, the training complexity of the federated learning model can be greatly increased
(Huang et al., 2022). Furthermore, many researchers (Huang et al., 2022; Zhao et al., 2018)
have recognized that Non-IID data negatively affect the accuracy of federated learning.
Moreover, Zhao et al. (2018) have experimentally shown that heterogeneous client data slow
down convergence in addition to reducing test accuracy. When McMahan et al. (2017) first
introduced the federated learning concept and optimizedmodel averaging algorithm FedAvg,
researchers observed that the accuracy of federated learning on Non-IID data was slightly
lower than on IID data although the proposed approach is robust to the Non-IID data. In
order to improve the test accuracy of federated learning with Non-IID data, Zhao et al. (2018)
suggested sharing a small portion of the global data across all end devices participating in
the training process. According to the authors, since the globally shared data is a separate
data set from the clients’ data, this mechanism does not affect the privacy of the participants.
Although this approach allows for the creation of more accurate models, the lack of such a
public data set is one of themost critical shortcomings of this mechanism. Huang et al. (2022)
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proposed the FedFa algorithm by introducing a double-momentummechanism that can cope
with Non-IID data, which takes into account the influence of historical gradient information
of both client and server to improve the convergence of the algorithm, and observed that
FedFa expedites the convergence speed for Non-IID data compared to the baseline algorithm
FedAvg. Furthermore, the authors observed an increase in fairness and accuracy by using
information quantity about the accuracy and frequency of participation in the training to
assign an appropriate weight to the client during server aggregation, however, the theoretical
analysis was left as a future work.

2.3.2 Imbalanced data distribution

As some clients produce significantly more data for model learning and some clients produce
less, the data amount on different clients may vary. This imbalanced nature of data amount
among different clients is another challenge of federated learning. According to Huang et al.
(2022), imbalanced data creates the problem of statistical heterogeneity and it will be the
reason for increasing the training complexity of the federated learning model. Duan et al.
(2020) proposed a self-balancing federated learning framework to deal with imbalanced data
in mobile systems. There, the researchers performed Z-score-based data augmentation to
smooth out global imbalance before training themodel.Moreover, they performed amediator-
basedmulti-client rescheduling in order to achieve a partial equilibrium. During experiments,
researchers observed that this new mechanism achieves better accuracy while significantly
reducing communication traffic thanFedAvg.Meanwhile,Yang et al. (2021) proposed a client
selection scheme tomitigate the effect of class imbalance using reinforcement learning. Here,
the researchers revealed the distribution of classes according to the updated gradients without
using any raw data from the client devices considering the privacy of the users and observed
an improvement in the convergence performance of the global model in the experiments.

2.3.3 Massively distributed nature

Generally, the number of clients participating in federated learning is larger than the average
number of samples per client. This is another challenge in federated learning and is known as
themassively distributed nature (McMahan et al., 2017). This problem ismore pronounced in
cross-device federated learning, where billions of clients participate in model training than in
cross-silo federated learning, where there are a few participating clients. Kamp et al. (2021)
proposed a novel approach to overcome this problem by interleaving the model aggregation
and permutation steps, where local models are redistributed across clients through the server
during the permutation step to allow each local model to train local data sets with each client
while preserving data privacy. The authors further strengthened the privacy of this setting
by combining it with differential privacy mechanisms and introducing random permutations.
Compared to standard federated learning approaches, this mechanism significantly improved
model quality in massively distributed instances.

2.3.4 Limited communication

Limited communication is also a widely discussed challenge in federated learning. Clients of
federated learning canbe IoTdevices such as smartphones, cameras, and smart sensor devices,
or large entities such as hospitals and banks. Such clients participating in model learning are
often offline or on slow or expensive connections (Huang et al., 2022). In FedAvg (McMahan
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et al., 2017), the researchers sought to solve the problem of existing network bandwidth by
significantly reducing communication rounds relative to the synchronized stochastic gradient
descent. Basically, this was achieved by adding more computation to each client by iterating
the local updates several times before the model aggregation step. In addition, allowing each
client to perform amore complex calculation between each communication round rather than
performing a simple calculation such as a gradient calculation is another mechanism they
adopted in reducing communication rounds. However, clients with relatively fast processing
power are a key requirement in implementing such an arrangement, otherwise, the training
process will be significantly delayed by clients with low processing power. The HybridAlpha
framework (Xu et al., 2019) was able to reduce the communication costs as well as solve the
problem of dynamically dropping or adding participants while ensuring model performance
and privacy similar to other approaches.

Some researchers discussed the above challenges under the systems and statistical het-
erogeneity. The problem of imbalanced and Non-IID data was primarily linked to statistical
heterogeneity, while the hardware variability, network connectivity issues, and dropping out
of devices were associated with the system heterogeneity (Huang et al., 2022). Addressing
the problem of heterogeneity is essential in order to increase the model accuracy (Hu et al.,
2021).

2.3.5 Risk of privacy leakage

Apart from the aforementioned challenges, the risk of privacy leakage is often amajor concern
in federated learning. Although federated learning has taken steps to protect data generated
on each device by sharing model parameters such as weights or gradients information instead
of raw data, several studies (Luo et al., 2021; Wang et al., 2019) have shown that federated
learning does not always ensure adequate privacy protection. The main reason for this is
that malicious adversaries can reveal the privacy of local training data sets even with a small
fraction of the original gradients (Phong et al., 2018). Recent studies (Park & Lim, 2022;
Truex et al., 2019) have focused on enhancing the privacy of federated learning by applying
various mechanisms such as differential privacy, homomorphic encryption, and secure mul-
tiparty computation. However, these approaches often provide privacy with reduced model
performance or system efficiency, and therefore, balancing these trade-offs is a significant
challenge in achieving privacy in federated learning. A detailed discussion of privacy leak-
ages in federated learning and possible defense mechanisms is provided in Section 4 of this
article.

2.4 Categorization of federated learning

2.4.1 Categorization based on the number of clients

Federated learning can be divided into two main clusters based on the number of clients
participating in the model training. They are cross-device federated learning and cross-silo
federated learning (Huang et al., 2022; Liang et al., 2021). In cross-device federated learning,
there are hundreds of, thousands of, millions, or even billions of devices carrying very sensi-
tive information from different people or entities participating in model training. Basically,
these clients are a very large number of mobile or IoT devices (Liu et al., 2022). However,
only a fraction of clients is available at any given time for the training process. On the other
hand, cross-silo federated learning trains a model on siloed data. In cross-silo federated
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learning, the participating clients are not individual devices, rather they are hospitals, banks,
schools, government institutions, etc. (Liang et al., 2021). These institutions won’t be able to
share their data with each other and a central server. Compared to the cross-device setup, the
stability of the cross-silo setup is better, as each party in the cross-silo setup can continuously
engage in themodel training throughout the entire process, while there is a high probability of
clients dropping outs in the cross-device setup (Liang et al., 2021). Different characteristics
of cross-device federated learning and cross-silo federated learning are compared in Table 1.

2.4.2 Categorization based on data distribution

In addition to classifying federated learning based on the number of clients participating in
the collaborative training process, federated learning can be categorized into three different
categories based on how data is distributed across multiple participating clients. They are
horizontal federated learning, vertical federated learning, and federated transfer learning
(Cheng et al., 2020; Hu et al., 2021; Yang et al., 2019a).

Horizontal federated learning refers to the scenario where a different set of clients have
the same set of features, and is most applicable when there is a large overlap in the feature
space between data sets (Mugunthan et al., 2021; Saha & Ahmad, 2021). This setup assumes
that each client handles different data samples while sharing the same set of features (Xia
et al., 2021; Zhu et al., 2021). The terms instance-based federated learning (Zhu et al., 2021),
sample-partitioned federated learning, and example-partitioned federated learning (Cheng
et al., 2020), have been used synonymously with horizontal federated learning in various
studies. The general architecture of horizontal federated learning consists of a set of data
owners with overlapping features and a centralized server (Huang et al., 2022; McMahan
et al., 2017). However, horizontal federated learning systems can be implemented without
a centralized server for orchestration purposes (Roy et al., 2019). Depending on the exis-
tence and non-existence of a centralized server, the communication architecture of horizontal
federated learning may vary. Client-server architecture, also known as centralized federated
learning, uses a centralized server to orchestrate the entire training process. The existence
of honest clients and an honest-but-curious server is an underlying assumption of this archi-
tecture. Peer-to-peer architecture is another communication architecture used in horizontal
federated learning. This architecture is also known as decentralized federated learning, as
there is no central server and any client is selected as the server in each training round. If the
clients are organized into a circular chain and select clients sequentially as the server in each
training round until the termination condition is met, it is called cyclic transfer. Conversely,

Table 1 Categorization of federated learning based on the number of clients

Characteristic Cross-device federated
learning

Cross-silo federated learn-
ing

Participants in model train-
ing.

A very large number of
mobile or IoT devices

Different organizations such
as hospitals and banks

Typical number of clients. Up to 1010 Around 2-100

Client availability in model
training.

Often only a fraction of the
clients are available

All clients are almost always
available

Client reliability. Extremely unreliable Relatively high reliability

Data partition axis. Partition is fixed and hori-
zontal

Partition is fixed and could
be horizontal or vertical
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selecting a client randomly with equal probability as the server and sending its model infor-
mation to another randomly selected client to update the model, and continuing this process
until the termination condition is met is called a random transfer.

In contrast to horizontal federated learning, vertical federated learning allows multiple
clients to possess data of the same set of individuals but each client has a unique set of
features (Mugunthan et al., 2021). Vertical federated learning is more suitable for scenarios
where there is a large overlap in the sample space of the data set (Saha & Ahmad, 2021)
and is also known as feature-partitioned (Cheng et al., 2020) or feature-based (Yang et al.,
2019a) federated learning, as operations are carried across different columns in which data
is partitioned by features. In practice, vertical federated learning is widely used in cross-silo
setting (Liang et al., 2021). Although it has been assumed that the label information belongs
to a single data holder in the studies of early stages, later studies considered the possibility
of the existence of multiple label owners (Mugunthan et al., 2021; Zhu et al., 2021). Vertical
federated learning focuses on two main functions, namely encrypted entity alignment, the
encryption-based user alignment process to confirm standard users of different participating
clients, and encrypted model training, which securely trains the machine learning model with
data from common entities. The typical architecture of vertical federated learning consists
of parties with overlapping data samples and a collaborator. In some cases, the collaborator
is a third party (Hardy et al., 2017) while most of the time the collaborator is a participating
entity that owns the labels (Yang et al., 2019c). The architecture with a third-party coordinator
assumes that clients are honest-but-curious about each other and that there is an honest third-
party coordinator. However, it is very difficult to find an authorized third party that other
parties can trust and it also increases the risk of data leakage (Yang et al., 2019c). Therefore,
researchers have focused on introducing a communication architecture that does not have a
third-party coordinator, and the tasks to be performed by the third-party coordinator are often
performed by the client that owns the label data. In this architecture, all clients are assumed to
be honest-but-curious about each other. Compared to horizontal federated learning, vertical
federated learning is more likely to occur in real-world applications and generally limits
communication efficiency and privacy (Xia et al., 2021).

The above two approaches are only applicable in the context of data with common features
or common samples under the federation, and in reality, such a set of common entities may be
limited, resulting in the federation being less attractive (Liu et al., 2020). Federated transfer
learning is a viable solution in such a scenario, which allows sharing of knowledge without
compromising user privacy and enables complementary knowledge exchange among the
parties. This mechanism allows the target-domain party to build more flexible and powerful
models by leveraging rich labels from the source-domain party (Sharma et al., 2019). A
federated transfer learning system is usually limited to two parties and its protocols aremostly
similar to those of vertical federated learning (Yang et al., 2019a). Besides, the performance
of federated transfer learning depends on how related the domains are, therefore in general
it is more suitable for organizations in similar industries. Meanwhile, federated transfer
learning requires additional security protocols to maintain privacy as training consists of
collaborative computations using parameters related to data from both the source and target
domains (Sharma et al., 2019). In particular, during the training phase of federated transfer
learning, details of intermediate results should be shared extensively between the two parties
of the federation. Therefore, both parties must encrypt their gradients before exchanging
them, and use techniques such as random masking to prevent the parties from revealing each
other’s information at any stage in the process (Jing et al., 2019). This high computational
overhead of the federated transfer learning security protocol has made it impractical in many
real-world applications.
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Figure 2 illustrates the distribution of data in the feature space and sample space relevant
to horizontal federated learning, vertical federated learning, and federated transfer learning.

3 General privacy protectionmechanisms

Privacy is one of the essential properties of federated learning, and a review of its pri-
vacy enhancements reveals that general privacy protection mechanisms can be adopted to
protect the privacy of federated learning (Hu et al., 2019; Vaidya et al., 2013). Many privacy-
preserving mechanisms are designed considering the two main metrics of privacy protection,
which are data utility and loss of privacy of a data set (Nasr et al., 2019). General privacy-
preserving techniques in federated learning can be classified into three major categories as
cryptographic techniques, perturbation techniques, and anonymization techniques.

3.1 Cryptographic techniques

The purpose of most cryptographic techniques is to protect the input information throughout
the information flow until it gets to the output. Homomorphic encryption, secure multi-party
computation, and secret sharing can be introduced as the most commonly used cryptographic
techniques to enhance the privacy of federated learning.

3.1.1 Homomorphic encryption

Homomorphic encryption, a public-key encryption scheme, allows computation on encrypted
data throughout the information flow (Fang & Qian, 2021; Zheng et al., 2019). The concept
of homomorphic encryption was first proposed by Rivest et al. (1978) for applications used
in the banking sector. The basic idea of homomorphic encryption is that after encrypting
plaintext to ciphertext, the result of performing certain operations on the ciphertext of the
ciphertext space is the same as the result of the encryption operations on the plaintext of the
plaintext space (Park & Lim, 2022). This process can be further explained as follows.

E(m1) ⊗ E(m2) = E(m1 ⊗ m2) (1)

where,
∀m1,m2 ∈ M; M denotes a set of plaintext and ⊗ is the operator fulfilling the criterion.
As an example, if the operator is addition, then the algorithm satisfies additive homo-

morphism and if the operator is multiplication, it satisfies multiplicative homomorphism.
Depending on the supporting operators, homomorphic encryptionmethods can be categorized
as fully homomorphic encryption andpartially homomorphic encryption. Fully homomorphic

Fig. 2 Categorization of federated learning based on data distribution
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encryption supports both additive andmultiplicative operations while partially homomorphic
encryption only supports either additive or multiplicative operations (Fang & Qian, 2021).
The Paillier cryptosystem (Paillier, 1999) is an example of partially homomorphic encryp-
tion that satisfies additive homomorphism. A federated learning scheme with homomorphic
encryption ensures that there is no performance loss in the model convergence since it does
not alter the original data (Wu et al., 2021). Although fully homomorphic encryption provides
stronger encryption than partially homomorphic encryption, the computation costs of fully
homomorphic encryption are greater than those of partially homomorphic encryption.

3.1.2 Secure multi-party computation

Secure multi-party computation is another cryptographic framework that is compatible with
the general setup of federated learning to enhance privacy protection (Goldreich, 1998; Zheng
et al., 2019). This cryptographic technique enables distributed participants to collaboratively
calculate an objective function without revealing their data to other users throughout the
information flow (Cramer et al., 2000). The accuracy of the calculated function and the
non-disclosure of any private information of a specific participant to any other participants
are two major requirements to satisfy secure multi-party computation protocol. Sharemind
(Bogdanov et al., 2008) is a state-of-the-art secure multi-party computation framework that
can process data without compromising security or access to confidential values. High accu-
racy, the ability to eliminate the need for trusted third parties, and solve the problem of the
trade-off between data utility and privacy are the main advantages of secure multi-party com-
putation. However, the communication cost of this mechanism is high as it requires extensive
message exchange due to the use of sophisticated protocols (Ling et al., 2007). Additionally,
the computational overhead of secure multi-party computation is also significantly higher
(Truex et al., 2019).

3.1.3 Secret sharing

Another cryptographic scheme, secret sharing, implies that a secret key consisting of n shares
can be reconstructed only if a minimum number of t shares are combined (Bonawitz et al.,
2017). This minimum number of t shares is called the threshold and any set of shares less
than the threshold will not give any additional information about the secured secret. In secret
sharing scheme, there are two roles as dealers and players. Generally, a dealer distributes
the shares of a secret among n players in such a way that allocates one share to each player.
Shamir’s Secret Sharing (Shamir, 1979) is a well-known key distribution algorithm that
divides a secret key into parts called shares. Using the threshold secret sharing scheme
can solve the problem of users dropping out during the training. However, the secret sharing
method is vulnerable to dishonest dealers ormalicious players (Yin et al., 2021). Sharma et al.
(2019) proposed a secure and efficient solution to protect privacy against malicious players
in practical collaboration training under a data federation using secret sharing methods with
secure multi-party computation.

3.2 Perturbation techniques

The main idea of perturbation techniques is to add noise to the original data or to map data
instances to some representational data structure without adding noise so that the statistical
information computed from the perturbed data is statistically indistinguishable from the
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original data (George & Zoran, 2015). The most commonly used perturbation techniques in
federated learning are differential privacy, additive perturbation, and multiplicative pertur-
bation.

3.2.1 Differential privacy

Differential privacy was originally designed to ensure the privacy of individuals who con-
tributed with their personal data to build a statistical database (Dwork, 2006; Yang et al.,
2019b). This means that for an adversary who observes the output of a statistical database
in which a differentially private mechanism is applied, the ability to detect the presence or
absence of any person in the database is negligible (Alaggan et al., 2017). According to
Dwork (2006), the formal definition of differential privacy is as follows.

A randomized function K gives ε-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K ).

Pr [K (D1) ∈ S] ≤ eε × Pr [K (D2) ∈ S] (2)

To achieve differential privacy, noise is added to the output of the algorithm and this noise
is proportional to the sensitivity of the output, where sensitivity measures the maximum
difference in output due to the inclusion of a single data instance. This noise is controlled
by epsilon (ε) and this phenomenon is called privacy budget (Arachchige et al., 2020). The
Laplacian and Gaussian mechanisms are two popular mechanisms for achieving differential
privacy. Many studies have shown that differential privacy can provide a strong privacy
guarantee, even if some accuracy loss can be detected (Truex et al., 2019; Wei et al., 2020).

There are two types of differential privacy techniques known as global differential privacy
and local differential privacy. Global differential privacy uses a trusted central party for the
purpose of applying carefully calibrated random noise to the actual values returned for a
particular query, so this setup is also known as the trusted curator model (Arachchige et al.,
2020). In contrast to global differential privacy, local differential privacy does not require a
trusted third party and each participant applies differential privacy locally before the central
authority has access to the data (Arachchige et al., 2020; Xu et al., 2019). Therefore, local
differential privacy is alsoknownas theuntrusted curatormodel.However, compared toglobal
differential privacy, local differential privacy adds toomuch noise to themodel parameter data
from each node, leading to poor performance of the resulting model (Truex et al., 2019). In
addition, the differential privacy guarantee in local differential privacy becomes meaningless
for models with a smaller number of parameters.

3.2.2 Additive perturbation

Additive perturbation protects the privacy of original data by adding random noise from any
distribution, such as uniform or Gaussian distributions (Chamikara et al., 2018; Kargupta
et al., 2003). This is a type of unidimensional input perturbation. Data reconstruction algo-
rithms that are based on concepts such as principal component analysis can be used to attack
against additive perturbation. Although this is a simpleway to protect the statistical properties
of a data set, this method can degrade data utility (Chamikara et al., 2018).
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3.2.3 Multiplicative perturbation

In contrast to additive perturbation, multiplicative perturbation multiplies original data by
noise from any distribution such as uniform or Gaussian distributions to protect the privacy
of the original data (Liu et al., 2005). Multiplicative perturbation is more effective than
additive perturbation in preserving privacy because it is more difficult to reconstruct the
original data from the perturbed data in multiplicative perturbation. However, data protected
through multiplicative perturbation methods can be vulnerable to known sample attacks and
Independent Component Analysis (ICA) attacks (Chamikara et al., 2018; Liu et al., 2005).

3.3 Anonymization techniques

Anonymization methods have been developed to preserve the privacy of structured data by
removing identifiable information while maintaining the utility of the data set. The general
purpose of anonymization methods is to release data about individuals without revealing
sensitive information about them (Sweeney, 2002). The basic concept of anonymization is to
hide both explicit identifiers as well as quasi-identifiers which is a set of attributes that can be
linked to other public databases for identifying individual records (Ding et al., 2019;Raymond
et al., 2009). After anonymization, the quasi-identifiers of a set of records are generalized to
different groups in such a way that the record of an individual person cannot be re-identified.
k-anonymity, l-diversity, and t-closeness are well-known three anonymization techniques in
practice.

3.3.1 k-anonymity

A table is said to satisfy k-anonymity if each record in the table cannot be distinguished
from at least k − 1 other records with respect to every set of quasi-identifiers (Sweeney,
2002). This means that for each combination of quasi-identifiers in the k-anonymous table,
there will be at least k records that share the same values. Generalization and suppression
techniques can be used to provide k-anonymity to a table of data (Samarati & Sweeney,
1998). Since k-anonymization was primarily developed for static data sets, data aging is a
problem when working with dynamic data (Ugur & Osman, 2020). Although k-anonymity
protects the privacy of data while maintaining the utility of published data, an attacker may
still find the values of sensitive attributes when there is little diversity among the sensi-
tive attributes. In addition, k-anonymity does not guarantee privacy against attackers with
background knowledge of published data.

3.3.2 l-diversity

To address the shortcomings of k-anonymity in terms of background knowledge and homo-
geneity attacks, Machanavajjhala et al. (2007) introduced another anonymization-based
technique called l-diversity. l-diversity requires that each equivalence class have at least
l well-represented values for each sensitive attribute in such a way that adds diversity within
a group. However, l-diversity is limited in its assumption of adversarial knowledge and may
be vulnerable to attribute linkage attacks.
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3.3.3 t-closeness

To provide privacy beyond k-anonymity and l-diversity, Li et al. (2007) proposed an
anonymization-based technique called t-closeness. The key idea behind the t-closeness is to
set the distribution of a sensitive attribute in any equivalence class close to the distribution
of the attribute in the overall table. Although this mechanism effectively limits the amount
of individual-specific information an observer can learn, it reduces the utility of the data.

Table 2 presents the positives and negatives of general privacy protection mechanisms.

Table 2 The positives and negatives of general privacy protection mechanisms

Mechanism Positives Negatives

Homomorphic Encryption.
Fang and Qian (2021), Park
and Lim (2022), Rivest et al.
(1978)

Ensures that there is no per-
formance loss in the model
convergence.

Computation costs are signifi-
cant.

Secure Multi-Party Computa-
tion. Cramer et al. (2000),
Goldreich (1998), Truex et al.
(2019)

High accuracy of computa-
tions.

Communication costs are sig-
nificant.

Ability to eliminate the need
for trusted third parties.

Computational overhead is
significant.

Solves the problem of the
trade-off between data utility
and data privacy.

Secret Sharing. Bonawitz et al.
(2017), Shamir (1979)

Solves the problem of user
dropout during the training.

Vulnerable to dishonest deal-
ers or malicious players.

Differential Privacy. Dwork
(2006), Wei et al. (2020)

Provides an acceptable accu-
racy loss along with a strong
privacy guarantee.

Model utility reduces with the
assurance of stronger privacy.

Additive Perturbation.
Chamikara et al. (2018),
Kargupta et al. (2003)

A simple way to protect the
statistical properties of a data
set.

Degrades data utility.

Multiplicative Perturbation.
Chamikara et al. (2018), Liu
et al. (2005)

Ensures a higher privacy. Vulnerable to known sample
attacks.

k-anonymity. Samarati and
Sweeney (1998), Sweeney
(2002)

Protects data privacy while
maintaining the utility of pub-
lished data.

Sensitive attributes are
revealed when there is little
diversity among the sensitive
attributes.

Does not guarantee privacy
against attackers with back-
ground knowledge of pub-
lished data.

l-diversity. Machanavajjhala
et al. (2007)

Provides protection against
background knowledge and
homogeneity attacks.

May be vulnerable to attribute
linkage attacks.

t-closeness. Li et al. (2007) Effectively limits the amount
of individual-specific infor-
mation an observer can learn.

Reduces data utility.
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4 Privacy leakages in federated learning and possible defense
mechanisms

The concept of federated learning seems to inherently guarantee better privacy for sensitive
user data as it facilitates the joint training of a global model by exchanging only model
parameters instead of raw data. However, several recent studies have shown that privacy can
be compromised in federated learning because malicious adversaries can reveal sensitive
information from model parameters obtained during the training stage as well as finally
released model (Luo et al., 2021; Wang et al., 2019). A privacy breach can happen in any
phase of the life-cycle of federated learning and internal as well as external parties can
harm privacy. In addition, attacks on federated learning can be active attacks that modify the
protocol to retrieve sensitive information as well as passive attacks that learn from the system
without making any changes to the system.

There is a high probability of encountering privacy leakages during the training phase
of federated learning and vulnerabilities in system configurations as well as poor quality
of client data can lead to these privacy breaches (Liu et al., 2022). Computation of local
parameters by the clients, the transmission of intermediate updates between the clients and
the aggregating server, and global model aggregation by the server are key functions of the
model training phase. Therefore, during the training phase, all updated information such
as local model parameters, aggregated model parameters, and the final model is exposed to
malicious adversaries.As a result, different kinds of privacy breaching attacks can arise during
each function in the model training phase. The malicious adversaries in the training phase
can be internal parties such as participating clients and the central server as well as externals
such as eavesdroppers (Truex et al., 2019). Since the participating clients or the central server
have direct access to the intermediate model updates during the training phase, if they want,
they can infringe on the privacy of others without much effort. Moreover, the eavesdroppers
can acquire the intermediate model updates by intercepting the communication between
the participating clients and the server. Figure 3 shows the internal and external attackers
identified during the training phase of centralized federated learning. The privacy leakages
in predicting phase of federated learning are generally based on the converged global model
released to end users (Liu et al., 2022). Privacy risks are relatively low during the predicting
phase as most end users have only access to query results provided by the platform (Shokri
et al., 2017). Membership inference attacks, model inversion attacks, property inference
attacks, andmodel extraction attacks are common privacy attacks found in federated learning.

4.1 Membership inference attacks

The purpose of membership inference attacks is to determine whether a specific data sample
was used to train the target model (Lu et al., 2020; Nasr et al., 2019). Membership inference
attacks can be either active or passive attacks, and active attacks aremore powerful because of
the ability to modify model parameters. Meanwhile, passive attacks can be further classified
as passive black-box attacks and passive white-box attacks. In a passive black-box attack, the
adversary can only access query results while in a passive white-box attack, the adversary can
access the intermediate training updates,model parameters, and query results (Lu et al., 2020).
Therefore, passive black-box attacks have a limited privacy risk while passive white-box
attacks have significant privacy risks (Shokri et al., 2017). In general, an honest-but-curious
server or honest client does not launch active inference attacks, and a malicious server or
adversarial client may be prone to launch active inference attacks (Liu et al., 2022; Nasr et al.,
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Fig. 3 Internal and external attackers during the training phase of centralized federated learning

2019). In the study by Nasr et al. (2019), the researchers found that even well-generalized
models are significantly susceptible towhite-boxmembership inference attacks. Furthermore,
in the same study, the researchers pointed out that adversarial participants in the federated
learning setting can successfully launch active membership inference attacks against other
participants. Moreover, they revealed that a central parameter server can launch membership
inference attacks more successfully than a local participant. Shokri et al. (2017) implemented
and evaluated membership inference attacks against machine learning models when having
black-box access to a model. Here the researchers adapted to the shadow training technique,
which trains an attack model to distinguish whether the output of the target model was
based on the samples included in the training data set. Additionally, in the same study, the
researchers emphasized that overfitting is a common reason for a model to be vulnerable to
membership inference and models with more output classes are more likely to be subject to
membership inference attacks.

Many researchers (Carlini et al., 2022; Shokri et al., 2017; Zhong et al., 2022) proposed
differential privacy as a viable solution to protect against membership inference attacks.
Moreover, Ganju et al. (2018) as well as Melis et al. (2019) stated that membership inference
attacks can be successfully suppressed by applying record-level differential privacy. Since
overfitting is recognized as a major cause of membership inference attacks, training models
adhering to standard techniques to reduce overfitting using regularization mechanisms such
as weight decay and train-time augmentations is an ordinary solution to protect against
membership inference attacks (Carlini et al., 2022; Zhong et al., 2022). Furthermore, Jia et al.
(2019) revealed that adversarial examples can be used as a defense mechanism to protect
against membership inference attacks. Unfortunately, many of these solutions degrade model
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performance and have been shown to be vulnerable tomore advanced types of attacks (Carlini
et al., 2022).

4.2 Model inversion attacks

The purpose of the model inversion attacks is to infer the characteristics of each class so that
making it possible to construct representatives of the respective classes (Melis et al., 2019).
Basically, in the model inversion attacks, the output of the model is used to infer certain
characteristics of the input for the model. Model inversion attacks are often carried out when
an attacker can join the training process or obtain the predictive values of the target classifier.
In other words, model inversion attacks can be carried out when the attacker has either white-
box or black-box access to the model. Model inversion attacks can be further classified
as class representative inference attacks and data reconstruction attacks. The purpose of
class representative inference attacks is to generate representative samples of target labels
that behave similarly to the actual data instances in the training data sets in order to study
sensitive information about the training data sets (Wang et al., 2019). Generally, the input
reconstructed using the model inversion attack is not an actual member of the training data
set and is a sample representing the average of the features of a specified class when model
inversion is conducted to infer the class representative (Shokri et al., 2017). On the other
hand, the purpose of data reconstruction attacks is to reconstruct the original data samples
used in the model training and the corresponding labels (Bhowmick et al., 2018; Nasr et al.,
2019). Since the central server maintains the intermediate updates of all local clients during
the training phase of federated learning, a malicious server can easily launch white-box data
reconstruction attacks (Liu et al., 2022). Sannai (2018) presented a reconstruction theorem
for the training samples based on the loss functions of deep neural networks. Additionally,
Fredrikson et al. (2015) introduced model inversion attacks that could predict the sensitive
features used as inputs for decision tree models and attacks that can recover images using
black-box access to a facial recognition model. Here, the researchers used model inversion
to reconstruct an image of the victim’s face from the label produced by the model as well
as learn the identity of the corresponding individual from an image containing a blurred-out
face. Generative Adversarial Networks (GAN) can generate samples that appear to come
from the training set by placing a generative deep neural network against a discriminative
deep neural network (Hitaj et al., 2017). Here the GAN does not need access to the actual
training set and it only relies on the information stored in the discriminative model. However,
all data samples for a class need to be similar in order for the extracted class representatives
by GAN to be similar to the training data (Melis et al., 2019). In addition, here the adversary
must have prior knowledge about the data labels of the victim.

Fredrikson et al. (2015) demonstrated a defense mechanism against model inversion
attacks by degrading the quality or precision of the gradient information retrievable from
the model. Furthermore, the researchers emphasized that although this could be achieved in
the black-box setting, there is no clear way to achieve this in the white-box setting while
preserving the model’s utility. Differential privacy mechanisms can be applied as a viable
solution to model inversion attacks when the privacy budget (ε) is carefully chosen and the
privacy guaranteed by differential privacy mechanisms increases for small ε while the pro-
tection decreases as ε increases (Fredrikson et al., 2014). Bhowmick et al. (2018) revealed
that local differential privacy can be used to successfully defend against data reconstruction
attacks. Additionally, Ganju et al. (2018) stated that differentially-private mechanisms can
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provide better protection against model inversion attacks, as the attack focuses on the privacy
of individual records in the data set.

4.3 Property inference attacks

Property inference attackswhich are also known as distribution inference attacks are intended
to infer property information related to training data sets (Melis et al., 2019). These attacks
are based on the idea that machine learning models trained on similar data sets using similar
training methods will represent similar functions (Ganju et al., 2018). In other words, the
property inference attacks utilize the similarities in the parameters of models to predict
whether some property can be exposed from a target model. Mainly, these inferred properties
may not be relevant to the core training task and the goal of the adversary is to identify
patterns in the target model to reveal any properties that the model owner is not desired to
release (Melis et al., 2019). For example, when themain task is to train amodel for identifying
the nationality of individuals, the property inference attack may intend to infer the gender
distribution in the training data set. The property inference attacks can be further categorized
as passive and active property inference attacks. The active adversaries can deceive the
federated learning model to better separate data with and without target attributes, thereby
stealing more information while the passive adversaries can only observe model updates
and train a binary attribute classifier of target property to perform inferences (Liu et al.,
2022). In order to perform property inference attacks, the adversary needs the auxiliary
training data that is correctly labeled with the property that wants to make the inference. In
addition, for active property inference attacks, the auxiliary data point should also be labeled
for the main task. Ateniese et al. (2015) tested property inference attacks against models
based on Support Vector Machines (SVMs) and Hidden Markov Models (HMMs). There,
the researchers created a set of shadow classifiers and trained them for a task similar to
the target classifier with a data set similar to that of the target classifier, but have an idea
of whether a specific property exists or not. Furthermore, they emphasized that differential
privacy mechanisms that preserve record-level privacy are incapable of providing effective
coverage against property inference attacks. Meanwhile, Ganju et al. (2018) focused on
making inferences about sensitive global properties of a training data set of fully connected
neural networks.

Ma et al. (2021) proposed a defense mechanism for property inference attacks during
model training through collaborative meta-learning architecture to learn the common knowl-
edge over all participants and utilize the natural advantage of meta-learning to hide the
sensitive property data. Meanwhile, Stock et al. (2022) presented an approach called prop-
erty unlearning based on adversarial training and training data preprocessing techniques to
protect against white-box property inference attacks without any changes to the target model.
Applying node multiplicative transformations, adding noise by flipping the labels of some
training samples, and encoding a significant amount of information about the training set are
some possible defenses against property inference attacks (Ganju et al., 2018).

4.4 Model extraction attacks

An adversary launches model extraction attacks for the purpose of extracting the parameters
of a model trained on private data (Tramèr et al., 2016). Here, an adversary aims to construct
a model which closely approximates or matches the functionality of the target model (Shokri
et al., 2017; Wu et al., 2022). Launching a model extraction attack is a very complex task
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because in most cases the attacker has no prior knowledge of the model and has only black-
box access to the target model. In the study conducted by Tramèr et al. (2016), the researchers
tested how to successfully launch model extraction attacks against various machine learning
models such as decision trees, logistic regressions, support vector machines, and deep neural
networks. Meanwhile, Wu et al. (2022) developed a series of model extraction attacks by
generating legitimate-looking queries as the normal nodes among the target graph and then
utilizing the query responses and accessible structure knowledge to reconstruct the model.

Tramèr et al. (2016) revealed that rounding confidence scores to a certain fixed precision
is a possible defense against model extraction attacks, but it is not applicable to some models
such as regression trees. In defending against model extraction attacks, Chen et al. (2022)
proposed a meta-learning-based disruption detection algorithm to learn the fundamental
differences between the distributions of disrupted and undisrupted query results. Although
researchers have suggested applying differential privacy directly to model parameters as a
defense mechanism against model extraction attacks, further study is needed to determine
the required privacy budget for a strong privacy guarantee (Tramèr et al., 2016).

Table 3 presents the common privacy inference attacks on federated learning along with
the purposes of those attacks and possible defense mechanisms.

Table 3 Privacy leakages in federated learning

Attack Purpose of the Attack Defense Mechanisms

Membership Inference
Attacks. Lu et al. (2020),
Shokri et al. (2017)

Determining whether a spe-
cific data sample was used to
train the target model.

Applying record-level differ-
ential privacy.

Reducing overfitting in model
training.

Using adversarial examples to
mislead the attacker.

Model Inversion Attacks.
Fredrikson et al. (2014),
Fredrikson et al. (2015)

Inferring the characteristics of
each class so that making it
possible to construct repre-
sentatives of the respective
classes.

Applying local differential
privacy.

Property Inference Attacks.
Ateniese et al. (2015), Lu et al.
(2020)

Inferring the property infor-
mation related to training data
sets.

Applying node multiplicative
transformations.

Adding noise by flipping the
labels of some training sam-
ples.

Encoding a significant amount
of information about the train-
ing set.

Model Extraction Attacks.
Tramèr et al. (2016), Wu et al.
(2022)

Extracting the parameters of a
model trained on private data.

Rounding confidence scores to
a certain fixed precision.

Application of differential pri-
vacy.
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5 Frameworks for implementing and simulating federated learning

As a result of the growing demand and popularity of federated learning, the research
and industrial community has focused on introducing a number of tools and frameworks
for implementing and simulating federated learning systems. These tools and frameworks
have different levels of capability to handle common issues of federated learning, such as
heterogeneity, security, and privacy. In general, these frameworks can be categorized as
simulation-oriented libraries and production-oriented libraries (He et al., 2020). TensorFlow
Federated (Bonawitz et al., 2020), PySyft (Ryffel et al., 2018), FedML (He et al., 2020)
and LEAF (Caldas et al., 2018) are examples of some simulation-oriented libraries, whereas
production-oriented libraries include FATE (Liu et al., 2021b), PaddleFL (PaddlePaddle,
2020), IBM federated learning (Ludwig et al., 2020), and Flower (Beutel et al., 2020). The
continued development of these tools and frameworks is highly affected to accelerate the
progress of federated learning research.

TensorFlow Federated TensorFlow Federated (Bonawitz et al., 2020) is an open-source
framework for machine learning that facilitates open research and experimentation on fed-
erated learning. TensorFlow Federated allows developers to experiment with large-scale
simulation capabilities of existing federated learning algorithms on their models and data, as
well as new algorithms. The interfaces of TensorFlow Federated consist of two main layers,
federated learning API and Federated Core API. Basically, federated learning API allows the
developers to apply Federated training and evaluation to their existing TensorFlow models,
while the Federated Core API facilitates to experiment on novel federated algorithms by
combining TensorFlow with distributed communication operators within a strongly-typed
functional programming environment. In addition, it provides starting points on federated
learning for beginners and complete examples of many types of research for researchers.

PySyft PySyft (Ryffel et al., 2018) is a reliable and secure, general framework for privacy-
preserving deep learning. This Python library is built over PyTorch (Imambi et al., 2021) and
the design of the framework relies on chains of tensors that are exchanged between local and
remoteworkers. In addition, PySyft cares about data ownership and secure processing. There-
fore, this framework facilitates the implementation of complex privacy-preserving constructs
such as federated learning, secure multiparty computation, and differential privacy.

FedML FedML (He et al., 2020) is an open research-oriented library that facilitates the devel-
opment of federated learning algorithms. This library supports a variety of algorithms that
cover horizontal and vertical federated learning as well as split learning. In addition, FedML
supports performance comparison of different federated learning algorithms. Supportability
for on-device training for edge devices, distributed computing and single-machine simulation
is another specialty of this open research library.

LEAF LEAF (Caldas et al., 2018) is a modular benchmarking framework for learning in
Federated settings. This framework consists of three modules which are a suite of open-
source datasets, a set of reference implementations, and an array of statistical and systems
metrics. LEAF allows researchers and practitioners to experiment with federated learning,
meta-learning, and multi-task learning under more realistic assumptions than before.

FATE FederatedAI TechnologyEnabler (FATE) (Liu et al., 2021b), initiated by theAI depart-
ment of WeBank and now part of the Linux Foundation, is the world’s first open-source
federated learning platform. The main objective of the FATE project was to develop and pro-
mote advanced AI technologies that protect data security and user privacy. FATE implements
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secure computation protocols based on homomorphic encryption and securemulti-party com-
putation. This industrial-grade secure computing framework facilitates a series of federated
learning architectures and secure computation algorithms based on logistic regression, tree-
based algorithms, artificial neural networks, and many more machine learning algorithms.

PaddleFL PaddleFL (PaddlePaddle, 2020) is an open-source federated learning framework
based on the PaddlePaddle (Ma et al., 2019) and it facilitates the simulation and compari-
son of various federated learning algorithms. PaddleFL provides several federated learning
strategies that can be used in applications such as computer vision, natural language process-
ing, and recommendation. This framework supports horizontal federated learning as well as
vertical federated learning architectures. Data Parallel, which allows distributed data holders
to conduct their federated learning tasks based on common horizontal federated learning
strategies such as FedAvg and federated learning with MPC, which is implemented based
on secure multi-party computation to enable secure training and prediction are two main
components in PaddleFL.

IBM Federated Learning IBM federated learning (Ludwig et al., 2020) framework has devel-
oped with the objectives of addressing the challenges in federated learning such as data
heterogeneity, the robustness of the federation process, security and privacy inference pre-
vention, as well as facilitating the integration of federated learning into effective machine
learning activities in the enterprise environments. This Python-based framework is indepen-
dent of a particular machine learning library or machine learning model and can be used
for deep neural networks as well as traditional approaches such as decision trees or support
vector machines.

Flower Flower (Beutel et al., 2020) is an extensive open-source federated learning frame-
work that facilitates large-scale experiments about scalable federated learning workloads on
heterogeneous edge devices. Secure aggregation implementation of the Flower meets the
five goals of usability, flexibility, compatibility, reliability, and efficiency. Most importantly,
Flower enables federated learning evaluation on real devices.

6 Applications of federated learning

Recently, various fields are paying more attention to the privacy of sensitive user infor-
mation, and the applications of federated learning are widespread because its data privacy
protection capability provides the necessary assurance for the development of intelligent
systems. Healthcare, banking and finance, smart cities, and recommendation systems can be
introduced as some of the current mainstream federated learning application areas.

Healthcare Federated learning addresses many challenges in medical applications, such as
the lack of publicly available multicenter diverse data sets, as well as privacy and confiden-
tiality issues. In cases where federated learning is applied to healthcare applications, it may be
a cross-silo setup where each hospital represents the individual client while a data center of a
government agency plays the role of the server. Meanwhile, it can be a cross-device arrange-
ment where an individual with a wearable healthcare device is considered as a client and a
data center of a healthcare organization is considered as the server. In a federated learning
setting, Ma et al. (2022) proposed an assisted diagnosis model that would allow physicians to
provide cancer patients with personalized nutrition plans and treatment options for patients
and prolong patient life. Arikumar et al. (2022) presented a computationally efficient health
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monitoring system based on federated learning that detects and monitors patient activity and
movement through wearable sensor devices.

Banking and Finance The banking and finance sector uses federated learning approaches
to better understand customers’ investment potential and credit rating scores. These appli-
cations can be horizontal federated learning settings where several banks collaboratively
train depositor credit forecasting models, as well as vertical federated learning setups where
banks interact with various other financial institutions to train models for forecasting loan
repayment ability. Currently, WeBank has deployed a vertical federated learning-based risk
management application for small and micro-enterprise loans where a model is trained using
data from an invoicing agency and a bank (Cheng et al., 2020). This application has been
implemented with the FATE platform and it has been observed that the model built with
federated learning performs significantly better than the model built using only data from the
bank.

Smart Cities The concept of smart cities has become a reality through the joint efforts of
government agencies, private enterprises and individuals, however, the requirement for data
privacy limits data exchange at various levels and is a major barrier to the further develop-
ment of smart cities. Fortunately, the emergence of federated learning has made it easier to
effectively address the problem of data isolation islands and facilitate the integration of data
at all levels of the city to provide better smart city applications. Targeting the problems of data
islands and data leakage in smart city applications, Liu et al. (2021a) proposed a lightweight
and reliable sharingmechanism by integrating blockchain and federated learning while intro-
ducing a node selection algorithm to improve the quality of federated learning. Meanwhile,
Kuang and Chen (2023) introduced a federated learning approach to smart cities with pri-
vacy guarantees using encryption and differential privacy. Here, researchers were able to
achieve effective data communication and high accuracy by applying an edge-asynchronous
communication framework.

Recommendation Systems Recommendation systems have become an emerging tool in the
marketing field to inspire users’ next choice or purchase behavior. Generally, recommenda-
tion systems collect and analyze a large amount of user data, including previous user behavior,
when recommending goods or services, but privacy issues remain an obstacle to the efficient
implementation of recommendation systems. In such a situation federated learning can be
applied as a viable solution and Du et al. (2021) proposed a user-level distributed matrix fac-
torization framework for federated learning in recommendation systems. Additionally, here,
the authors have enhanced the privacy of their frameworkwith Homomorphic Encryption and
randomized response. Meanwhile, Vyas et al. (2023) proposed a federated learning-based
driver recommendation system for the next trip taking into account the driver’s stress state
and previous driving behavior.

7 Future research directions

Although there have been extensive studies on the privacy of federated learning, there are still
several open problems in this field of research. Research efforts are possible to implement
novel methods to address the trade-off between privacy and utility, as well as to introduce
modifications to existing approaches to enhance privacy. Some suggestions for future research
are as follows.
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Client-Based Multi-Level Privacy in Horizontal Federated Learning Different clients partici-
pating in federated learning can demanddifferent levels of privacy. For instance, in a cross-silo
federated learning setting, data with one client may be more sensitive than data with another
client, and clients with highly sensitive data can expect a higher level of privacy. In such a
case, a suggestion can be made to implement a mechanism that has different levels of privacy
protection for different clients. This approach may cause to improve the accuracy of the final
model as well as training and predicting efficiency.

Privacy-Preserving vertical federated learning for Instances where Labels are Distributed
between Clients Most of the existing research studies on vertical federated learning have
considered situations where only one participating client holds the complete set of labels
relevant to all data samples. However, there are many practical situations where labels are
distributed among several clients while other features have vertically partitioned among
different clients. Collaboratively training a machine learning model in such a situation is a
complex task.Therefore, a newmechanismcanbeproposed to address this problemefficiently
and effectively.

Hierarchical Setting to Preserve Privacy in Federated Learning Manyexisting federated learn-
ing approaches consist of a single coordinator who aggregates the model parameters sent by
participating clients. This setup is susceptible to some privacy attacks, and communica-
tion between clients and the aggregator can also be quite inefficient. A system with several
aggregators at different levels of a hierarchy can be proposed as a solution. Through careful
selection of clients and a well-designed communication protocol, the trust between partici-
pating entities can be enhanced while reducing the communication overhead. Additionally,
focus can be placed on improving accuracy and efficiency over existing mechanisms.

Data Anonymization Approach to Privacy Protection in Federated Learning Most federated
learning related research has applied differential privacy to improve the privacy in the pro-
posed solution. But perturbation-based techniques are more computationally complex and it
may cause a reduction in the prediction accuracy of the trained model. It can be found that a
very limited number of research have focused on the application of anonymization techniques
in federated learning. Hence, future directions are open for applying data anonymization tech-
niques to build an efficient solution for privacy in federated learning.

Hybrid Approach to Enhancing Privacy in Federated Learning Based on the review of var-
ious privacy-preserving mechanisms, it can be identified that different privacy protection
techniques have their own strengths while having some weaknesses. Better data utilization
while minimizing privacy breaches is possible by meaningfully applying different privacy
protection mechanisms at different stages of federated learning. Therefore, future studies can
be directed toward implementing novel effective privacy protection solutions by combining
different general privacy protection mechanisms.

8 Conclusion

Federated learning allows distributed clients to collaboratively train a shared global model
while retaining all the training data locally and this revolutionized traditional machine learn-
ing approaches by guaranteeing a higher level of privacy for client data. However, several
recent studies have shown that there is still a risk of sensitive private data being leaked dur-
ing the model training and predicting stages. Not only malicious clients and servers but also
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eavesdroppers and end users of the trainedmodel can infer sensitive information of data own-
ers using intermediate model updates, final model, and query results obtained. Membership
inference attacks, model inversion attacks, property inference attacks, and model extraction
attacks are the most common privacy attacks faced by federated learning. Although general
privacy protection mechanisms such as cryptographic techniques, perturbation techniques,
and anonymization techniques can be applied to minimize privacy breaches in federated
learning, it can still detect a trade-off between privacy and utility. Future research studies
can focus on implementing mechanisms to improve the privacy of federated learning while
providing better data utility.
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