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Abstract
The widespread presence of offensive content is a major issue in social media. This has
motivated the development of computational models to identify such content in posts or
conversations. Most of these models, however, treat offensive language identification as an
isolated task. Very recently, a few datasets have been annotated with post-level offensiveness
and related phenomena, such as offensive tokens, humor, engaging content, etc., creating
the opportunity of modeling related tasks jointly which will help improve the explainability
of offensive language detection systems and potentially aid human moderators. This study
proposes a novel multi-task learning (MTL) architecture that can predict: (1) offensiveness
at both post and token levels in English; and (2) offensiveness and related subjective tasks
such as humor, engaging content, and gender bias identification in multilingual settings. Our
results show that the proposed multi-task learning architecture outperforms current state-of-
the-art methods trained to identify offense at the post level. We further demonstrate that MTL
outperforms single-task learning (STL) across different tasks and language combinations.

Keywords Offensive language identification · Deep learning · Multi-task learning ·
Transformers

1 Introduction

The pervasiveness of offensive content in social media has motivated the development of
computational models that can identify the various forms of content such as aggression
(Kumar et al., 2018, 2020; Casavantes et al., 2023) , cyber-bullying (Rosa et al., 2019) ,
sentiment (Kanfoud & Bouramoul, 2022; Vohra & Garg, 2023) , emotion (Skenduli et al.,
2021; Abdi et al., 2021) and hate speech (Davidson et al., 2017) . Prior work has generally
focused either on identifying conversations that are likely to derail (Zhang et al., 2018; Chang
et al., 2020) or on identifying offensive content within posts, comments, or documents. This
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has also been the goal of recent popular competitions, e.g., SemEval 2019 and 2020 (Basile
et al., 2019; Zampieri et al., 2019b, 2020; Modha et al., 2022; Satapara et al., 2023) .

Substantial progress has been made on identifying offensive language in conversations
and posts. Recently, with the goal of improving explainability, multiple post-level offensive
language datasets have been annotated with respect to related phenomena such as humor
(Meaney et al., 2021a) , gender bias (Risch et al., 2021) , and offensive token identification
(Mathew et al., 2021) . Prior work has addressed these tasks in isolation, building separate
models for each (Ranasinghe & Zampieri, 2021) . However, this study hypothesizes that
jointly modeling these tasks with post-level offensive language identification would help
improving the explainability of offensive language identification models. For example, sys-
tems capable of detecting offensive token spans would allow content moderators to quickly
identify objectionable parts of the posts, especially in long posts. Furthermore, this would
allow moderators to more easily approve or reject the decisions of offensive language detec-
tion systems. Since these tasks are related, an ideal scenario for multi-task learning (MTL)
emerges.

InMTL (Caruana, 1997) , amodel is designed to learnmultiple tasks simultaneously using
the same set of data. Parameters allocated for two (or more) tasks are shared throughout the
optimization process (training), yielding models that often outperform single-task learning
(STL)models while reducing potential overfitting (Zhang&Yang, 2022) . Finally, given that
only a single model is produced byMTL compared to the multiple individual models (one for
each task) produced by STL, MTL is generally more environmentally friendly, demanding
less computing resources (e.g. disk, memory) and energy. This addresses recent efforts in
Green AI (Schwartz et al., 2020) as well as a growing interest in the NLP community to
steer towards both explainable AI and green AI (Danilevsky et al., 2020) , as evidenced by
recent workshops such as SustaiNLP.1

In this paper, we propose an MTL approach that jointly tackles both token-level and
post-level offensive language identification related tasks. As a first step, we jointly model
token-level and post-level offensive language identification in a unified system. Then, we
extend the MTL approach to model post-level related tasks. To the best of our knowledge,
this is the first detailed evaluation of MTL in offensive language identification at both the
post and token levels. With our MTL approach, we address four research questions based on
performance, speed, efficiency andgeneralizability,whichwedescribe in detail in Section 4.1.

The main contributions of this work are:

1. We develop an MTL model that learns the following jointly: (a) token-level and post-
level offensive language identification for English; (b) post-level offensiveness language
identification and related tasks in a multilingual setting.

2. We evaluate the resulting MTL model in terms of performance, efficiency, and general-
ization ability. We show that the proposed MTL model performs better than STL models
at the post- and token-level and is noticeably faster than training multiple STL models.
We also evaluate the performance of our model on datasets containing Arabic, Bengali,
German, Hindi, and Meitei data.

3. We test the MTL model in zero-shot and few-shot learning scenarios and show that MTL
performs better than STL models when there are fewer training data samples available.
We demonstrate that MTL is better for zero-shot learning and that MTL generalises well
across different languages and domains.

1 https://sites.google.com/view/sustainlp2021/home
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4. We make the code and the trained models freely available to the community. Our com-
plete multi-task framework; MAD (Multi-task Aggression Detection Framework) will be
released as an open-source Python package.

2 Related work

MTL has been employed extensively in computer vision (Girshick, 2015; Zhao et al., 2018)
and in NLP tasks such as part-of-speech tagging and named entity recognition (Collobert
& Weston, 2008) , text classification (Liu et al., 2017) , natural language generation (Liu
et al., 2019a) , and offensive language identification (Dai et al., 2020) .

Talat et al. (2018) trained anMTLmodel on different post-level offensive language detec-
tion tasks and found that MTL vastly improves the performance on each task, allowing the
overall model to strongly generalize to unseen datasets. In Abu Farha and Magdy (2020)
sentiment prediction was used as an auxiliary task to detect offensive and hate speech in an
MTL setup using a CNN-Bi-LSTM model. Past studies have also demonstrated the value of
using neural transformer multi-task learning models to achieve competitive results in offen-
sive language identification shared tasks. Dai et al. (2020) trained an MTLmodel on all three
levels of the OLID dataset (Zampieri et al., 2019a) while Djandji et al. (2020) trained
an MTL model on two post-level tasks – identifying offense and identifying hate speech in
Arabic texts using AraBERT (Antoun et al., 2020) . Nelatoori and Kommanti (2022) uses a
BiLSTM based MTL model to identify toxic comments and spans. In recent work, Mathew
et al. (2021) designed an MTL model based on transformers to detect both token-level and
post-level offensive language. Apart from a few notable exceptions (e.g. MUDES (Ranas-
inghe & Zampieri, 2021) ), due to the lack of suitable available datasets, there has not been
much work in developing statistical learning models that can detect offensive tokens. Our
work fills this gap.

None of the studies discussed in this section provided an empirical evaluation of MTL in
few-shot, zero-shot, and multilingual settings. Furthermore, these studies have not experi-
mented with MTL in multilingual settings. To address this important gap, we evaluate MTL
across different settings for token and post-level offensive language identification. Finally,
we evaluate our MTL architecture on several post-level tasks related to offensive language
identification across a wide range of languages.

3 Multitask architecture

Considering the success that transformers have demonstrated in various offensive lan-
guage identification tasks, we chose to employ a transformer as the base model for our
MTL approach. Our approach will learn several tasks jointly including post-level tasks and
token-level tasks. The implemented architecture shares hidden layers between both post and
token-level tasks. The shared portion includes a transformer model that learns shared rep-
resentations (and extracts information) across tasks by minimizing a combined/compound
loss function. The task-specific classifiers receive input from the last hidden layer of the
transformer language model and predict the output for each of the tasks (details provided in
the next two sections).
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Post-level aggression detection By utilizing the hidden representation of the classification
token (CLS) within the transformer model, we predict the target labels (offensive/hate
speech/normal) by applying a linear transformation followed by the softmax activation func-
tion (σ ):

ŷpost = σ(W[CLS] · h[CLS] + b[CLS]) (1)

where · denotes matrix multiplication, W[CLS] ∈ RD×3, b[CLS] ∈ R1×2, and D is the
dimension of input layer h (top-most layer of the transformer).

Token-level aggression detection We predict the token labels (toxic/non-toxic) by also
applying a linear transformation (also followed by the softmax) over every input token from
the last hidden layer of the model:

ŷtoken = σ(Wtoken · ht + btoken) (2)

where t marks which token the model is to label within a T -length window/token sequence,
Wtoken ∈ RD×2, and btoken ∈ R1×2.

In the MTL setting, we used different strategies to combine the losses from different type
of related tasks; token-level tasks and post-level tasks. We will explain these in the following
two sections.

4 Post-level and token-level

Data TheHateXplain dataset (Mathew et al., 2021) is, to our knowledge, the first benchmark
dataset that contains both post and token-level annotations of hate speech and offensiveness.
The dataset contains data collected from Twitter and Gab and is annotated using Ama-
zon Mechanical Turk. Each instance in the dataset is annotated by three annotators that
choose between three categories - label (“offensive”, “hate speech”, and “normal”), ratio-
nales (tokens based on which the labeling decision was made), and target communities (the
group of people denounced in the post). We present examples from the dataset in Table 1.

Table 1 Four instances sampled/extracted from the dataset along with their respective annotations (Mathew
et al., 2021)

Post: [<user>, keep, running, to, russia, you, nazi, sympathizer]

Rationales: [0, 0, 0, 0, 0, 0, 1, 0]

Label: Offensive

Post: [expectations, are, a, bitch]

Rationales: [0, 0, 0, 0]

Label: Normal

Post: [yep, communist, nigger, fag]

Rationales: [0, 1, 1, 1]

Label: Hate speech
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Table 2 The distribution of hate
speech, offensive, and normal
posts and the number of toxic and
non toxic tokens in train,
development (dev), and test sets

Class Train Dev Test

Posts Offensive 3,325 1,061 1,093

Hate 3,547 1,185 1,202

Normal 4,663 1,598 1,550

Total 11,535 3,844 3,845

Tokens Toxic 22,224 7,493 7,561

Non toxic 248,054 82,622 82,432

Total 270,278 90,115 89,993

The dataset contains 20, 148 posts (9, 055 from Twitter and 11, 093 from Gab), out of
which 5, 935 instances are hateful, 5, 480 are offensive, and 7, 814 are normal. The dataset
also contains 919 undecided posts where all three annotators annotated the label differently.
We present the statistics in Table 2. For the task of interest, we used the labels and rationales
from the HateXplain dataset. A majority vote strategy, where half or more of the annotators
agree on an annotation, was used to determine the final annotation of the label and individual
tokens in the rationales. We removed the 919 undecided annotations from the final database.
The dataset was further split into 11, 535 train, 3, 844 development (dev), and 3, 844 test
subsets. The distribution of labels and tokens of the final processed dataset is shown inTable 2.
We observe that the train, dev, and test sets follow a similar imbalanced class distribution.

To evaluate how well our architecture performs in zero-shot environments, we used five
publicly available offensive language detection datasets released as part of OffensEval 2020,
presented in Table 3. Since these datasets have been annotated at the instance level, we
followed the evaluation process as explained in Section 4.2.

4.1 Experimental setup

MAD consists of twomain parts, as depicted in Fig. 1. The first part is the language modeling
component which runs masked language modeling (MLM) on the given dataset. By default,
the modeler masks 15% of the tokens randomly in the dataset and considers sequences with
a maximum length of 512. The model weights are stored and loaded into the next part/stage
of the MAD framework (Sarkar, 2021) . The second part/stage of the MAD framework is
the multi-task architecture presented in Section 3. It starts by loading the model saved from
the first stage to then perform MTL (Sarkar, 2021) .

Table 3 Language (Lang.),
instances (Inst.), sources (S), and
the source reference for each
dataset

Lang. Inst. S Reference

Arabic 8,000 T Mubarak et al. (2021)

Danish 2,961 F, R Sigurbergsson & Derczynski (2020)

English 14,100 T Zampieri et al. (2019a)

Greek 8,743 T Pitenis et al. (2020)

Turkish 31,756 T Çöltekin (2020)

“F” stands for Facebook, “R” for Reddit, “T” for Twitter
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Fig. 1 The two components of the MAD framework. Section A depicts the language modeling component.
Section B shows the multi-task aggression detection classifier – the post label predicts post-level aggression;
a token label of 0 and 1 denotes non-toxic and toxic tokens, respectively (Ranasinghe & Zampieri, 2021)

We train the system by minimising the cross-entropy loss for both (constituent) tasks
as defined in Eq. 5, where ypost and ytoken represent ground true label vectors (one-hot
encodings of the label integers). These particular losses are:

Lpost = −
3∑

i=1

(
ypost � log(ŷpost )

) [i] (3)

Ltoken = −
2∑

i=1

(
ytoken � log(ŷtoken)

) [i] (4)

where v[i] retrieves the i th item in a vector v and � indicates element-wise multiplication.
In combining the above two losses into one objective, we introduced α and β parameters
to balance the importance of the tasks. To assign equal importance to each task in our
experiments, we set α = β = 1 in this study. The full loss is:

LMAD = αLpost + βLtoken

α + β
. (5)

We set up two STL baselines – post-level and token-level aggression detection models
(each based on neural transformers). The post-level STL model takes the complete sentence
as an input and predicts the aggression label – “normal”, “offensive”, or “hate speech” –
using a softmax classifier on top of the CLS token (activation vector). Note that the token-
level STL model predicts whether each token (word) in the sentence is toxic or not using
a softmax classifier as well. We performed experiments using BERT-base-cased (Devlin
et al., 2019) and RoBERTa-base (Liu et al., 2019b) transformer model variants, available
in the HuggingFace model repository. We also performed experiments using BERT-base-
cased and RoBERTa-base models retrained on HatEval (Basile et al., 2019) and OLID
(Zampieri et al., 2019a) datasets using MLM; the shifted models are denoted by the H2O
suffix. Furthermore, we used the recently released fBERTmodel (Sarkar et al., 2021) which
is a retrained BERT-base-cased model on over 1.4 million offensive instances from SOLID
(Rosenthal et al., 2021) .

For all of the experiments, we optimized parameters with the AdamW update rule using a
learning rate of 1e − 4, a maximum sequence length of 128, and a batch size of 16 samples.
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Early stopping was also executed if the validation loss did not improve over 10 iterations.
The models were trained using a 16 GB Tesla P100 GPU over three epochs. All experiments
were run using ten different random seeds, and the mean value plus the standard deviation
score across these experiments were reported. We did not perform any data pre-processing
steps and used the same datasets published.

Finally, to better cope with class imbalance, we have chosen the macro F1 score as the
evaluation measure for all tasks. For the post-level evaluation, we used a macro F1 score that
is computed as a mean of per-class F1 scores, as shown below:

F1 = F1(Off) + F1(Hate) + F1(Normal)

3
. (6)

If the total number of instances is n, the final aggregated F1 score A for the token-level
task is:

A = 1

n

n∑

i=1

F1(Per Instance). (7)

4.2 Results and analysis

In this section, we answer each of our following research questions (RQs).

• RQ1- Performance: Can MTL outperform STL in (a) token-level and post-level offen-
sive language identification, (b) post-level offensiveness language identification and
related tasks?

• RQ2 - Speed: Is the proposed MTL approach, in which either two tasks are learned
jointly, faster than separate STL models for post- and token-level offensive language
identification?

• RQ3 -Efficiency:CanMTL learn from fewer training samples compared to a STL setup?
• RQ4 - Generalizability: How well does MTL perform in different domains and lan-
guages in zero-shot environments compared to STL models?

4.2.1 Supervised learning

We start by first answering RQ1. We train our MAD framework on the HateXplain training
sets and evaluate on the test sets. In Table 5, we compare the results of doing this to the
STL setup. We achieve the best result for both the token-level and post-level with our MAD
framework model. The fBERT model achieves the overall highest macro F1 score for the
token-level aggression detection using MAD. The RoBERTa-H2O model achieves a macro
F1 score of 0.6949 at the post-level using the proposedmulti-task learning framework. The re-
trained language models with MTL achieve better results than the STL model across tasks.
Based on these results, we can empirically conclude that MTL outperforms STL in both
token-level and post-level offensive language identification by sharing information across
the two tasks.

To answer RQ2, we compared the performance of the STL baseline models to our MAD
models with respect to computing resources. The results are shown in Table 4. Desirably, we
observe that the MAD framework model outperformed the STL models combined for every
metric shown/measured.MTLuses lessRAMthan the token-levelmodel and the training time
per epoch is less compared to the post-level model. This demonstrates that MTL is faster and
more resource efficient than separate STLmodels for post and token-level offensive language
identification, an insight that should prove to be beneficial for real world applications.
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Table 4 Performance comparison of two STL models and the MAD framework model

Metric (Avg.) STL Models MAD Model
Post-level Token-level

RAM usage (GB) 2.21 3.39 3.21

GPU usage (GB) 6.18 6.55 8.33

Training time per epoch (Sec) 193.68 178.37 184.73

*Inference w/ GPU (Sec) 3.64 3.56 4.76

*Inference w/ CPU (Sec) 4.24 4.91 5.49

*Inference was conducted over 100 instances

4.2.2 Few-shot learning

One advantage of multi-task learning is that less data is required to generalize, owing to
the fact that information is shared across related tasks; hence it reduces the strict need for
a large, labeled dataset (Caruana, 1997) . Motivated by this potential benefit, we answer
our third RQ: Can MTL learn from fewer training instances? by comparing the MADmodel
framework performance with STL baseline models when the number of training instances is
limited. We conduct experiments (see Fig. 2 for resulting plot) for the RoBERTa-H20 model,
which performed the best in the previous experiment.

Figure 2 depicts that MTL consistently outperforms STL when varying the number of
training instances for both post and token-level aggression detection tasks. This result demon-
strates the generalization ability ofMTL evenwhen the number of labeled instances available
is low. We conclude that the MTL setup performs much better when the number of samples
is limited, which is particularly the case for low resource language problems.

4.2.3 Zero-shot learning

Weanswer our fourthRQby evaluating theMTLapproach in the zero-shot setting, comparing
it with heuristics based on STL. We use the datasets described in Section 4. Since these
datasets only contain annotations at the post-level, we carried out the evaluation only at the
post-level.

Fig. 2 The test F1 with an increasing number of training samples with RoBERTa-H20 in STL &MAD setups
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Table 5 The test set meanmacro F1 scores of 10 runs as well as the standard deviation for different transformer
models

Models STL MAD
Post-level Token-level Post-level Token-level

BERT 0.670 ± 0.005 0.800 ± 0.008 0.685 ± 0.003 0.810 ± 0.003

BERT-H20 0.672 ± 0.003 0.803 ± 0.005 0.693 ± 0.004 0.816 ± 0.004

fBERT 0.673 ± 0.003 0.803 ± 0.005 0.693 ± 0.003 0.818 ± 0.003

RoBERTa 0.674 ± 0.006 0.801 ± 0.004 0.690 ± 0.004 0.812 ± 0.004

RoBERTa-H20 0.673 ± 0.004 0.803 ± 0.003 0.694 ± 0.004 0.814 ± 0.004

Best results for each task are show/presented in bold

We consider three heuristics to train in the context of zero-shot learning: (1) We train a
post-level offensive language identification (transformer) model – a softmax layer is added
on top of the CLS token. We train on HateXplain post-level annotations, saving weights.
Then we perform zero-shot learning on OffensEval 2020 languages using the saved weights
(model is named Postzeroshot ). Since the data is labeled as Offensive/Not Offensive, we
concatenate predicted offensive and hate speech labels to create a single, offensive label. (2)
We train a span-level offensive language identification model based on transformers using
MUDES (Ranasinghe & Zampieri, 2021) . We train the model on HateXplain token-level
annotations, saving the weights. Then we run the model on OffensEval 2020 languages and if
the model predicts at least one offensive token, our system labels that post as offensive. This
is consistent with OLID annotation guidelines (Zampieri et al., 2019a) . We call this model
Tokenzeroshot . (3) We train our MTL architecture on HateXplain post-level and token-level
annotations, saving the weights. Then we perform zero-shot learning at the post-level of the
OffensEval 2020 languages using the saved weights. We call this model MTLzeroshot . Since
the other datasets are labeled as Offensive/Not Offensive, we concatenate predicted offensive
and hate speech labels to craft one label.

For OLID (Zampieri et al., 2019a) , we used the best model that we obtained on the
HateXplain dataset – the RoBERTa-H20 model. Following the strong cross-lingual offensive
language identification results obtained using XLM-R (Ranasinghe & Zampieri, 2020) , we
used the xlm-RoBERTa-base (Conneau et al., 2020) model for the non-English datasets.
Since this is a purely zero-shot setup, we do not compare our results to systems that were
specifically trained on these datasets (Tables 5 and 6).

As observed in Table 7, MTLzeroshot outperforms the other zero-shot approaches that
are based on STL for all the languages. This affirmatively answers our fourth and final
research question:MTL outperform STLmodels in zero-shot scenarios, demonstrating strong
generalization ability.

5 Related tasks

Data We used four publicly available datasets: ComMA (Kumar et al., 2021) , GermEval
(Risch et al., 2021) , Hahackathon (Meaney et al., 2021a) , and OSACT4 (Mubarak et al.,
2020) , summarized in Table 6.
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Table 7 Results ordered by
Macro F1 for Arabic (AR),
Danish (DA), English (EN),
Greek (GR), and Turkish (TR)
datasets for zero shot experiments

Model Macro F1

AR MTLzeroshot 0.458 ± 0.006

Postzeroshot 0.446 ± 0.005

Tokenzeroshot 0.438 ± 0.007

DA MTLzeroshot 0.568 ± 0.008

Postzeroshot 0.555 ± 0.007

Tokenzeroshot 0.542 ± 0.007

EN MTLzeroshot 0.5230 ± 0.007

Postzeroshot 0.519 ± 0.005

Tokenzeroshot 0.500 ± 0.005

GR MTLzeroshot 0.489 ± 0.009

Postzeroshot 0.477 ± 0.004

Tokenzeroshot 0.466 ± 0.005

TR MTLzeroshot 0.478 ± 0.006

Postzeroshot 0.462 ± 0.006

Tokenzeroshot 0.450 ± 0.005

5.1 Experimental setup

For these datasets, we also use/employ the MAD framework as showed in Fig. 1. However,
since these related tasks only contained post-level labels, we did not use the token heads in
theMTL architecture. Instead, we used/adapted multiple post-level heads. We train our MTL
model by minimising the cross-entropy loss for all of the (inherent) tasks. All of the losses
(for all tasks) are then combined into one objective and we assign equal importance to each
task in our experiments. The full loss is:

LMAD =
∑n

j=1 L j

n
(8)

where n is the number of tasks and L j is the loss function associated with task j .
Similar to the previous experiments, we compared the MTL architecture with STL post-

level baselines where the STL model takes in the complete sentence as an input and predicts
the post label using a softmax classifier on top of the CLS token (activation vector). We
performed experiments using multilingual transformer models, such as mBERT and XLM-
R, as well as monolingual transformer models, specifically ones that were trained specifically
to support each language. For ComMA, we used IndicBERT (Kakwani et al., 2020) which
supports Bengali, Hindi, and English. For GermEval we used gBERT (Chan et al., 2020)
and gELECTRA (Chan et al., 2020) while for OSACT4, we used AraBERT and AraElectra.

Similar to the previous set of experiments, for all tasks in this section, we optimized
parameters (with AdamW) using a learning rate of 1e − 4, a maximum sequence length of
128, and a batch size of 16 samples. Early stopping was also executed if the validation loss
did not increase over a 10 iteration period. The models were trained using a 16 GB Tesla
P100 GPU over three epochs. The output results of neural transformer models can heavily
depend on the initial weights and, more importantly, on the experimental and simulation
setup (Ein-Dor et al., 2020) . The standard procedure to address this variation is to run the
transformer model in different random seeds and report the mean and standard deviation of
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Table 8 Performance of 3 STL models versus MTL model for ComMa with mBERT

Dataset Metric (Avg.) STL MTL
Task 1 Task 2 Task 3

ComMa RAM (GB) 1.86 1.88 1.84 2.45

GPU (GB) 3.56 3.56 3.56 4.12

Training time (Sec) 140.67 150.98 148.93 135.76

*Inference w/ GPU (Sec) 2.86 2.88 2.92 3.76

*Inference w/ CPU (Sec) 4.12 4.20 4.15 5.62

GermEval RAM (GB) 2.45 2.48 2.48 3.12

GPU (GB) 6.32 6.35 6.36 8.91

Training time (Sec) 198.42 199.42 197.54 190.23

*Inference w/ GPU (Sec) 3.91 3.94 3.97 4.45

*Inference w/ CPU (Sec) 4.41 4.43 4.45 5.68

Hahackathon RAM (GB) 1.12 1.13 - 1.56

GPU (GB) 3.12 3.14 - 1.23

Training time (Sec) 92.54 98.45 - 90.03

*Inference w/ GPU (Sec) 1.92 1.95 - 2.56

*Inference w/ CPU (Sec) 2.65 2.69 - 3.45

OSACT4 RAM (GB) 2.18 2.23 - 3.18

GPU (GB) 6.15 6.19 - 8.44

Training time (Sec) 193.65 194.45 - 184.67

*Inference w/ GPU (Sec) 3.61 3.69 - 4.70

*Inference w/ CPU (Sec) 4.21 4.29 - 5.31

*Inference was conducted over 100 instances

multiple runs (Risch & Krestel, 2020; Ein-Dor et al., 2020; Mosbach et al., 2021) . Recent
literature suggests that running experiments ten times provides more reliable results (Sellam
et al., 2022) , therefore, all experiments were ran for ten different random seeds with reported
mean values over 10 trials with standard deviation. For the evaluation of each task, we used
the same evaluation metrics used by the authors of the original datasets (Table 8).

5.2 Results and analysis

To evaluate our proposed multi-task learning model, we experimented with it on the four
datasets. For the evaluation of each task, we used the same evaluation metrics used by the
authors of each of the original datasets.

Again, we start by answering RQ1, we compared the results of the MTL to STL models
across all datasets presented in Section 4. We train each model on the training set of each
database and evaluate it on the relevant test set. In Table 9 we present the mean results of ten
runs along with standard deviation.

We observe that MTL consistently outperforms STL in all tasks across all of the datasets.
For ComMA, mBERT (Devlin et al., 2019) with MTL performed best across all the tasks.
For GermEval 2021, the gElectra (Chan et al., 2020) model with MTL outperformed all
of the other models. For Hahackathon, fBERT (Sarkar et al., 2021) with MTL performed
best and, finally, for OSACT4 2020, AraBERT with MTL produced the best results across
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all tasks. Note that, for all of the transformer models we experimented with, MTL variants
achieve better performance than STL ones.

To answer RQ2, we compared the performance of the STL baseline models with our
MTL models with respect to computing resources (using the best transformer model of each
dataset). The results of this comparison are shown in Table 8 – observe that the model used
within the proposedMTL framework outperforms the STLmodels combined for everymetric
across all datasets.

6 Conclusion

In this paper, we introduce MAD, a multi-task architecture based on neural transformers,
and evaluated it across different key training setups. To the best of our knowledge, this is
the first empirical evaluation of MTL in both post-level and token-level offensive language
identification.

This work demonstrates that the proposed MTL model outperforms STL models on both
the tasks of token-level and post-level offensive language identification (RQ1). We further-
more demonstrated that our MTL model uses less resources (in terms of RAM usage, GPU
usage, and training and inference time) than the two STL models combined, showing that
MTL could prove valuable for practical applications (RQ2). Furthermore, we experimented
withMTL in a few-shot setup and demonstrated that it could desirably outperform STLmod-
els when the amount of training data available is small, confirming that MTL could prove
useful for even low resource language problems (RQ3). When considering the zero-shot
setup, we showed that MTL outperforms STL-based heuristics across five different datasets.
This showcased that MTL models generalize better across datasets than STL models (RQ4).

Finally, as only a single machine learning model is produced by MTL compared to the
multiple statistical learning models produced in a standard STL approach, we show that
our proposed approach not only achieves higher performance but is also faster than STL.
MTL is, therefore, environmentally friendlier as it demands less computing resources and
energy compared to STL. This efficient use of resources addresses recent efforts in Green AI
(Schwartz et al., 2020) and the recent ACL Policy Document on Efficient NLP.2

With respect to future work, wewould like to expandMTL-based offensive language iden-
tification to operate with more languages and domains by annotating additional datasets. We
believe that ourMTL systems improve interpretability aswell as generalizability over the cur-
rent state-of-the-art post-level offensive language identification models, offering a powerful
neural transformer-based framework for the development of future, promising offensive con-
tent and language identification systems and applications. Finally, we would like to use MTL
to explore the interplay between offensive content and sarcasm as in the recent HaHackathon
competition at SemEval-2021 (Meaney et al., 2021b) . BERT-based models have been
successfully applied to sarcasm detection (Castro et al., 2019; Pandey & Singh, 2023) sug-
gesting that the approach presented in this paper would potentially achieve good performance
on identified sarcasm in an MTL setting.
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