
Vol.:(0123456789)

Journal of Intelligent Information Systems (2023) 61:569–609
https://doi.org/10.1007/s10844-023-00780-6

1 3

Modeling and querying temporal RDF knowledge graphs
with relational databases

Ruizhe Ma1 · Xiao Han2 · Li Yan2 · Nasrullah Khan2 · Zongmin Ma2,3

Received: 4 November 2022 / Revised: 29 January 2023 / Accepted: 30 January 2023 /
Published online: 30 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
RDF (Resource Description Framework), a standard resource description model, is popular-
ized and applied in many application scenarios for its explicit representation of semantics. To
represent and process time-aware semantics with RDF, the temporal RDF model is proposed
and applied in temporal knowledge graphs. The requirement for efficiently handling diverse
temporal RDF data has become increasingly important with the rapid development and popu-
larity of RDF. In this paper, we propose a novel temporal RDF model and effectively tackle the
management of temporal RDF data in relational databases. In particular, we propose a tempo-
ral RDF model called tRDF to represent both temporal entities and relationships and further
propose a temporal query language for the tRDF model. To manage temporal RDF data in an
effective manner, we propose to store temporal RDF data with relational databases that fol-
low the SQL:2011 standard and support temporal data manipulation. To query the tRDF data
stored in relational databases with the tRDF query language, we implement the transformation
from this query language to SQL. The experimental results show the feasibility and effective-
ness of the proposed tRDF model as well as its storage and query methods.

Keywords Temporal RDF model · Relational databases · Data persistence · Querying

Xiao Han and Ruizhe Ma are co-first authors and contributed equally to this study.

 * Zongmin Ma
 zongminma@nuaa.edu.cn
1 Richard A. Miner School of Computer & Information Sciences, University of Massachusetts

Lowell, Lowell, MA 01854, USA
2 College of Computer Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing 211106, China
3 Collaborative Innovation Centre of Novel Software Technology and Industrialization,

Nanjing 210023, China

1 http:// www. w3. org/ RDF/

1 Introduction

RDF1 is a metadata model recommended by the W3C (World Wide Web Consortium), which
can explicitly describe resources on the Web and the relationships between these resources.
RDF has good machine readability, and its syntactic form is very similar to the composition of

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-023-00780-6&domain=pdf
http://www.w3.org/RDF/

570 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

knowledge. Thus, the RDF model has been extensively accepted as a representation model of
knowledge graphs, which was formally introduced by Google in 2012 with the aim of improv-
ing the performance of search engines. Nowadays, knowledge graphs have been widely applied
in diverse domains, and many knowledge graphs have become available (e.g., DBpedia2 and
Wikidata3). With the increasing scale of knowledge graphs, efficient storage and query of the
huge amount of RDF data are of crucial importance. Traditionally, there are three main cat-
egories of RDF storage methods, which are memory-based method (Atre & Hendler, 2009),
disk-based (Wu et al., 2009), and database-based [3, 9, 11, 26, 35, 40- 42, 45, 51, 52], respec-
tively. Among them, the database storage method has become the primary means to manage
large-scale RDF data because of the mature techniques and numerous products of database
systems (Ma et al., 2016). It is especially true for relational databases.

The real world is dynamic, and any individual may change from time to time. Data with
temporal features are known as temporal data. One can find temporal data available in many
fields (e.g., geographic information systems, weather forecasts, dynamic social networks,
the Internet of Things, etc.). The issue of representing and managing temporal data has
been investigated in the context of relational databases for a longtime [10, 43, 44]. After
realizing the importance and urgency of explicitly manipulating temporal data in relational
databases in a normal way, the ISO (the International Organization for Standardization) and
IEC (the International Electrotechnical Commission) jointly published SQL:2011, which
is the most recent revision of the SQL (Structured Query Language) standard, replacing
SQL:2008. One of the new features in SQL:2011, and also the most important new fea-
ture in SQL:2011, is the ability to create and manipulate temporal tables, in which rows
are associated with one or more time periods (Kulkarni & Michels, 2012). In addition to
the temporal relational database model, several emerging temporal data models have been
proposed for dealing with temporal data in recent years. To represent and share temporal
data on the Web, for example, the temporal XML model is proposed and applied (Faisal &
Sarwar, 2014); also, to manage and process big temporal data, temporal NoSQL databases
(e.g., column-oriented NoSQL databases) are proposed (Chen, et al., 2022).

In the context of RDF, the classical RDF model can only represent static semantics,
i.e., the current state of resources and their relationships. To capture the dynamic state
of resources and their relationships, several temporal RDF models have been proposed
by extending the static RDF model. Basically, we can identify three major types of tem-
poral RDF models, which are the temporal RDF model for version control (Gutier-
rez et al., 2007), the temporal RDF model with time label (Pugiles et al., 2008), and
the temporal RDF model with the triple extension (Koubarakis & Kyzirakos, 2010).
Among these temporal RDF models, the temporal RDF model with a time label is
widely accepted and used as it does not change the structure and extensibility of cur-
rent RDF triples. In the current temporal RDF models, a temporal RDF triple contains
a timestamp that is attached to either the predicate of the RDF triple or the whole RDF
triple. The RDF triple with a temporal granularity of the whole triple declares a tempo-
ral statement (i.e., a temporal fact), but it is unclear which one of the subject, predicate,
and object in this triple is actually time-aware. Also, the RDF triple with a temporal
granularity in the predicate of triple clearly indicates a time-aware predicate, but it fails
to represent temporal information in the object of the triple. It is possible and common
for the same subject and predicate to have several different objects over time. At this
point, it is essential to explicitly represent time-aware objects in temporal RDF triples.

2 https:// www. dbped ia. org/
3 https:// www. wikid ata. org

https://www.dbpedia.org/
https://www.wikidata.org

571Journal of Intelligent Information Systems (2023) 61:569–609

1 3

For the current temporal RDF models, few efforts are devoted to temporal RDF
query (e.g., (Tappolet & Bernstein, 2009; Zaniolo et al., 2018)) and temporal RDF
index (e.g., (Pugiles et al., 2008; Yan et al., 2019)). Although storing the classi-
cal RDF in databases has been widely investigated and applied, to the best of our
knowledge, there is no work investigating temporal RDF storage. The temporal RDF
has been used in knowledge graphs to represent temporal knowledge [50, 21].
Recently, temporal knowledge graphs are receiving increasing attention for their
representation learning (e.g., (Chen, et al., 2022)), but they are mainly based on
the temporal triples with a temporal granularity of the whole triple. With the wide-
spread application of knowledge graphs in diverse time-sensitive domains (e.g.,
the Internet of Things), a huge amount of temporal RDF data is being proliferated
and becoming available. Therefore, it is increasingly important to propose a more
semantically expressive temporal RDF model and then efficiently manage large-
scale temporal RDF data.

In this paper, we propose a new temporal RDF model named tRDF by exploiting the
time label, which can be applied to the predicate and/or object of a triple as a timestamp.
Clearly, the tRDF model is different from the existing temporal RDF models whose time
labels are attached to either the predicates of the RDF triples or the whole RDF triples.
We present the syntax and semantics of the tRDF model. Based on the tRDF model, we
particularly advocate storing temporal RDF data in the temporal relational databases and,
with this, propose mapping rules to map the tRDF model to the temporal relational tables.
To query the temporal RDF data that is actually stored in the temporal relational data-
bases, we formalize a temporal SPARQL (Simple Protocol and RDF Query Language) for
the tRDF model, termed as tSPARQLt, and then provide the transformation of partial que-
ries from tSPARQLt to SQL, a standard query language for the relational databases. We
validate our proposed model and approach through comparative experiments. Although
there are some proposals for temporal metrics, to the best of our knowledge, this paper is
the first effort to model and query temporal RDF data with temporal relational databases.

The rest of the paper is organized as follows. Section 2 provides a brief overview of
related work in RDF storage, temporal databases, and temporal RDF. Section 3 presents
some preliminaries. Section 4 proposes a new temporal RDF model named tRDF and pro-
vides its syntax and semantics. Section 5 presents mapping rules and algorithms for tRDF
data storage in relational databases. Section 6 formalizes a query language, called tSPAR-
QLt, for the temporal tRDF model and defines the rules for transforming partial queries of
tSPARQLt to SQL queries. Section 7 presents the experimental evaluations for our pro-
posed storage and query method. Section 8 concludes this paper.

2 Related Work

In this section, we present the related work in three categories: RDF storage in rela-
tional databases, temporal databases, and temporal RDF.

2.1 RDF storage

Data storage is the foundation of implementing data management. To manage large-
scale RDF data, many proposals have been developed to store RDF data, which are

572 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

roughly categorized as memory-based storage (Atre & Hendler, 2009), disk-based
storage (Wu et al., 2009), and database-based storage [3, 9, 11, 26, 35, 40- 42, 45,
51, 52]. The memory-based and disk-based storages load RDF data as triples directly
into memory and store RDF triples on the local hard disk, respectively, which are col-
lectively referred to as a local storage approach. The local storage approach preserves
the triadic structure and semantics of RDF triples well, but it also suffers from several
drawbacks. The memory-based storage is clearly limited by the size of memory and is
only applicable to storing a small amount of RDF data. The disk-based storage shifts
data storage place from memory to disk and thereby satisfies the requirement of storing
larger-scale RDF data. The disk-based RDF storage is a category of native stores (e.g.,
RDF-3X (Neumann & Weikum, 2008)) that use customized binary RDF data represen-
tation and are built directly on the file system (Bornea, et al., 2013). Note that the native
RDF stores fail to provide full and strong support for data access and control manage-
ment. Database management systems (DBMSs) are designed especially for efficient data
storage and management. At this point, non-native RDF stores built on top of existing
database management systems (DBMSs) become the mainstream method of RDF data
storage (Ma et al., 2016).

Relational databases (RDBs) have been widely used for their solid theoretical foun-
dation and strong technical support in products as well as development tools. Typically,
there are three common ways to store RDF data with relational databases (Ma et al.,
2016): vertical stores, horizontal stores, and type stores. The vertical stores (e.g., Tri-
plet (Wolff et al., 2015)), also known as triple stores, create a single relational table
with three columns, and each RDF triple is directly mapped into a tuple of the relational
table. Here the subject, predicate, and object of an RDF triple become three attribute
values of the corresponding tuple. The horizontal stores (e.g., C-Store (Stonebraker,
et al., 2005), Virtuoso (Erling & Mikhailov, 2009), and SW-store (Abadi et al., 2009))
create either a single relational table that contains all predicates of RDF triples as the
table’s column names or a set of relational tables and a relational table only contains
one predicate as the table’s column name. Note that, in the horizontal stores, the created
relational table also contains a column name representing the subject of RDF triples in
addition to the column name(s) from the predicate(s). In the horizontal stores with a
single relational table, the RDF triples with the same subject and becomes a tuple of the
relational table. In the horizontal stores with a set of relational tables, the RDF triples
with the same predicate appear in the same relational table, where each RDF triple cor-
responds to a tuple of the relational table. The type stores (e.g., RDFBroker (Sintek &
Kiesel, 2006), RDB2RDF(Salas, et al., 2011), and Jena (McBride, 2002)) may create
multiple relational tables, and each one is for a type of subject, in which a relational
table contains the properties as n-ary table columns for the same subject. In addition to
the three basic relational stores of RDF above, there are also efforts in RDF data stor-
age that use two or more of the three basic stores concurrently or revise the three basic
stores (e.g., (Bornea, et al., 2013)).

For large-scale RDF data management, it is essential to ensure the scalability of RDF
stores by using optimization structures such as indexes and data partitioning. In (Weiss
et al., 2008), an RDF storage scheme called Hexastore was proposed, which enhances
the vertical partitioning idea and takes it to its logical conclusion. As a result, a sextu-
ple indexing scheme was applied in Hexastore. Unlike Hexastore, which builds exhaus-
tive indexing of pairs of positions in triples, RDF-3X (Neumann & Weikum, 2008) builds
exhaustive indexing of all permutations of triple positions, and TripleT (Wolff et al., 2015)
builds exhaustive indexing of all single positions. In addition, to significantly improve the

573Journal of Intelligent Information Systems (2023) 61:569–609

1 3

scalability of massive RDF stores, distributed/parallel RDF stores have been developed
(Papailiou, et al., 2013). In contrast to centralized RDF stores that are single-machine solu-
tions, distributed RDF stores (e.g., 4store4) partition triples across multiple machines and
parallelizes query processing (Ma et al., 2016). In distributed RDF stores, RDF data par-
titioning is a crucial issue. Distributed RDF stores adopt two categories of partitioning:
horizontal partitioning and hash partitioning, according to how the RDF data are parti-
tioned and how partitions are stored for access (Lee & Liu, 2013). Horizontal partitioning
generally partitions an RDF dataset across multiple servers by using horizontal (random)
partitioning, where the partitions are stored by using distributed file systems (e.g., HDFS
(Hadoop Distributed File System)5), and then queries are processed by parallel access to
the clustered servers by using distributed programming models (e.g., Hadoop MapReduce).
Hash partitioning partitions an RDF dataset across multiple nodes by using hash partition-
ing on three components of RDF triples (i.e., subject, object, and predicate) or any combi-
nation of them, where the partitions are locally stored in a database like HBase or an RDF
store like RDF-3X and then accessed through a local query interface.

To deal with big data, NoSQL databases have emerged as a new infrastructure for mas-
sive data storage and management. As a result, NoSQL databases are applied to handle
massive RDF data (Cudre-Mauroux, et al., 2013). Moreover, several NoSQL stores for
RDF management (e.g., RDFChain (Choi et al., 2013), the Jena-HBase (Khadilkar, et al.,
2012), and Trinity.RDF (Shao et al., 2013)) have been proposed. RDF data management
merits the use of NoSQL databases because of their scalability and high performance.
Viewed from the theoretical foundation and technical support in products as well as devel-
opment tools, however, relational databases are still in a dominant position for a relatively
long period of time. Concerning massive RDF data stored in relational and NoSQL data-
bases, one can refer to a comprehensive review in Ma et al. (2016). Note that the existing
approaches for RDF data stores, both in relational and NoSQL databases, cannot explicitly
deal with temporal RDF data.

2.2 Temporal databases

Temporal data representation and management have been widely investigated in the context
of relational databases. As early as the 1980s, the temporal relational model was proposed
by including temporal columns in the relational model. In (Clifford & Croker, 1987), a
historical relational model was proposed, in which several issues like relation, tuple, and
field value with temporal information were discussed. Time in temporal relational data-
bases can be classified into three types (Mckenzie & Snodgrass, 1991; O’Connor & Das,
2010): valid time, transaction time, and user-defined time. The temporal relational data-
bases containing only valid time are called the historical relational databases, the tempo-
ral relational databases containing only transaction time are called the rollback relational
databases, and the temporal relational databases containing both valid time and transac-
tion time are called the bi-temporal relational databases. With the development of tempo-
ral relational models, several query languages have been proposed. TQuel, proposed by
Snodgrass in (Snodgrass, 1987), a well-known temporal query language, is an extension of
Quel, which is upward compatible with Quel, which is very helpful in promoting the tem-
poral data model and the temporal query language. Snodgrass further proposed a temporal

4 http:// 4store. org/
5 http:// hadoop. apache. org/ hdfs

http://4store.org/
http://hadoop.apache.org/hdfs

574 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

query language, TSQL2, in (Snodgrass, 1994). TempSQL in Gadia (1988) is a temporal
relational model which provides a complete temporal query language. These proposed tem-
poral query languages support both valid time and transaction time.

SQL:2011 should be a milestone in the research and development of temporal relational
databases. As the latest edition of the SQL standard published by the ISO/IEC in 2011,
SQL:2011 explicitly provides support for creating and manipulating temporal data with tem-
poral tables (Kulkarni & Michels, 2012). In SQL:2011, a common column may be related
to an application-time period, a system-time period, or both. Furthermore, a time (applica-
tion- or system-) period contains the period start time and the period end time, which are
declared as two special columns named by the user. After SQL:2011 was published, many
efforts have been made to extend traditional database management systems. Gao et al. in
(Gao, et al., 2018), for example, proposed a new framework for the design of temporal rela-
tional databases, which supports effective access to current and historical information; Lu
et al. in Lu et al. (2019) contributed to temporal extensions in distributed database manage-
ment systems so that the efficiency of managing temporal data can be improved.

With the increased use of NoSQL databases for big data management, few efforts are
devoted to dealing with temporal big data. Hu and Dessloch (Hu & Dessloch, 2015) pro-
posed to use column-oriented NoSQL databases (CoNoSQLDBs) for temporal data man-
agement and processing. In the context of spatio-temporal data, Zhong et al. (Zhong et al.,
2013) combined NoSQL databases and Hadoop to achieve the storage of temporal data
based on distributed techniques, and Fox et al. in (Fox, et al., 2013) used the high scal-
ability of NoSQL databases to achieve high performance queries on temporal data. Unlike
SQL:2011, the current NoSQL databases do not support temporal data management. Few
temporal extensions to NoSQL databases are designed for temporal RDF data store. At this
point, it is a good choice to apply SQL:2011 for modeling and processing temporal RDF
data, just like the relational databases for the common RDF data.

2.3 Temporal RDF models and query languages

It is recognized that in many practical applications of RDF, it is necessary to attach
triples metadata into RDF (Hogan, et al., 2010). In (Udrea et al., 2010), annotated RDF
model was formally proposed, where RDF triples are annotated by members of a par-
tially ordered set. For the annotated RDF in Udrea et al. (2010), a general extension
to RDF Schema (RDFS) was proposed in Straccia, et al. (2010), and a query language
AnQL was then developed for the annotated RDFS in Lopes, et al. (2010). Annota-
tions in RDF can support several specific domains to represent the temporal aspects,
uncertainty, trust, and provenance of the RDF triples. Temporal RDF models are explic-
itly proposed to handle semantically metadata with temporal information. Gutierrez
et al. in (Gutierrez et al., 2007) proposed a temporal RDF model by using a version
control approach. They presented the syntax and semantics of the proposed temporal
RDF model. In (Pugiles et al., 2008), a temporal RDF model was proposed by add-
ing timestamps to RDF predicates, and the concept of indeterminate temporal triples
was introduced. Koubarakis et al. (Koubarakis & Kyzirakos, 2010) proposed the quad-
tuple structure with temporal information using the triple extension method. Among
the above temporal RDF models, the time label method is widely used because it pre-
serves the original triple structure RDF. In (Grandi, 2009), a temporal RDF model was
proposed, which uses triple timestamping with temporal elements. The data model is
equipped with manipulation operations to manage temporal versions of an ontology. A

575Journal of Intelligent Information Systems (2023) 61:569–609

1 3

survey of temporal extensions to RDF is provided in Wang and Tansel (2019), in which
the proposals for extending RDF for modeling temporal data are classified into explicit
reification or implicit reification according to the used reification. The time investigated
in the existing temporal RDF models mainly focuses on valid time.

Ontologies can be seen as a formal representation of knowledge over RDF data. In
addition to the RDF with time, several studies have been proposed to manage domain
knowledge evolution in the context of ontology versioning. In (Brahmia, et al., 2022),
temporal versioning of both ontology instances and ontology schemas was considered,
where ontology schema changes are triggered by non-conservative updates to ontol-
ogy instances. That is, an ontology schema versioning is driven by instance updates.
To address the problem of asynchronous versioning in the context of a materialized
integration system, the principle of ontological continuity was proposed in Xuan et al.
(2006) to support ontology changes. With the proposed principle, each old instance can
be managed by using the new version of the ontology. Focusing on time-sensitive appli-
cation domains, Canito, Corchado, and Marreiros (Canito et al., 2022) systematically
reviewed the state of the art of representation of time and ontology evolution in the pre-
dictive maintenance field. It was identified that, although ontologies have many applica-
tions in predictive maintenance, there have been few studies on ontology evolution, and
applications of time to the problem of ontology evolution are still in the open.

To query temporal RDF data, a temporal SPARQL language called τ-SPARQL was
proposed in (Tappolet & Bernstein, 2009) for temporal RDF graph, where τ-SPARQL
queries can be translated to standard SPARQL queries. A temporal extension of SPARQL
was presented in Grandi (2010), which was aimed at embedding several features of the
TSQL2 consensual language. In (Zaniolo et al., 2018), a point-based temporal exten-
sion of SPARQL, called SPARQLT, was proposed for the main-memory RDF-TX sys-
tem, which supports user-friendly by-example temporal queries on historical knowledge
bases derived from Wikipedia. Based on classical OBDA (ontology-based data access)
systems, Brandt et al. in Brandt, et al. (2017) proposed a framework of temporal OBDA,
which can extract information about temporal events in RDF format and provides a
SPARQL-based query language for retrieving temporal information. Concentrating on
the OBDA system for query answering with temporal data and ontologies, Elem et al. in
(Kalayci, et al., 2018) developed a tool called Ontop-temporal, which can access times-
tamped log data. To further improve the efficiency of querying large-scale temporal RDF
data, few efforts have worked on indexing temporal RDF. In (Pugiles et al., 2008), an
index structure named tGRIN was proposed, which builds a specialized index for tempo-
ral RDF triples stored in Jena2, Sesame, and 3store. An index structure was proposed in
(Zaniolo et al., 2018) for the original temporal RDF graphs, where the prefix path index
for querying subjects of temporal RDF triples and the suffix index for querying objects of
temporal RDF triples were built, respectively. In addition to several temporal SPARQL
languages, few proposals for spatiotemporal SPARQL languages have been developed. In
(Perry et al., 2011), for example, SPARQL was extended to SPARQL-ST so that spati-
otemporal queries can be supported, and in Koubarakis and Kyzirakos (2010), the query
language stSPARQ was developed for spatiotemporal RDF model in the context of the
Semantic sensor Web.

The RDF model has been applied to the infrastructure of knowledge graphs (Hogan
et al., 2022). With temporal RDF triples, some recent efforts have been made to
investigate temporal knowledge graphs (Huang et al., 2020; Lu et al., 2019). There
has been an increasing interest in learning representations of temporal knowledge
graphs (e.g., (Chen, et al., 2022; Zhu, et al., 2021)). As of yet, no proposals exist for

576 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

storing and querying multigranularity temporal RDF data using temporal relational
databases.

3 Preliminaries

In this section, we introduce some preliminaries about the RDF model, SPARQL (Simple
Protocol and RDF Query Language), and SQL:2011.

3.1 RDF Model

RDF is a metadata model proposed by W3C to describe Web resources and their mutual
relationships. It provides a general framework for the description and interaction of
information. An RDF model is described with a set of RDF triples. An RDF triple
in the form of (subject, predicate, object) (abbreviated to (S, P, O)) is a statement in
which the subject is the resource being described, the predicate is the property being
described with respect to the resource, and the object is the value for the property. Here,
a resource is anything with a URI (Universal Resource Identifier), and an object is a
literal (if the corresponding predicate is an attribute of the resource) or another resource
(if the corresponding predicate is a relationship of resources).

Definition 1 (RDF model) An RDF model is a set of triples, and an RDF triple is
formally defined as (S, P, O) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where I, B, and L are infinite
sets of IRIs (Internationalized Resource Identifiers), blank nodes and RDF literals,
respectively.

RDF model can be described with several formats such as RDF/XML, N-Triples,
Turtle, RDFa (Resource Description Framework in Attributes), and JSON-LD (JSON
for Linking Data). RDF/XML represents RDF data by using the syntax of XML. Since
the diffused syntax format of RDF/XML is too complex to understand, N-Triples (NT)
are applied to represent RDF data, which is most similar to the syntax of the RDF
model and easy to read and parse. Nowadays, many public RDF datasets (e.g., Wikidata
and DBpedia) are published in the format of N-Triples. In addition, Turtle is an optimi-
zation of RDF/XML, which makes the representation more compact by indicating the
prefix; RDFa uses HTML5 to represent RDF data; JSON-LD uses key-value pairs to
describe RDF data. Also, the RDF model can be represented as a directed and labeled
graph, where subjects and objects of triples are the vertices and predicates of triples are
the edges from subject vertices to object vertices.

In addition to its syntax, an RDF model has its semantic interpretation.

Definition 2 (RDF model semantics) For an RDF model, its semantic interpretation I con-
sists of the following elements:

(1) A non-empty set of resources (i.e., IR) is called the domain of I.
(2) A set IP is called the set of properties of I.
(3) A set IL is called the set of literals that contains all the objects of the literal type.
(4) A mapping IEXT from IP into the power-set IR × IR (i.e., the set of sets of < x, y > pairs

with x and y in IR).
(5) A mapping IS from IRIs into (IR ∪ IP).

577Journal of Intelligent Information Systems (2023) 61:569–609

1 3

(6) A partial mapping ILR from literals into IR.

3.2 SPARQL

SPARQL6 recommended by W3C, is a query language for RDF data. With a simple query
statement structure, SPARQL is easy to understand and read, and has a reasoning ability to
optimize the query efficiency of RDF. Considering the essential graphic structure of the RDF
model, SPARQL queries evaluate the user’s requirements against RDF datasets in a graph
matching way. A statement of SPARQL query generally consists of four components, which
are query form, dataset, graph pattern with constraints, and solution modifier, respectively.

Four query forms in SPARQL can be identified as follows.

• SELECT: identifies and returns the matched datasets or graphs.
• CONSTRUCT: creates a new RDF graph.
• ASK: judges whether the RDF graph has the result of a given query.
• DESCRIBE: returns information of all graph nodes matched by the query.

Among these four query forms, SELECT is widely used for searching RDF. A SELECT
query has the basic structure of SELECT-FROM-WHERE. The SELECT clause indicates
the set of variables being shown in query answers, and a dataset in the FROM clause is used
to specify the RDF data to be queried. A graph pattern in the WHERE clause describes the
user’s query requirement as a filter condition. We can identify three major kinds of graph
patterns: the basic graph pattern, the group graph pattern, and the optional graph pattern.
The basic graph pattern (BGP) consists of a number of triple patterns separated by ".". A
triple pattern is a special kind of triple, where at least its subject, predicate, or object is
represented by a variable. In SPARQL, a variable is introduced using "?" or "$" as a prefix.
We can identify triple patterns like (S, P, ?O), (S, ?P, ?O), (S, ?P, O), (?S, ?P, O), (?S, P, O),
(?S, P, ?O) and (?S, ?P, ? O). A basic graph pattern is a set of triple patterns surrounded by
"{}," and all of them have to be matched in query evaluation. A group graph pattern (GGP)
consists of a set of BGPs, and all of these BGPs need to be matched in query evaluation. An
optional graph pattern (OGP), starting with the keyword OPTIONAL, is followed by one or
more BGPs, which should be optional and not be requested for a mandatory match on query
evaluation. In the graph patterns, the keyword FILTER can be used to explicitly filter out the
set of eligible results. Also, SPARQL provides several modifiers (such as LIMIT, OFFSET,
ORDER BY, etc.) to arrange the query results so that users can better view the result set.

3.3 SQL:2011

SQL is a standard query language for relational databases. SQL:2011 published by the
ISO/IEC in 2011, is the latest edition of the SQL standard. SQL:2011 replaces the previ-
ous edition SQL:2008 and contains many new features, in which the most important new
feature is that it can explicitly represent and deal with temporal data with temporal tables.

In SQL:2011, time periods are explicitly defined and associated with the rows of
a table. A time period is demarcated by a start time and an end time. Here a period
definition is a named table component, which actually identifies a pair of columns to

6 https:// www. w3. org/ TR/ sparq l11- query/

https://www.w3.org/TR/sparql11-query/

578 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

capture the start time and the end time of the period. Note that the start column and
the end column of the period are special columns in the table. Note that SQL:2011
adopts a left-closed-right-open period model to define a time period like [a start time,
an end time), which includes the start time, but excludes the end time.

SQL:2011 distinguishes two types of time periods: the system-time period for
transaction time support; an application-time period for valid time support. In an
application-time period table, SQL:2011 applies the keywords PERIOD FOR to
define an application-time period with a user-defined name, which contains two user-
named columns to respectively represent the start time and end time of the period.
Note that the period start and end columns must have the same data types, either
DATE or a timestamp type. Assume that the user would create an application-time
period table, atTable, which contains a period definition with a user-defined name,
atPeriod. This period contains two columns with user-defined names, atStart and
atEnd, which act as the start and end columns of the period. Then this temporal table
is formally defined as follows.

CREATE TABLE atTable (
…
atStart DATE,
atEnd DATE,
…
PERIOD FOR atPeriod (atStart, atEnd)
)

SQL:2011 also uses the regular query syntax SELECT-FROM-WHERE to query
application-time period tables. Here SQL:2011 provides several period predicates
to express conditions that involve periods, including CONTAINS, OVERLAPS,
EQUALS, PRECEDES, SUCCEEDS, IMMEDIATELY PRECEDES, and IMMEDI-
ATELY SUCCEEDS.

In the system-versioned tables, SQL:2011 uses the keywords PERIOD FOR SYS-
TEM_TIME to define a system-time period with the standard-specified name: SYS-
TEM_TIME. The declared system-time period contains two user-named columns to
respectively represent the start and end columns of the SYSTEM_TIME period. Also,
the period start and end columns must have the same data types, either DATE or a
timestamp type. However, in practice, the TIMESTAMP type with the highest frac-
tional seconds precision is applied as the data type for the system-time period start
and end columns. Note that the system-versioned table includes the keywords WITH
SYSTEM VERSIONING in its definition. Assume that the user would create a sys-
tem-versioned table, svTable, which contains a period definition with the standard-
specified name SYSTEM_TIME, and the keywords WITH SYSTEM VERSIONING.
This period contains two columns with user-defined names, svStart and svEnd, which
act as the start and end columns of the period. Then this temporal table is formally
described as follows.

579Journal of Intelligent Information Systems (2023) 61:569–609

1 3

SQL:2011 first provides three syntactic extensions for retrieving the table content
as of a given time point or between any two given time points from system-versioned
tables. The first extension is the FOR SYSTEM_TIME AS OF syntax for querying the
table content as of a specified time point; The second and third extensions allow for
retrieving the content of a system-versioned table between any two time points. If a
query on system-versioned tables is not one of the above three syntactic options, this
query specifies FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP by default,
which returns the current system rows as the result only.

A temporal relational schema can be formally defined as R = (A1, tsA1, teA1, A2,
tsA2, teA2, …, An, tsAn, teAn), where A1, A2, …, An are common attributes, and each
one of them (say Ai (1 ≤ i ≤ n)) may have two associated attributes (tsAi and teAi), rep-
resenting that Ai contains a period (application-time or system-time) with the start and
end columns tsAi and teAi. Relational instance of R written by r (R) is a set of tuples,
and we have r (R) = {t1, t2, …, tm}. A tuple of r (R), say tj (1 ≤ j ≤ m), is formally rep-
resented as tj = < aj1, tsaj1, teaj1, aj2, tsaj2, teaj2, …, ajn, tsajn, teajn > , where tj [Ai] = aji,
tj [tsAi] = tsaji and tj [teAi] = teaji. Here tj [X] means the value of tuple tj on column X.

In SQL:2011, a table may be both a system-versioned one and an application-time
period one, forming a so-called bitemporal table. Rows in bitemporal tables are associated
with both the system-time period and the application-time period. Concerning temporal
information in the RDF model, in this paper, we pay attention only to the application-time
period in RDF and do not consider the system-time period and bi-temporal periods.

4 Temporal RDF Model

Most of the temporal RDF models proposed only attach timestamps directly to the predi-
cates of RDF triples or the whole RDF triples. Such temporal RDF models fail to represent
the temporal objects of RDF triples. In this section, we propose a novel temporal RDF
model termed tRDF.

4.1 Overview of the tRDF model

First, we adopt the left-closed-right-open time model [Ts,Te) proposed in SQL:2011,
where Ts and Te are the start time and end time of the time period, respectively. As a

CREATE TABLE svTable (
…
svStart TIMESTAMP(12) GENERATED ALWAYS AS ROW START,
svEnd TIMESTAMP(12) GENERATED ALWAYS AS ROW END,
…
PERIOD FOR SYSTEM_TIME (svStart, svEnd)
) WITH SYSTEM VERSIONING

580 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

special case, a time interval can be a time point, where the end time of the time period
is set to be the highest value of the data type. For example, [1885–05-18, 9999–12-
31) means a time point 1885–05-18. For an RDF triple, its predicate or object may be
added with a time period. In the paper, we identify two types of temporal RDF triples:
the temporal period is attached to the predicate to indicate a time-aware relationship
between two resources when the object is a resource; the temporal period is attached to
the object to indicate the time-aware value of resource on the property when the object
is a literal. The RDF model with the above two types of temporal RDF triples is referred
to as tRDF in this paper. We illustrate our tRDF model with examples.

Table 1 presents a classical RDF model containing 6 triples about personal infor-
mation. Moreover, the graph representation of this RDF model is presented in Fig. 1,
where prefixes are not shown in the figure.

As a temporal extension to the traditional RDF model given in Table 1, the tRDF
model is shown in Table 2. Its graph representation is presented in Fig. 2, where pre-
fixes are not shown in the figure.

It can be seen that the tRDF model is based on a time label, so the tRDF model
only needs to modify the timestamps of some temporal triples when temporal informa-
tion changes. In Table 2, for example, it is assumed that the name of Márton Garas was
changed to NameB on January 1, 1900. Then the original temporal triple (Márton_Garas,
name, Márton Garas [1885–05-18, 1930–06-26)) should be modified to (Márton_Garas,
name, Márton Garas [1885–05-18,1889–12-31)) and meanwhile, a new triple (Márton_
Garas, name, NameB [1900–01-01,1930–06-26)) should be added. Of course, it is possi-
ble that the name of Márton Garas was changed back to the original later on.

Now let us look at how to represent temporal information with two existing tem-
poral RDF models. With the temporal RDF model whose time labels are attached to
the whole RDF triples, we have temporal triples (Márton_Garas, name, Márton Garas)
[1885–05-18, 1930–06-26), (Márton_Garas, gender, Male)[1885–05-18, 1930–06-26),
(Márton_Garas, birthPlace, Novi_Sad)[1885–05-18, 9999–12-31) and (Márton_Garas,
deathPlace, Budapest)[1930–06-26, 9999–12-31). With the temporal RDF model
whose time labels are attached only to the predicates of triples, we have temporal tri-
ples (Márton_Garas, name[1885–05-18, 1930–06-26), Márton Garas), (Márton_Garas,
gender[1885–05-18, 1930–06-26), Male), (Márton_Garas, birthPlace[1885–05-18,
9999–12-31), Novi_Sad) and (Márton_Garas, deathPlace[1930–06-26, 9999–12-31),
Budapest). Although these two models can model temporal information in triples,
their semantics are ambiguous. With our tRDF model, we have temporal triples (Már-
ton_Garas, name, Márton Garas [1885–05-18, 1930–06-26)), (Márton_Garas, gender,
Male [1885–05-18, 1930–06-26)), (Márton_Garas, birthPlace[1885–05-18, 9999–12-
31), Novi_Sad) and (Márton_Garas, deathPlace[1930–06-26, 9999–12-31), Budapest).
Clearly, they can more exactly describe the temporal semantics in real-world scenarios.

4.2 tRDF syntax

4.2.1 tRDF triple

In the tRDF model, time labels are applied as timestamps, which are added to the predi-
cates or the objects of the common RDF triples, depending on the type of objects. The
triples with timestamps in their predicates or the objects are referred to as temporal tri-
ples in this paper. The syntax of the tRDF model is declared as a set of temporal triples.

581Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Ta
bl

e
1

 A
n

ex
am

pl
e

of
 a

 tr
ad

iti
on

al
 R

D
F

m
od

el

Su
bj

ec
t

Pr
ed

ic
at

e
O

bj
ec

t

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ b

irt
h D

at
e

"1
88

5–
5-

18
"^

^ <
 ht

tp
://

 w
w

w.
 w

3.
 or

g/

20
01

/ X
M

LS
c h

em
a#

 da
te

 >

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ b

irt
h P

la
ce

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ N

ov
i_

 Sa
d

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 xm

ln
s. c

om
/ fo

af
/0

. 1
/ n

am
e

"M
ár

to
n

G
ar

as
"@

en
ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ M
ár

to
n_

 G
ar

as
ht

tp
://

 xm
ln

s. c
om

/ fo
af

/0
. 1

/ g
en

de
r

"m
al

e"
@

en
ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ M
ár

to
n_

 G
ar

as
ht

tp
://

 db
pe

d i
a.

 or
g/

 on
to

l o
gy

/ d
ea

th
 D

at
e

"1
93

0–
6-

26
"^

^ <
 ht

tp
://

 w
w

w.
 w

3.
 or

g/

20
01

/ X
M

LS
c h

em
a#

 da
te

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ d

ea
th

 Pl
ac

e
ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ B
ud

ap
 es

t

http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/birthDate
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#date
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Novi_Sad
http://dbpedia.org/resource/Márton_Garas
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/resource/Márton_Garas
http://xmlns.com/foaf/0.1/gender
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/deathDate
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#date
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/resource/Budapest

582 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Following the step of SQL:2011, a time period for a timestamp is uniformly expressed
as [Ts, Te), where Ts and Te are the start time and end time of the time period, respec-
tively. Here two cases are considered: Ts = Te (the time interval is a time point) and
Ts < Te (the time interval is truly a period of time).

Definition 1 (tRDF triple) Temporal triples in the tRDF model have the form of
(S,P[Ts,Te),O) if O is a resource or (S,P,O[Ts, Te)) if O is a literal. Here S, P, and O are,
respectively, the subject, predicate, and object of triple, Ts, Te ∈ T (T is a time domain) and
Ts ≤ Te. The individual terms are described as follows.

• (S,P,O) is a common triple of the traditional RDF model.
• When O is a resource, P may be associated with a timestamp, and P[Ts,Te) is

a temporal predicate of tRDF triple, indicating that the relationship between two
resources, S and O, is valid during the time interval [Ts,Te).

• When O is a literal, O may be associated with a timestamp and O[Ts,Te) is a tem-
poral literal of the tRDF triple, indicating that the literal O is valid during the time
interval [Ts,Te).

• T is a time domain (a set of time points). For t ∈ T, the data type of t is xsd:date with
the format of “yyyy-MM-dd”.

• A timestamp temporal of tRDF triple is represented by a time interval [Ts,Te), where
Ts, Te ∈ T. As a special case, it is allowed for Ts = Te, which signifies a time point
instead of a time interval.

Let us look at the tRDF model shown in Table 2. It contains 6 temporal tRDF triples
in N-Triples format. These triples describe the personal information of Márton_Garas,
including date of birth, place of birth, name, gender, date of death, and place of death.
They share a common subject, a resource identified by “http:// dbped ia. org/ resou rce/ Már-
ton_ Garas,” and two types of objects. It is shown in Table 2 that, for the object that is a
resource, a timestamp in the form of a time interval is attached to the predicate; for the
object that is a literal, a timestamp is added to the object. Note that data date of birth, place
of birth, date of death, and place of death are attached with time points and time intervals
with the same start time and the end time.

Budapest

male

Márton Garas

1930-6-26

1885-5-18

Márton_Garas

Novi_Sad
birthDate birthplace

name

deathPlacedeathDate

gender

:Literal :Resource

Fig. 1 An example of an RDF graph

http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/resource/Márton_Garas

583Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Ta
bl

e
2

 A
n

ex
am

pl
e

of
 a

 tR
D

F
m

od
el

Su
bj

ec
t

Pr
ed

ic
at

e
O

bj
ec

t

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ b

irt
h D

at
e

"1
88

5–
5-

18
 "^

^ <
 ht

tp
://

 w
w

w.
 w

3.
 or

g/
 20

01
/ X

M
LS

c h
em

a#
 da

te
 >

ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ M
ár

to
n_

 G
ar

as
ht

tp
://

 db
pe

d i
a.

 or
g/

 on
to

l o
gy

/ b
irt

h P
la

ce
[1

88
5-

05
-

18
.9

99
9-

12
-3

1)
ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ N
ov

i_
 Sa

d

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 xm

ln
s. c

om
/ fo

af
/0

. 1
/ n

am
e

"M
ár

to
n

G
ar

as
[1

88
5–

05
-1

8,
 1

93
0–

06
-2

6)
" @

en
ht

tp
://

 db
pe

d i
a.

 or
g/

 re
so

u r
ce

/ M
ár

to
n_

 G
ar

as
ht

tp
://

 xm
ln

s. c
om

/ fo
af

/0
. 1

/ g
en

de
r

"m
al

e[
18

85
–0

5-
18

,1
93

0–
06

-2
6)

"@
en

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ d

ea
th

 D
at

e
"1

93
0–

6-
26

" ^
^ <

 ht
tp

://
 w

w
w.

 w
3.

 or
g/

 20
01

/ X
M

LS
c h

em
a#

 da
te

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ M

ár
to

n_
 G

ar
as

ht
tp

://
 db

pe
d i

a.
 or

g/
 on

to
l o

gy
/ d

ea
th

 Pl
ac

e[
19

30
-0

6-
26

, 9
99

9-
12

-3
1)

ht
tp

://
 db

pe
d i

a.
 or

g/
 re

so
u r

ce
/ B

ud
ap

 es
t

http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/birthDate
http://www.w3.org/2001/XMLSchema#date
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Novi_Sad
http://dbpedia.org/resource/Márton_Garas
http://xmlns.com/foaf/0.1/name
http://dbpedia.org/resource/Márton_Garas
http://xmlns.com/foaf/0.1/gender
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/deathDate
http://www.w3.org/2001/XMLSchema#date
http://dbpedia.org/resource/Márton_Garas
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/resource/Budapest

584 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

4.2.2 tRDF graph

The tRDF model can be represented as a directed graph. As shown in Fig. 3, in the
tRDF graph model, nodes S and O represent the subject and object of the tRDF tri-
ple, respectively. When the object is a resource, the directed edge P[Ts,Te) represents
a temporal predicate of the triple, i.e., a temporal relationship between S and O. When
the object is a literal, the directed edge P represents a static predicate of the triple, and
meanwhile, the node O[Ts,Te) represents a temporal object of the triple, which is a tem-
poral value of S on P.

Note that by deriving temporal information from the tRDF graph representation, a
tRDF graph can be converted to an ordinary RDF graph. For this purpose, it is required to
introduce several new vocabularies (e.g., startTime and endTime) to describe the temporal
interval. In the tRDF graph, for the nodes with temporal interval, we first introduce a new
node T to represent the time interval and then use the startTime and endTime vocabular-
ies to represent the start and end times of node T. As to the subject, predicate, and object
of tRDF triples, they are represented with the vocabularies rdf:subject, rdf:predicate, and

Budapest

male

[1885-05-18,1930-06-26)

Márton Garas

[1885-05-18,1930-06-26)

1930-6-26

1885-5-18

Márton_Garas

Novi_Sad

birthDate

birthplace

[1885-05-18,9999-12-31)

name

deathPlace

[1930-06-26,9999-12-31)

deathDate

gender

:Literal :Resource

Fig. 2 An example of a tRDF graph

P

O is a resource

P[Ts,Te)
S O

:Literal :Resource

O is a literal

S O[Ts,Te)

Fig. 3 Graphic representation of tRDF triple

585Journal of Intelligent Information Systems (2023) 61:569–609

1 3

rdf:object, respectively. Note that, unlike the existing temporal RDF models, the tRDF
model is converted according to the type of object. For two temporal RDF triples in Fig. 3,
they are converted to the ordinary RDF graph shown in Fig. 4.

4.3 tRDF semantics

The semantics of the classical RDF model includes three aspects, which are the explana-
tion, satisfaction, and entailment of the RDF model. As for the tRDF model, its semantics
are also described from these three aspects.

4.3.1 Temporal interpretation

As with the classical RDF model, the tRDF model is interpreted using expressions or logi-
cal relational operators except with added temporal information.

Definition 2 (Temporal interpretation) Let I be the interpretation of the RDF model and
TI be the interpretation of the tRDF model, where the RDF model is obtained by removing
all temporal information from the tRDF model. Then TI is defined by adding the following
temporal elements into I:

O is a resource

O is a literal

:Resource

Statement

S

rdf:predicate

rdf:object

rdf:subject

temporal interval

endTime

startTime

Ts

O

P T

Te

Statement

S

rdf:predicate

rdf:object

rdf:subject

temporal interval

endTime

startTime

Ts

P

T

Te

O

:Literal

Fig. 4 Ordinary RDF graph converted from the corresponding tRDF graph

586 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

• A subset T of IR indicates the set of interval information.
• A flag OR indicates that the object is a resource.
• A subset BP of IP–basic properties, indicates the set of predicates without temporal

information when the object is a literal.
• A subset TP of IR–temporal properties indicates the set of predicates with temporal infor-

mation when the object is a resource. Also, temporal-related contents need to be added to
TP (e.g., startTime and endTime).

• A subset BO of IR–basic objects, indicating the set of objects without temporal informa-
tion when the object is a resource.

• The literal set IL needs several temporal properties (e.g., startTime and endTime).
• A mapping PT, mapping TP × (T ∩ OR) × (T ∩ OR) to IP.
• A mapping ILR, mapping IL × T × T to IR.

4.3.2 Temporal satisfaction

The satisfaction of the temporal RDF model means the basic semantic relationship between
the interpretation TI of the tRDF model and temporal RDF triples.

Definition 3 (Temporal satisfaction) Given an interpretation TI of the tRDF model TM,
TI satisfies a certain triple tm ∈ T (written as TI╞ tm), if and only if.

• ∀Ts, Te ∈ T, (S,P,O) ∈ (TI(Ts)∧TI(Te)), we have TI╞ (S,P[Ts,Te),O) when O is a resource;
• ∀Ts, Te ∈ T, (S,P,O) ∈ (TI(Ts)∧TI(Te)), we have TI╞ (S,P,O[Ts,Te)) when O is a literal.

If TI╞ tm for ∀tm ∈ TM, then it can be said that the temporal interpretation TI satisfies
the tRDF model TM, written as TI╞ TM.

4.3.3 Temporal entailment

Temporal entailment represents the logical relationship between two entities (e.g., temporal
inclusion), which is mainly used for intellectual reasoning and logical deduction.

Definition 4 (Temporal entailment) Let TM be the tRDF model and TI be an interpretation of
TM.

When O is a resource,

• ∀Ts, Te ∈ T, (S,subP,O) ∈ (TI(Ts)∧TI(Te)), we have TI╞ (S,subP[Ts,Te),O);
• If TI╞ (S,P[Ts,Te),O) and there exists a time interval [Ts’,Te’) (Ts ≤ Ts’ ≤ Te’ ≤ Te), there is

TI╞ (S,P[Ts’,Te’),O).

When O is a literal,

• ∀Ts, Te ∈ T, (S,P,subO) ∈ (TI(Ts)∧TI(Te)), we have TI╞ (S,P,subO[Ts,Te));
• If TI╞ (S,P,O[Ts,Te)) and there exists a time interval [Ts’,Te’) (Ts ≤ Ts’ ≤ Te’ ≤ Te), there is

TI╞ (S,P,O[Ts’,Te’)).

587Journal of Intelligent Information Systems (2023) 61:569–609

1 3

5 Storage of tRDF

In this paper, we store tRDF data with SQL:2011, which supports temporal data manip-
ulation. We first propose the relational schema designed for temporal RDF storing and
then propose the rules and algorithms of mapping tRDF data to the relational databases.

5.1 Design of database schema

Among the three methods of storing the classical RDF data with relational databases,
the horizontal stores suffer from problems such as multi-valued attributes and many null
values (or the horizontal stores with a single table) or too many built tables (for the
horizontal stores with multiple tables); the type store is applicable to the scenarios that
the RDF triples hold more types of subjects, and may have problems of multi-valued
attributes, some null values and some built tables (Ma et al., 2016). Many built tables
for RDF triple store mean that many join operations are generally involved for query-
ing. In addition, with the horizontal and type stores, when new triples are inserted, new
predicates must result in dynamic relational schema(s).

Based on the above understanding, in this paper, we adopt the basic idea of the ver-
tical stores to store the tRDF data with SQL:2011. To overcome the shortages of the
classical vertical stores and satisfy the need to store temporal information, we designed
five tables, named the Namespace table, Subject table, Property table, Object table, and
Statement table, respectively, rather than a single table. The schemas of these five rela-
tional tables are defined as follows.

Definition 5 (Schema of the relational table) The schema of the relational table is a six-
tuple P = (N, COL, DT, PK, FK, L).

(1) N = TN ∪ DN is a finite non-empty set of names, where TN is a set of names of the entity
tables and DN is a set of names of data type;

(2) COL is a finite non-empty set of column names of the table. For ∀t ∈ TN, we have
∃COL(t);

(3) DT is a set of data types of columns of the table. For ∀c ∈ COL(t), we have ∃DT(c) ∈ DN;
(4) PK is a set of primary keys of the table. For ∀t ∈ TN, we have ∃PK(t) ∈ COL(t);
(5) FK is a set of foreign keys of the table. For ∀t ∈ TN, we have ∃n(n ≥ 0) FK(t) ⊆ COL(t);
(6) L ⊆ TN × TN is a set of relationships between the tables. The relationships between

tables are represented by the reference from the foreign key FK(ti) to the primary key
PK(tj). For ∀ti,tj ∈ TN, a reference to table tj’s primary key PK(tj) by table ti’s foreign
key FK(ti) can be indicated as FK(ti) → PK(tj).

The Property table shown in Table 3 contains the ID, NS_ID, Property, PTs, and
PTe columns. The type of ID column is BIGSERIAL, which means self-increment.
PRIMARY KEY indicates that the ID column is the table’s primary key, which can
uniquely identify a record. NOT NULL means it is not allowed for the column to be
empty. The NS_ID column is used to represent the IRI prefix of the complete predicate

588 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

stored in the Namespace table. References Namespace (ID) keyword means that this
column is the table’s foreign key, which refers to the ID column in the Namespace
table. The Property and columns PTs and PTe respectively correspond to the predicate
and time information,. Here it is allowed for the PTs and PTe columns to be empty,
and their data types must be the same. As we know, for a tRDF triple, a timestamp is
attached to its predicate when its object is a resource; a timestamp is attached to its
object when its object is a literal, where PTs and PTe columns are empty. The PERIOD
FOR keyword is used to define the valid time, and the ProPeriod is the name of the
time interval.

The structure of the Namespace table is shown in Table 4. This table, which is applied
to store the prefix of the tRDF triple, consists of the primary key ID and the Prefix column.
There are many duplicate IRIs in the tRDF data, and separating the IRI from the subject,
predicate, and object can significantly save storage space. The Namespace table stores the
IRIs in the Prefix column and is linked to the Subject, Predicate, and Object tables by the
primary key ID.

The structure of the Subject table is shown in Table 5. This table, which is applied to store
the subject of the tRDF triple and associate with the Statement table through the primary key
ID column, consists of the primary key ID, the foreign key NS_ID, and the Resource column.
The NS_ID column acts as a foreign key to refer to the prefix of the subject stored in the
Namespace table. The Resource column stores the subjects without prefixes.

The structure of the Property table is shown in Table 6. This table, which is applied
to store the predicate of the tRDF triple and associate the Statement table through the
primary key ID, consists of the primary key ID, the foreign key NS_ID, the Property,

Table 3 Property table creation
with SQL:2011 String sqlcreateP = "CREATE TABLE Property(

ID BIGSERIAL PRIMARY KEY NOT NULL,
NS_ID INT REFERENCES

NAMESPACE(ID)
NOT NULL,

Property TEXT NOT NULL,
PTs DATE ,
PTe DATE ,
PERIOD FOR ProPeriod (PTs,PTs))" ;

Table 4 Namespace table ID(PK) Prefix

1 http:// dbped
ia. org/
resou rce

… …

Table 5 Subject table ID(PK) NS_ID(FK) Resource

1 1 Fiatau_Penitala_Teo
… … …

http://dbpedia.org/resource
http://dbpedia.org/resource
http://dbpedia.org/resource

589Journal of Intelligent Information Systems (2023) 61:569–609

1 3

the PTs, and the PTe column. The NS_ID column acts as a foreign key to refer to the
prefix of the predicate stored in the Namespace table. The Property column stores the
predicates without prefixes. When the object is a resource, the PTs and PTe columns
are, respectively, the start and end time of the time interval, and the PTs and PTe col-
umns are empty when the object is a literal.

The structure of the Object table is shown in Table 7. This table, which is applied
to store the object of the tRDF triple and associate the Statement table through the
primary key ID, consists of the primary key ID, the foreign key NS_ID, the Object,
the OTs, and the OTe column. Here the NS_ID column acts as a foreign key to refer to
the prefix of the object stored in the Namespace table. Note that when the object is a
literal, the NS_ID of the record corresponds to the ID with a null prefix in the Names-
pace table. The Object column stores the objects without prefixes. When the object is
a resource, the OTs and OTe columns are empty, and the OTs and OTe columns are,
respectively, the start and end time of the time interval when the object is a literal.

The structure of the Statement table is shown in Table 8. This table, which is applied
to store the statement of tRDF triple by using integers, consists of the primary key ID, the
foreign key Sid, the foreign key Pid, and the foreign key Oid column. The Statement table
uses foreign keys, Sid, Pid, and Oid, to refer to the subjects, predicates, and objects stored
in the tables.

The above tables are connected through their primary keys and foreign keys. The rela-
tionships between these tables are shown in Fig. 5.

5.2 Mapping rules

Based on the relational schemas designed in Sect. 5.1, we present the rules for mapping
the tRDF model to the relational tables. First, we need to divide the subjects, predicates,
and objects of tRDF triples into prefix N, subject ES without prefix, predicate EP without

Table 6 Property table ID(PK) NS_ID(FK) Property PTs PTe

1 2 22-rdf-
syntax-
ns#type

1965–11-07 1996–10-21

… … … … …

Table 7 Object table ID(PK) NS_ID(FK) Object OTs OTs

1 3 Person
… … … … …

Table 8 Statement table ID(PK) Sid(FK) Pid(FK) Oid(FK)

1 1 1 1
… … … …

590 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

prefix, object EO without prefix, and temporal information Ts and Te. On this basis, the
mapping rules for each part of tRDF triples are given as follows.

• Rule 1: Insert the prefix N into the Prefix column of the Namespace table. Note that
when the object is a literal, the Prefix column is allowed to be null according to the
structure setting of the Namespace table.

• Rule 2: Insert the prefix ID in the Namespace table returned by Rule 1, and then insert
the corresponding subject ES without prefix into the NS_ID and Resource columns of
the Subject table, respectively. The ID column in the Subject table corresponding to
each record acts as the primary key referred to in the Statement table.

• Rule 3: Insert the prefix ID in the Namespace table returned by Rule 1 and the corre-
sponding predicate EP without prefix into the NS_ID and the Property columns of the
Property table, respectively. When the object is a resource, insert the temporal informa-
tion Ts and Te into the PTs and PTe columns of the Property table, respectively. The
ID column in the Property table corresponding to each record acts as the primary key
referred to in the Statement table.

• Rule 4: Insert the prefix ID in the Namespace table returned by Rule 1 and the correspond-
ing Object EO without prefix into the NS_ID and the Object columns of the Object table,
respectively. When the object is a literal, insert the temporal information Ts and Te into the
OTs and OTe columns of the Object table, respectively. The ID column in the Object table
corresponding to each record acts as the primary key referred to in the Statement table.

• Rule 5: When the NS_ID, Property, and Object columns are the same as the situations
in Rules 3 and 4, the following four cases need to be considered according to different
temporal information.

Namespace

PK ID

Prefix

Subject

PK ID

FK1 NS_ID
Resource

Property

PK ID

FK1 NS_ID
Property
PTs

PTe

Object

PK ID

FK1 NS_ID
Object
OTs

OTe

Statement

PK ID

FK1 Sid
FK2 Pid
FK3 Oid

Fig. 5 Relationships of the created relational schemas

591Journal of Intelligent Information Systems (2023) 61:569–609

1 3

• Discard: if (PTs⋁OTs) ≤ Ts⋀(PTe⋁OTe) ≥ Te, the data will be discarded.
• Insert: if (PTs⋁OTs) > Te or (PTe⋁OTe) < Ts, the data will be inserted.
• Cover: if (PTs⋁OTs) > Ts⋀(PTe⋁OTe) < Te, the original data in the tables will be cov-

ered.
• Combine: if (PTs⋁OTs) > Ts⋀(PTe⋁OTe) ≥ Te or (PTs⋁OTs) ≤ Ts⋀(PTe⋁OTe) < Te,

the original data in the tables will be combined with the new data.
• Rule 6: Insert the ID of the subject, predicate, and object of each tRDF triple returned

by Rules 2, 3, and 4 into the Sid, Pid, and Oid columns of the Statement table.

5.3 Mapping algorithms

To store tRDF data in relational databases, the original tRDF data need to be analyzed first.
Through tRDF data analysis, the prefix, subject, predicate, object, and temporal informa-
tion of the temporal RDF triples can be obtained. The details of the tRDF data analysis are
shown in Algorithm 1.

Algorithm 1 tRDF Data Analysis7

/* When the object is a resource, the temporal information will be obtained from the predicate. */

6 if objectN instanceof Resource
7 String predicate1 = predicate.substring(0, predicate.indexOf("["));
8 String T = predicate.substring(predicate.indexOf("[")+1, predicate.length()-1);
9 String Ts = T.substring(0, T.indexOf(","));//get the Ts

10 String Te = T.substring(T.indexOf(",")+1,T.length());//get the Te
11 end if

/* When the object is a literal, the operation of obtaining temporal information from the object is similar to the above. */

/* Finally, the prefix is split from the subject, predicate and object. */

12 String[] S = subject.split("/");
13 String easyS = S[S.length-1];
14 String regexS ="/"+easyS;
15 String namespaceS = subject.substring(0, subject.indexOf(regexS));

/* The operation of the predicate and object is similar to the above. */

16 end While()

Inputs: tRDF triples

Output: Prefix N, simple subject ES, simple predicate EP, simple object EO, temporal information Ts and Te
1 while(iter.hasNext()) do

/* Jena7 API (Application Programming Interface) is first used to obtain the subject, predicate and object of the tRDF triple. */

2 String subject = stmt.getSubject().toString(); // get the subject
3 String predicate = stmt.getPredicate().toString();// get the property
4 RDFNode objectN = stmt.getObject();
5 Srting object = stmt.getObject().toString();// get the object

/* The predicate and object are then analyzed to obtain the time information according to the type of object. */

With the mapping rules proposed in Sect. 5.2, the algorithm for data storage can store
the prefix, subject without prefix, predicate without prefix, object without prefix, and tem-
poral information of the tRDF triples obtained with Algorithm 1 into the relational tables.
The details of the tRDF data store are shown in Algorithm 2.

7 https:// jena. apache. org/

https://jena.apache.org/

592 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Algorithm 2 Storage of tRDF-to-relational table

Inputs: tRDF data after analysis (see Algorithm 1)

Output: Data in a relational table.

1 while(iter.hasNext()) do
/* If the prefixes of the subject, predicate, and object are not in the Namespace table, the prefixes will be inserted. */

2 if (isNotExistN(namespaceS))
3 String sqlInsertNamespace = "INSERT INTO namespace (prefix) VALUES (?);";
4 executeUpdate (sqlInsertNamespace);
5 end if

/* If the current subject is not in the Subject table, the ID corresponding to the prefix and the subject without prefix will be inserted. */

6 if (isNotExistS(S_ID,easyS))
7 String sqlInsertsubject = "INSERT INTO subject (ns_id,resource) VALUES (?,?);";
8 executeUpdate (sqlInsertsubject);
9 end if

/* When the object is a resource, the temporal information needs to be stored in the Predicate table. */

10 if objectN instanceof Resource

/* If the current predicate is not in the Property table, the ID corresponding to the prefix, the predicate without prefix, and temporal information

will be inserted. */

11 if (isNotExistP(P_ID,easyP,ts,te))
12 String sqlInsertproperty = "INSERT INTO property (ns_id,property,pts,pts) VALUES (?,?,?,?);";
13 executeUpdate (sqlInsertproperty);
14 end if

/* When the predicate without a time interval already exists, the analysis of temporal information is required. */

15 if (isExistP1(P_ID,easyP))
16 if (isDiscard(ts,te)) /* Discard directly, no storage required. */

17 if (isInsert(ts,te))
18 String sqlInsertproperty = "INSERT INTO property (ns_id,property,pts,pts) VALUES (?,?,?,?);";
19 executeUpdate (sqlInsertproperty);
20 end if
21 if (isCover(ts,te)||isCombine(ts,te))
22 modify(P_ID,easyP,ts,te);
23 end if
24 end if

/* If the current object is not in the Object table, the ID corresponding to the prefix and the object without prefix will be inserted. */

25 if (isNotExistO(O_ID,easyO))
26 String sqlInsertobject = "INSERT INTO object (ns_id,object) VALUES (?,?);";
27 executeUpdate (sqlInsertobject);
28 end if
29 end if

/* The operation is similar to the above when the object is a literal. */

/* If the current tRDF triple is not in the Statement table, the IDs corresponding to the subject, predicate, and object of the triple will be inserted. */

30 if(isNotExistStm(Sid,Pid,Oid))
31 String sqlInsertstatement = "INSERT INTO statement (sid,pid,oid) VALUES (?,?,?);";
32 executeUpdate (sqlInsertstatement);
33 end if
34 end While()

6 Query of Temporal RDF

For the temporal RDF model tRDF, the traditional RDF query language SPARQL should
be extended to support tRDF data query. In this paper, we propose such a query language
for the tRDF, termed as tSPARQLt. In this section, we first describe tSPARQLt from two
aspects of syntax and basic query statement. Furthermore, to query the tRDF data stored
in the temporal relational databases with tSPARQLt, it is necessary to transform the
tSPARQLt queries into the corresponding SQL queries.

6.1 Syntax of tSPARQLt

Similar to the SPARQL syntax, we present the tSPARQLt syntax with terms and triple. In
this paper, we use the N-Triples format to represent tRDF triples.

593Journal of Intelligent Information Systems (2023) 61:569–609

1 3

6.1.1 tRDF terms

Following are the four basic terms of the tSPARQLt syntax.

• The syntax for IRIs. The subject, predicate, and object with a resource type of each
RDF triple in SPARQL are composed of complete IRIs, where " < " and " > " are delim-
iters and not part of the IRI reference. In the tRDF model, a timestamp is attached to
the predicate of a triple when its object is a resource. As a result, in tSPARQLt, when
the object is a resource, a time interval [Ts,Te) may be attached after the predicate IRI
of the tRDF triple.

• The syntax for literals. Literals are used to represent string, date, number, or Boolean in
SPARQL. A string literal is surrounded by quotation marks, which is followed by the
language type quoted by "@" or the IRI identifier that indicates the string type quoted
by "^^." A date literal is similar to the string type, where the date is represented as a
string but followed by an IRI identifier that indicates the date type. A number literal
(e.g., INTEGER, DECIMAL, and DOUBLE) is interpreted as the numeric meaning of
the corresponding type, which does not have any quotation marks or is not followed by
an IRI to specify the data type. A Boolean literal can be written directly as TRUE or
FALSE. In the tRDF model, a timestamp may be attached to the object that is a literal.
So, for the tRDF triple whose object is a literal, in tSPARQLt, the time interval [Ts,Te)
should be added after the literal object of the tRDF triple.

• The syntax for query variables. SPARQL identifies a query variable by prefixing it with
mark "?" or "$," but they are not part of the variable name. SPARQL has three types of
query variables: ?S, ?P, and ?O, which denote the query on the subject, predicate, and
object of RDF triples, respectively. For the tRDF model, two new query variables ?Ts
and ?Te are introduced to tSPARQLt, which are used to represent the query on the start
and end times of time intervals, respectively. Then tSPARQLt can query the variables
?Ts and ?Te on the predicate when the object is a resource, and query the variables ?Ts
and ?Te on the object when the object is a literal.

• The syntax for blank nodes. The blank nodes in tSPARQLt are consistent with
SPARQL.

6.1.2 tRDF triple pattern

A triple pattern in SPARQL is a special triple, and at least one of its subject, predicate, or
object is a query variable, for example, {?S ?P ?O.}. In the tRDF model, a temporal triple
contains temporal information on its predicate or object. Correspondingly, a triple pattern
in tSPARQLt should have two new variables ?Ts and ?Te to represent time information.
We identify two types of tRDF triple patterns as follows:

• {?S ?P[?Ts,?Te) ?O.}) for the case that the object is a resource.
• {?S ?P ?O[?Ts,?Te).} for the case that the object is a literal.

6.2 Query statement of tSPARQLt

The query statement structure of tSPARQLt is similar to SPARQL, which contains four
clauses and is summarized in Table 9. These four clauses correspond to the query form,

594 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

dataset, graph pattern with constraints, and solution modifier. In the following, we explain
these four clauses in detail.

6.2.1 Query form of tSPARQLt

Like SPARQL, tSPARQLt also includes four query types identified by the keywords
SELECT, CONSTRUCT , ASK and DESCRIBE, respectively. SELECT returns all vari-
ables or a subset of the variables that are obtained by a query pattern match. CONSTRUCT
produces a tRDF graph that is made up of the matched triples. ASK determines whether
the querying dataset contains the desired match, which returns true or false as a result.
DESCRIBE returns tRDF information for all resources that match the query. Among these
four types of queries, SELECT is very useful for data retrieval.

The use of SELECT of tSPARQLt is basically the same as the SELECT of SPARQL.
First, the statement SELECT * returns all variables and their values bound to these vari-
ables. Second, the statement SELECT ?variable1 ?variable2… only returns the variables
and their bindings that are specified by the given variable names. The main difference
between the SELECT of tSPARQLt and the SELECT of SPARQL is that they use different
RDF models. The tRDF model contains temporal information, and the SELECT of tSPAR-
QLt may contain two query variables ?Ts and ?Te, which describes the start time and end
time of a time interval. So, the SELECT of tSPARQLt can query the time variables ?Ts
and ?Te and the SELECT of SPARQL cannot.

6.2.2 Dataset in tSPARQLt

The dataset in tSPARQLt all means the data resource identified by the URL enclosed
by "[]." The dataset can include zero or more named graphs. Like SPARQL, tSPARQLt
always contains a default graph. A query statement without the clause FROM means that
the query is evaluated against a default graph. When a named graph is specified in the
query statement, which means a match to the named graph only, both the clauses FROM
and FROM NAMED can be used in the query. The former is for a traditional RDF dataset,

Table 9 tSPARQLt query statement

SELECT [DISTINCT] * | SELECT [DISTINCT] ?variable name1 ?variable name2…
[FROM tRDF Dataset | FROM NAMED tRDF Dataset]
WHERE{ { triple pattern1 .

triple pattern2 .
[FILTER (conditions1)] }

{ triple pattern3 .
triple pattern4 .
[FILTER (conditions2)] }

OPTIONAL { triple pattern5 .
triple pattern6 .
[FILTER (conditions3)] }

…
}

[ORDER BY|LIMIT|SKIP]

595Journal of Intelligent Information Systems (2023) 61:569–609

1 3

and the latter is for a temporally extended tRDF dataset. The specific form of the dataset in
tSPARQLt is presented in Table 10.

6.2.3 Graph patterns of tSPARQLt

Like SPARQL, the queries of tSPARQLt are evaluated based on graph pattern match-
ing. Nevertheless, the graph pattern of tSPARQLt is different from the graph pattern of
SPARQL because tSPARQLt is for the tRDF model, and its graph pattern should contain
temporal information also.

The statement SELECT ?Ts ?Te WHERE {?S P[?Ts,?Te) ?O}, for example, matches
all triples with the given predicate P, regardless of the subject, object, and tempo-
ral information. For the matched triples whose objects are a resource, the start time
and end time of their predicates can be returned by the statement with pattern {?S
P[?Ts,?Te) ?O}. And the statement SELECT ?Ts ?Te WHERE {?S ?P O[?Ts,?Te)}
matches all triples with the given object O, regardless of the subject, predicate, and
temporal information. For the matched triples whose objects are a literal, the start time
and end time of their objects can be returned by the statement with pattern {?S ?P
O[?Ts,?Te)}. Also, the statement SELECT ?S WHERE {?S P[Ts,Te) ?O} matches all
triples with the given predicate P[Ts,Te). This statement with pattern {?S P[Ts,Te) ?O}
can return subjects of the matched triples whose objects are a resource. Furthermore,
the statement SELECT ?S WHERE {?S ?P O[Ts,Te)} matches all triples with the given
object O[Ts,Te). This statement with pattern {?S ?P O[Ts,Te)} can return subjects of
the matched triples whose objects are a literal.

The graph pattern of tSPARQLt can combinedly use three conventional vari-
ables (i.e., ?S, ?P and ?O) and two temporal variables (i.e.,?Ts and ?Te). With the
above examples of basic graph patterns, we can construct diverse graph patterns for
tSPARQLt, including basic graph patterns, group graph patterns, and optional graph
patterns.

Basic graph pattern tSPARQLt uses graph patterns to match and filter tRDF data, and
graph patterns are, therefore, the most important part of tSPARQLt query statements. A
graph pattern is built with the basic graph patterns (BGPs), and a basic graph pattern con-
sists of multiple triple patterns. For where all triple patterns need to be matched. Of course,
it is possible that a basic graph pattern only contains a triple pattern. SPARQL contains
eight basic triple patterns, depending on the combination of different query variables. In
tSPARQLt, the basic triple patterns are greatly extended by adding two new query varia-
bles about time information. Table 11 presents the basic triple patterns in tSPARQLt when
the object is a resource. In addition, there are similar basic triple patterns in tSPARQLt
when the object is a literal, which are not shown here.

Group graph pattern The group graph pattern in tSPARQLt consists of a set of basic
graph patterns, in which each basic graph pattern must be matched for query evaluation.

Table 10 Dataset declaration in
tSPARQLt SELECT *

FROM <URL1>
FROM NAMED <URL2>
WHERE{Graph Pattern.}

596 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

In tSPARQLt, the basic graph pattern is composed of triple patterns. Let us look at an
example SELECT ?S ?O WHERE {?S P1[Ts1,Te1) ?O. ?S P2[Ts2,Te2) ?O. ?S P3[Ts3,Te3)
?O.}. This statement matches all triples whose predicates are P1[Ts1,Te1), P2[Ts2,Te2) and
P3[Ts3,Te3), which returns the subjects and objects of such triples.

Optional graph pattern The optional graph pattern in tSPARQLt, which is identified
by the keyword OPTIONAL, contains basic graph patterns or group graph patterns
that may not be matched in query evaluation. In tSPARQLt, the triple patterns are
used to construct the optional graph pattern. The statement SELECT ?S ?O WHERE
{?S P1[Ts1,Te1) ?O. OPTIONAL {?S P2[Ts2,Te2) ?O}}, for example, matches all tri-
ples whose predicates must be P1[Ts1,Te1) and may be P2[Ts2,Te2), which returns
the subjects and objects of such triples.

Constraints in graph pattern Like SPARQL, tSPARQLt also uses the keyword FIL-
TER to filter the results obtained with the graph patterns. The clause FILTER can only
occur in the graph patterns. There are two major scenarios to use FILTER: restrict-
ing the value of strings and restricting the values of some types (e.g., numeric types,
xsd:string, xsd:boolean and xsd:dateTime). We discuss the FILTER of these two sce-
narios in tSPARQLt as follows.

• Restriction of string. The FILTER of tSPARQLt also uses the function regex()
to match string literals. Using the str function, regex() can also match the lexical
forms of other literals. The clause WHERE {?S P[Ts,Te) ?O. FILTER REGEX (?O,
"^Knowledge Graphs", "i")}, for example, searches all triples whose predicates are
P[Ts,Te) and whose objects contain "Knowledge Graphs." Here the "i" flag indicates
that the match in regex() is case-insensitive. The FILTER of tSPARQLt is not differ-
ent from the FILTER of SPARQL in this scenario.

• Restriction of some data types. The FILTER can be used to restrict expressions,
which consist of variables, operators, and RDF terms. In tSPARQLt, the used var-
iables can be ?Ts and ?Te, and the tRDF terms can be time values. The clause
WHERE {?S P[?Ts,?Te) ?O. FILTER (?Ts > 2007–01-02)}, for example, can filter
the matched triples by setting the start time of the predicate on January 2, 2007.

To simplify time expressions in the FILTER of tSPARQLt, it is necessary to use
temporal predicates. Temporal query languages have been widely studied in the context
of relational databases. Following SQL:2011, we introduce and apply seven temporal

Table 11 Triple patterns of
tSPARQLt when the object is a
resource

?S P[Ts,Te) O S ?P[Ts,Te) O S P[?Ts,Te) O
S P[Ts,?Te) O S P[Ts,Te) ?O ?S ?P[Ts,Te) O
?S P[?Ts,Te) O ?S P[Ts,?Te) O ?S P[Ts,Te) ?O
S ?P[?Ts,Te) O S ?P[Ts,?Te) O S ?P[Ts,Te) ?O
S P[?Ts,?Te) O S P[?Ts,Te) ?O S P[Ts,?Te) ?O
?S ?P[?Ts,Te) O ?S ?P[Ts,?Te) O ?S ?P[Ts,Te) ?O
?S P[?Ts,?Te) O ?S P[?Ts,Te) ?O ?S P[Ts,?Te) ?O
S ?P[?Ts,?Te) O S ?P[Ts,?Te) ?O S P[?Ts,?Te) ?O
?S ?P[?Ts,?Te) O ?S ?P[?Ts,Te) ?O ?S P[?Ts,?Te) ?O
S ?P[?Ts,?Te) ?O ?S ?P[?Ts,?Te) ?O S P[Ts,Te) O

597Journal of Intelligent Information Systems (2023) 61:569–609

1 3

predicates in the FILTER of tSPARQLt, including CONTAINS, OVERLAPS, EQUALS,
PRECEDES, SUCCEEDS, IMMEDIATELY PRECEDES, and IMMEDIATELY SUC-
CEEDS. Their usage samples are as follows.

(1) FILTER (X CONTAINS Y)
(2) FILTER (X OVERLAPS Y)
(3) FILTER (X EQUALS Y)
(4) FILTER (X PRECEDES Y)
(5) FILTER (X IMMEDIATELY PRECEDES Y)
(6) FILTER (X SUCCEEDS Y)
(7) FILTER (X IMMEDIATELY SUCCEEDS Y)

Here, X can be a temporal variable such as ?Ts and ?Te, or a pair like (?Ts, ?Te); Y can
be a time point such as 2020–1-1, or a time period such as (2020–1-1, 2021–12-31).

6.2.4 Solution modifiers of tSPARQLt

The returned results of the tSPARQLt query may be large, unordered, and redundant. Like
SPARQL, tSPARQLt can use six modifiers, which are ORDER BY, DISTINCT, LIMIT,
PROJECT, REDUCED, and OFFSET, to optimize the result set. With these modifiers, a
more intuitive and easy-to-understand sequence is created. The solution modifiers that are
commonly used in tSPARQLt are briefly presented as follows.

• ORDER BY: It is followed by variable name(s) and an optional order modifier ASC
(ascending order) or DESC (descending order), ranking the results in ascending/
descending order according to the variable name(s). Here is an example SELECT ?S
WHERE {?S P[Ts,Te) ?O.} ORDER BY DESC (?S). Noe that tSPARQLt may use two
new variables for time, so it can order the results according to the time variables, for
example, SELECT ?S WHERE {?S P[?Ts,?Te) ?O.} ORDER BY ?Ts.

• DISTINCT: It is followed by a variable name(s) in the statement SELECT, eliminating
possible duplicates of the result set on the variable name(s), for example, SELECT DIS-
TINCT ?S WHERE {?S P[Ts,Te) ?O.}.

• LIMIT: It is followed by an integer, indicating the maximum number of returned
results, for example, SELECT ?S WHERE {?S P[Ts,Te) ?O.} LIMIT 20.

• OFFSET: It is followed by an integer, setting the offset of the returned result. It is often
used in conjunction with LIMIT, for example, SELECT ?S WHERE {?S P[Ts,Te) ?O.}
LIMIT 20 OFFSET 10.

6.3 Transformation from tSPARQLt to SQL

tSPARQLt queries are not supported by relational databases. So, to query tRDF data
stored in relational tables with tSPARQLt queries, it is necessary to transform the tSPAR-
QLt queries into the corresponding SQL queries. In this section, we first discuss the rules
of transforming the basic query statement in tSPARQLt to SQL. We further present con-
crete transformation cases where major tSPARQLt queries are transformed into their cor-
responding SQL statements. With the transformation of basic statements, more complex
statements can be transformed.

598 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

6.3.1 Transformation rules

The basic query statement of tSPARQLt proposed in Sect. 6.2 contains four clauses. We
investigate how to use these four clauses in tSPARQLt.

6.3.2 Transformation of query types

As we know, tSPARQLt includes four types of queries: SELECT, ASK, CONSTRUCT
and DESCRIBE. Here we only focus on SELECT, which is widely applied for RDF data
query. The keyword SELECT in tSPARQLt directly corresponds to the keyword SELECT
in SQL. The keyword SELECT of tSPARQLt is followed by variable names prefixed with
"?", which are separated by spaces. The keyword SELECT of SQL is followed by column
names of tables, which are separated by ",".

First, the statement SELECT * is used both in tSPARQLt and SQL. This statement in
tSPARQLt returns all variable names and their binding values, and it in SQL returns all
records (i.e., tuples) in the entire table. The transformation rules for the statement SELECT
are summarized as follows.

• The statement SELECT * in tSPARQLt can make a direct transformation without any
change.

• The statement SELECT ?Variablename1 ?Variablename2 …?VariablenameN in
tSPARQLt needs to be transformed to the column names (i.e., attributes) of the corre-
sponding tables in SQL, where the columns are named according to the actual meaning
of the variable names (i.e., subject, predicate, object or time). The result of the SQL
statement looks like SELECT column1,column2,…, columnN.

Transformation of the dataset The keyword FROM in tSPARQLt directly corresponds to
the keyword FROM in SQL. The keyword FROM of tSPARQLt is followed by the tRDF
dataset to be queried, which is identified by the IRI enclosed in "[]." This dataset can be
either a default or a named graph that may contain zero or more graphs.

The clause FROM can be left out in the tSPARQLt, which means that the query state-
ment can be executed in the default graph. Unlike tSPARQLt, in relational databases,
the clause FROM must exist and is used to specify the table(s) that contain(s) the col-
umn names provided by the clause WHERE. For the transformation of the clause FROM
in tSPARQLt, it is necessary to determine the tables being used by SQL according to the
variables that arise in the clause SELECT in tSPARQLt. The transformation rules for the
dataset are summarized as follows.

• The query statements in the SQL must contain the statement FROM, no matter if there
is the statement FROM in the tSPARQLt.

• The corresponding relational tables are selected according to the query variables pro-
vided in the clause SELECT of tSPARQLt. The selected table names are added to the
clause of SQL (e.g., SELECT column1,column2,…,columnN FROM table_name).

Transformation of Graph Patterns In tSPARQLt, a graph pattern is introduced by
the keyword WHERE, which is contained in "{}." For example, the clause WHERE {?S

599Journal of Intelligent Information Systems (2023) 61:569–609

1 3

P[Ts,Te) ?O} uses a basic graph pattern for the tRDF model, where the objects of tri-
ples are a resource. The clause WHERE in tSPARQLt directly corresponds to the clause
WHERE in SQL. Unlike tSPARQLt, the clause WHERE in SQL is followed by the query
conditions rather than the graph patterns in tSPARQLt. The query conditions of SQL do
not need to be enclosed with "{}" and are connected with the keywords AND/OR. The
query conditions in SQL must correspond to all triple patterns in the tSPARQLt graph pat-
terns. The key to transforming the graph patterns of tSPARQLt to the query conditions of
SQL is to transform the triple patterns contained in the graph patterns.

To transform the clause WHERE of tSPARQLt, it is necessary to understand the mean-
ing of each triple pattern in tSPARQLt first. A basic graph pattern {?S P[Ts,Te) ?O}, for
example, means that it will match all tRDF triples whose objects are a resource and predi-
cates are P[Ts,Te). The corresponding meaning of this basic graph pattern in SQL is to
get all rows whose predicates are P, starting and ending at Ts and Te, respectively. Based
on this understanding, the above basic graph pattern is transformed to a clause of SQL
WHERE Predicate = P AND PTs = Ts AND PTe = Te. In addition, a pluralistic basic graph
pattern in tSPARQLt consists of a set of basic graph patterns. For its transformation, each
basic graph pattern is first transformed separately, and then these transformed conditions
are connected with the keyword OR in SQL.

Moreover, the group graph pattern is a combination of many basic graph patterns. Its
transformation is similar to that of the pluralistic basic graph pattern, except for the key-
word AND rather than OR. We summarize the transformations of graph patterns in tSPAR-
QLt as follows.

• The keyword WHERE in tSPARQLt can be transformed to the keyword WHERE in
SQL directly.

• In SQL, the "{}" in tSPARQLt is not required, and the keyword WHERE is directly
followed by the query conditions.

• A basic graph pattern in tSPARQLt is transformed to the query conditions in SQL.
The triple pattern {S ?P[Ts,Te) ?O}, for example, corresponds to condition PTs = Ts
AND PTe = Te in SQL; the triple pattern {S ?P[?Ts,?Te) ?O} corresponds to condi-
tion Subject = S in SQL.

• The transformations of the pluralistic basic graph pattern and group graph pattern
in tSPARQLt are on the single basic graph pattern. First, their triple patterns are
respectively transformed to the corresponding query conditions in SQL. Then these
transformed conditions are connected with AND (for the transformations of pluralis-
tic basic graph pattern) or OR (for the transformations of group graph pattern).

As to the clause FILTER used in the graph patterns of tSPARQLt, it is transformed to
SQL by adding conditions with the keyword AND. Since the clause FILTER only takes
effect in the basic graph pattern. For a group graph pattern, the clause FILTER in each
basic graph pattern is separately transformed into a condition, which should be placed
in the query statement of SQL. These conditions are finally connected with the keyword
AND. We summarize the transformations of constraints in tSPARQLt as follows.

• A restriction on string values in tSPARQLt is transformed to the corresponding reg-
ular expression with the same semantics in SQL.

• A restriction on number or date in tSPARQLt is transformed with the comparison oper-
ators and keywords such as NOT, LIKE, IN, NOT IN, BETWEEN in SQL.

600 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

• For multiple restrictions in the clause FILTER of tSPARQLt, each restriction is first
transformed to a condition in SQL with the two transformations above. Then these
transformed conditions are connected together with AND. The final conditions are
placed in the clause WHERE of SQL.

Transformation of solution modifiers Generally speaking, tSPARQLt and SQL use very
similar solution modifiers. In the following, we briefly describe some of the common ones.
First, the clause ORDER BY is used both in tSPARQLt and SQL, which follows the clause
WHERE. However, the clause ORDER BY is followed by the variable names in tSPARQLt
and the column names of the tables in SQL, respectively. In addition,, although tSPARQLt
and SQL both use the keywords ASC and DESC, the clauses ORDER BY in tSPARQLt
and SQL are applied differently to represent ascending/descending order. In tSPARQLt,
the keyword ASC or DESC is followed by a ranking variable, which is enclosed in "()"; In
SQL, the keyword ASC or DESC is directly followed by a column name without "()." We
summarize the transformations of the clause ORDER BY in tSPARQLt as follows.

• Essentially, the variable names in tSPARQLt need to be transformed to the correspond-
ing column names in SQL, maintaining their relative positions.

• ASC(?variablename) and DESC(?variablename) in tSPARQLt are transformed as
columnname ASC and columnname DESC in SQL, respectively.

Second, the clause DISTINCT is used in the same way both for tSPARQLt and SQL,
which follows the keyword SELECT and can eliminate duplicate information in the
returned results. In addition, the clauses LIMIT and OFFSET are also used in the same way
both in tSPARQLt and SQL. The clause LIMIT is applied to limit the number of returned
results, and the clause OFFSET is applied to specify the offset of returned results. These
two modifiers follow the clause WHERE in tSPARQLt and SQL. So, the transformations of
the three modifiers from tSPARQLt to SQL are straightforward.

6.3.3 Transformation examples

In the above, we present the principles of transforming tSPARQLt to SQL. In this section,
we take the tRDF model whose triple objects are a resource and triple predicates may be
time-aware as an example to show how diverse tSPARQLt queries with SELECT are trans-
formed to the corresponding SQL queries. These transformation examples are presented in
Table 12. Also, we can have similar transformation examples for querying the tRDF model
whose triple objects are a literal and may be time-aware and do not give them due to the
limited space.

Note that Table 12 gives some transformation examples for tSPARQLt query statements.
With them, we can transform more complex tSPARQLt query statements. For example, we
can modify the triple pattern in Example 2 to obtain the Predicate-Object lists, Subject-
Predicate lists, and Object lists in the basic graph pattern. Other graph patterns, such as
the group graph pattern, can be obtained by extending Example 5, and filtering data can be
achieved by adding more constraints on the basis of Example 7. It should be noted that the
above transformation examples are only at a conceptual level. In practice, the transformed
SQL statements should be optimized against the database structure.

601Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Discussions. Generally speaking, both SPARQL for RDF and SQL for RDBMS are
structure-based query languages with SELECT-FROM-WHERE. They have direct corre-
spondences: the clauses SELECT, FROM, and WHERE in SPARQL directly correspond
to the clauses SELECT, FROM, and WHERE in SQL, respectively. Also, they use very
similar solution modifiers: the clauses ORDER BY, DISTINCT, LIMIT, and OFFSET are
used in the same way both for SPARQL and SQL. It is demonstrated in Chebotko et al.
(2009) that SPARQL-to-SQL translation is semantics preserving. The temporal RDF query

Table 12 Transformation examples of SELECT query for the tRDF model with temporal predicates

tSARPQLt SQL

1 SELECT *|?S|?P|?Ts|?Te|?O
[FROM…]
WHERE {S P[Ts,Te) O.}

SELECT *|SUBJECT|PROPERTY|PTS|PTE|OBJECT
FROM TABLE_NAME
WHERE SUBJECT = S AND PROPERTY = P AND

PTS = Ts
AND PTE = Te AND OBJECT = O

2 SELECT *|?S|?O
[FROM…]
WHERE {?S P[Ts,Te) ?O.}

SELECT *|SUBJECT|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P AND PTS = Ts AND PTE = Te

3 SELECT *|?S|?P|?O
[FROM…]
WHERE {?S ?P[Ts,Te) ?O.}

SELECT *|SUBJECT|PROPERTY|OBJECT
FROM TABLE_NAME
WHERE PTS = Ts AND PTE = Te

4 SELECT *|?S|?Ts|?Te|?O
[FROM…]
WHERE {?S P[?Ts,?Te) ?O.}

SELECT *|SUBJECT|PTS|PTE|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P

5 SELECT *|?S|?O
[FROM…]
WHERE {?S P1[Ts1,Te1) ?O
?S P2[Ts2,Te2) ?O
…}

SELECT *|SUBJECT|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P1 AND PTS = Ts1 AND

PTE = Te1
OR PROPERTY = P2 AND PTS = Ts2 AND PTE = Te2
OR…

6 SELECT *|?S|?O
[FROM…]
WHERE { ?S P[Ts,Te) ?O
FILTER regex(?S, "hello")
FILTER regex(?O, "world")}

SELECT *|SUBJECT|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P ANDP TS = Ts AND PTE = Te
AND SUBJECT ~ ‘hello’
AND OBJECT ~ ‘world’

7 SELECT *|?S|?Ts|?Te|?O
[FROM…]
WHERE {?S P[?Ts,?Te) ?O
FILTER(?Ts < ‘2000–01-01’^^xsd:date)
FILTER(?Te > ‘2010–01-01’^^xsd:dat

e) FILTER(?Te < ‘2020–01-01’^^xs
d:date)

FILTER…}

SELECT *|SUBJECT|PTS|PTE|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P AND PTS < ‘2000–01-01’
AND PTE BETWEEN ‘2010–01-01’ AND ‘2020–01-01’
AND …
SELECT *|SUBJECT|PTS|PTE|OBJECT
FROM TABLE_NAME
WHERE PROPERTY = P
AND PPeriod SUCCEED DATE ‘2000–01-01’
AND PTE BETWEEN ‘2010–01-01’ AND ‘2020–01-01’
AND …

8 SELECT DISTINCT ?S
[FROM…]
WHERE {?S P[Ts,Te) ?O.}
ORDER BY DESC(Ts)
LIMIT 30
OFFEST 2

SELECT DISTINCT SUBJECT
FROM TABLE_NAME
WHERE PROPERTY = P AND PTS = Ts AND PTE = Te;
ORDER BY PTS DESC
LIMIT 30
OFFEST 2

602 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

language tSPARQLt and the temporal RDBMS query language SQL:2011 still have direct
correspondences and similar solution modifiers. On this basis, the semantics preserving
tSPARQLt-to-SQL:2011 translation is completed for all possible situations: triple patterns,
basic graph patterns, optional graph patterns, alternative graph patterns, and value con-
straints. The core of the tSPARQLt-to-SQL:2011 translation is the clause WHERE map-
ping. Any tSPARQLt queries, including complex ones, constitute one of the above primary
situations or a combination of them, and their translations to SQL:2011 are, therefore,
semantics preserving. The transformation examples in Table 12 demonstrate the preserva-
tion of semantics.

7 Experimental Evaluations

We designed several comparative experiments to verify the feasibility and effectiveness of
our proposed storage and query methods in terms of storage time and query efficiency. The
experiments were implemented based on the Eclipse platform with JDK13 and PostgreSQ-
L8and performed on a system with an Intel(R) Core(TM) i5-4210H 2.9 GHz processor,
8.00 GB RAM, and Windows 10 operating system. Here PostgreSQL is the most power-
ful open-source relational database management system (RDBMS). Although there are other
popular RDBMSs available such as Oracle, MySQL, and SQL Server,9 PostgreSQL con-
forms to primary features for SQL:2011 Core conformance. So far, no RDBMS meets full
conformance with this standard. To avoid possible errors that may occur in a single experi-
ment, our experimental results given below were obtained by averaging the results of five
times of experiments.

7.1 Datasets

There are many classical RDF datasets (Ma et al., 2016). Among them, DBpedia10 con-
tains 10,310,048 triples describing a multitude of personal information. As shown in
Table 1, these triples contain temporal information that appears as elements of triples.
Following our temporal RDF model, we re-formatted the triples with temporal infor-
mation in DBpedia. Basically, we extracted and identified two categories of temporal
information and respectively added them as annotations to predicates or objects of the
original triples according to the object type. This way, we obtained the tRDF triples,
as shown in Table 2. Unlike the temporal RDF dataset, whose temporal information is
randomly generated, our tRDF dataset directly comes from the original RDF data with
temporal information and is, therefore more authentic and significant. To test the per-
formance of our proposed storage and query methods on datasets with different sizes,
we divided the constructed tRDF dataset into four tRDF datasets (i.e., Dataset1, Data-
set2, Dataset3, and Dataset4) with different sizes. These four temporal RDF databases
are shown in Table 13.

8 https:// www. postg resql. org/
9 https:// db- engin es. com/ en/ ranki ng
10 http:// wiki. dbped ia. org/ about

https://www.postgresql.org/
https://db-engines.com/en/ranking
http://wiki.dbpedia.org/about

603Journal of Intelligent Information Systems (2023) 61:569–609

1 3

7.2 Experimental results

We verified the feasibility of tRDF data storage and query methods proposed in the paper
from two aspects: storage time and query efficiency. To facilitate the following discussion,
our storage method proposed in Sect. 5 is referred to the PostSQL mapping. We compare
the PostSQL mapping with the vertical mapping.

7.2.1 Storage time

Each tRDF dataset listed in Table 13 is stored in PostgreSQL with vertical mapping and
PostSQL mapping, respectively. The times of storing these four tRDF datasets with these
two methods are shown in Fig. 6. It is shown in Fig. 6 that when the number of tRDF
triples in the datasets is less than one million, the storage times of both methods increase
linearly with the number of triples. However, the storage times increase exponentially with
the number of triples when the amount of data exceeds one million.

Table 13 Four temporal RDF
datasets with different sizes

Dataset Number of tRDF triples Size of
dataset
(M)

Dataset1 102,606 13.7
Dataset2 1,145,487 153
Dataset3 5,332,453 712
Dataset4 10,310,048 1372

Fig. 6 Time of storage

604 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

It is also shown in Fig. 6 that, for storage of Dataset1, the vertical mapping and the Post-
SQL mapping take 0.69 min and 3.43 min, respectively. Their difference in storage time
is not very significant because of the small size of the dataset. For storing a given dataset,
the PostSQL mapping takes more time than the vertical mapping for two reasons. First, the
PostSQL mapping needs to analyze the tRDF triples first to obtain the prefix and temporal
information and then store the obtained information in different tables. tRDF data analysis
inevitably leads to more time consumption. Second, the vertical mapping directly stores
triples in one table and only executes the query once to judge the uniqueness of data. On
the contrary, the PostSQL mapping stores triples in multiple tables and needs to check the
uniqueness of each table, which must lead to the growth of time.

7.2.2 Query efficiency

Based on the PostSQL mapping method proposed in the paper, we used five query state-
ments with different complexities to test their query efficiencies over datasets with different
sizes. These five query statements are presented in Table 14.

In Table 14, Q1 is used to search all records in the Statement table of the PostgreSQL
database and displays the first 500 records. Q2 is used to search all records with the subject
"http:// dbped ia. org/ resou rce/ Fiatau_ Penit ala_ Teo." Q3 specifies the predicate on the basis
of Q2, which is used to search the records with the predicate "http:// xmlns. com/ foaf/0. 1/
gender" and the subject "http:// dbped ia. org/ resou rce/ Fiatau_ Penit ala_ Teo." Q4 is used to
search the records whose temporal information on the object starts on July 23, 1911, and
ends between November 1, 1920, and December 1, 1998. Q5 is used to search the records
whose predicate is "http:// dbped ia. org/ ontol ogy/ death Place," in which the temporal infor-
mation on the predicate starts later than January 1, 1990, and displays the first 500 records.
The experimental results of these five query statements are shown in Fig. 7.

Figure 7a, b, c, d, and e correspond to the query results of Q1 to Q5, respectively. First, it
is shown in Fig. 7 that, for a query that does not involve temporal information, its query effi-
ciency based on the two mapping methods is almost independent of the size of the dataset. At
this point, with the vertical mapping, the maximum time differences of executing each of Q1,
Q2, and Q3 on two datasets, Dataset4 and Dataset1, are respectively 39 ms, 23 ms, and 54 ms;
with the PostSQL mapping, the maximum time differences of executing each of Q1, Q2 and

Table 14 Five query statements

Q1 SELECT * FROM STATEMENT LIMIT 500
Q2 SELECT * FROM STATEMENT WHERE Sid = (SELECT ID FROM SUBJECT WHERE

RESOURCE = ’Fiatau_Penitala_Teo’ AND ns_id = (SELECT ID FROM NAMESPACE WHERE
PREFIX = ’http:// dbped ia. org/ resou rce’))

Q3 SELECT * FROM STATEMENT WHERE Sid = (SELECT ID FROM SUBJECT WHERE
RESOURCE = ’Fiatau_Penitala_Teo’ AND ns_id = (SELECT ID FROM NAMESPACE WHERE
PREFIX = ’http:// dbped ia. org/ resou rce’)) AND Pid = (SELECT ID FROM PROPERTY WHERE
PROPERTY = ’gender’ AND ns_id = (SELECT ID FROM NAMESPACE WHERE PRE-
FIX = ’http:// xmlns. com/ foaf/0.1’))

Q4 SELECT * FROM STATEMENT WHERE Oid in (SELECT ID FROM OBJECT WHERE
TS = ’1911–07-23’ AND TE BETWEEN ’1920–11-01’ AND ’1998–12-01’)

Q5 SELECT * FROM STATEMENT WHERE Pid in (SELECT ID FROM PROPERTY WHERE
PROPERTY = ’deathPlace’ AND ns_id = (SELECT ID FROM NAMESPACE WHERE PRE-
FIX = ’http:// dbped ia. org/ ontol ogy’) AND TS > ’1900–01-01’) LIMIT 500

http://dbpedia.org/resource/Fiatau_Penitala_Teo
http://xmlns.com/foaf/0.1/gender
http://xmlns.com/foaf/0.1/gender
http://dbpedia.org/resource/Fiatau_Penitala_Teo
http://dbpedia.org/ontology/deathPlace
http://dbpedia.org/resource
http://dbpedia.org/resource
http://xmlns.com/foaf/0.1
http://dbpedia.org/ontology

605Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Q3 on two datasets Dataset4 and Dataset1 are respectively 43 ms, 72 ms and 19 ms. For a
query that involves temporal information, however, its execution time based on two mapping
methods is significantly affected by the size of the dataset. For two queries Q4 and Q5, based
on the PostSQL mapping, their execution time on Dataset4 are 16.21 times and 36.54 times
longer than their execution time on Dataset1. In addition, by comparing Fig. 7d and e with
Fig. 7a, b, and c, it can be observed that, for the same dataset, the queries involving temporal
information generally need more execution time than the queries without temporal informa-
tion. For the queries without temporal information, their executions based on the vertical map-
ping and the PostSQL mapping have an approximate query efficiency. For the queries with
temporal information (e.g., Q4 and Q5), their executions based on the PostSQL mapping take
more time. This is because PostSQL mapping uses multiple relational tables to store data and
inevitably involves querying multi-tables. It is shown in Fig. 7d and e that, for queries Q4 and
Q5 over Dataset4 with 10 million data, their executions based on the PostSQL mapping only
take 1.95 s, 1.90 s longer than their executions based on the vertical mapping.

8 Conclusion and Future Work

In this paper, we proposed a novel temporal RDF model, termed tRDF, in which a temporal
triple contains a temporal predicate or a temporal object. We defined the syntax and semantics
of tRDF in detail. With the proposed temporal RDF model, we proposed the storage and query
method to manage tRDF data with SQL:2011. We developed the rules and algorithms that can
map tRDF data to relational databases. In addition, we extended the SPARQL query language
and provided a temporal query language termed tSPARQLt for the tRDF model query. To effi-
ciently query the temporal RDF data stored in the relational databases, we further defined par-
tial transformation rules for transforming the query statements from tSPARQLt to SQL. Finally,

Fig. 7 Query time of different queries over datasets

606 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

we designed comparison experiments to verify the feasibility and effectiveness of our proposed
storage and query methods in terms of storage time and query efficiency.

In this paper, we used PostgreSQL to verify our storage and query methods against a tem-
poral RDF dataset generated from DBPedia. In our future work, we plan to generate several
massive temporal RDF datasets from, for example, Wikipedia and YAGO, and then verify
our methods against these temporal RDF datasets with other relational database management
systems such as Oracle, MySQL, and SQL Server. Considering that the queries with aggrega-
tions are usually used by professionals, we will investigate how to further extend tSPARQLt for
aggregate queries over temporal RDF data and how to transform it to SQL. Scalability is a cru-
cial issue with large-scale temporal RDF data management. In this direction, we will introduce
optimization structures such as indexes and data partitioning and also explore the storage of
massive temporal RDF data with NoSQL databases.

Acknowledgements The authors wish to thank the anonymous referees for their valuable comments and
suggestions.

Authors’ contributions Ruizhe Ma and Xiao Han completed the main manuscript text, Li Yan and Nasrullah
Khan validated the experiments, and Zongmin Ma reviewed and edited the manuscript. All authors reviewed
the manuscript.

Data Availability The data and materials used in the current study are available from the corresponding
author on reasonable request.

Declarations

Ethical Approval Not applicable.

Competing interests All authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

Abadi, D. J., et al. (2009). SW-Store: A vertically partitioned DBMS for Semantic Web data manage-
ment. VLDB Journal,18(2), 385–406. https:// doi. org/ 10. 1007/ s00778- 008- 0125-y

Atre, M., & Hendler, J. A. (2009). BitMat: a main memory bit-matrix of RDF triples. Proceedings of the 5th
International Workshop on Scalable Semantic Web Knowledge Base Systems 33–48. CEUR-WS.org.

Bornea, M A et al. (2013), Building an efficient RDF store over a relational database, Proceedings
of the 2013 ACM International Conference on Management of Data, ACM, 121–132. https:// doi.
org/ 10. 1145/ 24636 76. 24637 18

Brahmia, Z., et al. (2022). Ontology versioning driven by instance evolution in the τOWL framework.
Journal of Information & Knowledge Management,21(1), 2250002:1-2250002:46. https:// doi.
org/ 10. 1142/ S0219 64922 25000 22

Brandt S et al. (2017), A framework for temporal ontology-based data access: a proposal. Proceed-
ings of the European Conference on Advances in Databases and Information Systems, Springer,
161–173. https:// doi. org/ 10. 1007/ 978-3- 319- 67162-8_ 17

Canito, A., Corchado, J. M., & Marreiros, G. (2022). A systematic review on time-constrained ontol-
ogy evolution in predictive maintenance. Artificial Intelligence Review,55(4), 3183–3211.
https:// doi. org/ 10. 1007/ s10462- 021- 10079-z

Chebotko, A., Lu, S., & Fotouhi, F. (2009). Semantics preserving SPARQL-to-SQL translation. Data
& Knowledge Engineering,68(10), 973–1000. https:// doi. org/ 10. 1016/j. datak. 2009. 04. 001

Chen, L., et al. (2022). DACHA: A dual graph convolution based temporal knowledge graph repre-
sentation learning method using historical relation. ACM Transactions on Knowledge Discovery
from Data,16(3), 46:1-4618. https:// doi. org/ 10. 1145/ 34770 51

https://doi.org/10.1007/s00778-008-0125-y
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1145/2463676.2463718
https://doi.org/10.1142/S0219649222500022
https://doi.org/10.1142/S0219649222500022
https://doi.org/10.1007/978-3-319-67162-8_17
https://doi.org/10.1007/s10462-021-10079-z
https://doi.org/10.1016/j.datak.2009.04.001
https://doi.org/10.1145/3477051

607Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Choi, P., Jung, J., & Lee, K. H. (2013). RDFChain: chain centric storage for scalable join processing
of RDF graphs using MapReduce and HBase. Proceedings of the ISWC 2013 Posters & Demon-
strations Track 249–252. CEUR-WS.org.

Clifford J and Croker A (1987), The historical relational data model (HRDM) and algebra based on
lifespans. Proceedings of the Third International Conference on Data Engineering, IEEE, 528–
537. https:// doi. org/ 10. 1109/ ICDE. 1987. 72724 20

Cudre-Mauroux P et al. (2013), NoSQL databases for RDF: an empirical evaluation. Proceedings
of the 12th International Semantic Web Conference, Springer, 310–325. https:// doi. org/ 10. 1007/
978-3- 642- 41338-4_ 20

Kalayci E G et al. (2018), Ontop-temporal: a tool for ontology-based query answering over tempo-
ral data. Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, ACM, 1927–1930. https:// doi. org/ 10. 1145/ 32692 06. 32692 30

Erling O and Mikhailov I (2009), Virtuoso: RDF support in a native RDBMS, Semantic Web Informa-
tion Management (eds. De Virgilio, R. et al.), Springer-Verlag, 501–519. https:// doi. org/ 10. 1007/
978-3- 642- 04329-1_ 21

Faisal, S., & Sarwar, M. (2014). Temporal and multi-versioned XML documents: A survey. Informa-
tion Processing and Management.,50(1), 113–131. https:// doi. org/ 10. 1016/j. ipm. 2013. 08. 003

Fox A et al. (2013). Spatio-temporal indexing in non-relational distributed databases. Proceedings of
the IEEE International Conference on Big Data, IEEE, 291–299. https:// doi. org/ 10. 1109/ BigDa
ta. 2013. 66915 86

Gadia, S. K. (1988). A homogeneous relational model and query languages for temporal databases.
ACM Transactions on Database Systems,13(4), 418–448. https:// doi. org/ 10. 1145/ 49346. 50065

Gao Q, et al. (2018), A semantic framework for designing temporal SQL databases. Proceedings of
the 37th International Conference on Conceptual Modeling, Springer, 382–396. https:// doi. org/
10. 1007/ 978-3- 030- 00847-5_ 27

Grandi, F. (2009). Multi-temporal RDF ontology versioning, Proceedings of the 3rd International
Workshop on Ontology Dynamics. CEUR-WS.org.

Grandi, F. (2010). T-SPARQL: a TSQL2-like temporal query language for RDF, Proceedings of the
Fourteenth East-European Conference on Advances in Databases and Information Systems
21–30. CEUR-WS.org.

Gutierrez, C., Hurtado, C. A., & Vaisman, A. A. (2007). Introducing time into RDF. IEEE Transactions
on Knowledge and Data Engineering,19(2), 207–218. https:// doi. org/ 10. 1109/ TKDE. 2007. 34

Hoffert, J., et al. (2013). YAGO2: A spatially and temporally enhanced knowledge base from wikipe-
dia. Artificial Intelligence,194, 28–61. https:// doi. org/ 10. 1016/j. artint. 2012. 06. 001

Hogan, A., et al. (2010). RDF needs annotations, Proceedings of 2010 W3C Workshop—RDF Next
Steps. W3C.

Hogan, A., et al. (2022). Knowledge graphs. ACM Computing Surveys,54(4), 1–37. https:// doi. org/ 10.
1145/ 34477 72

Hu, Y., & Dessloch, S. (2015). Temporal data management and processing with column oriented
NoSQL databases. Journal of Database Management,26(3), 41–70. https:// doi. org/ 10. 4018/ JDM.
20150 70103

Huang, J. J., et al. (2020). Cluster query: A new query pattern on temporal knowledge graph. World
Wide Web,23(2), 755–779. https:// doi. org/ 10. 1007/ s11280- 019- 00754-1

Khadilkar, V., et al. (2012). Jena-HBase: a distributed, scalable and efficient RDF triple store. Proceed-
ings of the 11th International Semantic Web Conference (Posters & Demos)85–88. CEUR-WS.org.

Koubarakis M and Kyzirakos K (2010), Modeling and querying metadata in the Semantic sensor Web:
the model stRDF and the query language stSPARQL. Proceedings of the 7th Extended Semantic
Web Conference, Springer, 425–439. https:// doi. org/ 10. 1007/ 978-3- 642- 13486-9_ 29

Kulkarni, K. G., & Michels, J.-E. (2012). Temporal features in SQL:2011. ACM SIGMOD
Record,41(3), 34–43. https:// doi. org/ 10. 1145/ 23807 76. 23807 86

Lee, K., & Liu, L. (2013). Scaling queries over big RDF graphs with semantic hash partitioning. Pro-
ceedings of the VLDB Endowment,6(14), 1894–1905. https:// doi. org/ 10. 14778/ 25565 49. 25565 71

Lopes N et al. (2010), AnQL: SPARQLing up annotated RDFS, Proceedings of the 2010 International
Semantic Web Conference, Springer, 518–533. https:// doi. org/ 10. 1007/ 978-3- 642- 17746-0_ 33

Lu, W., Zhao, Z., & Wang, X. (2019). A lightweight and efficient temporal database management
system in TDSQL. Proceedings of the VLDB Endowment,12(12), 2035–2046. https:// doi. org/ 10.
14778/ 33520 63. 33521 22

Ma, Z. M., Capretz, M., & Yan, L. (2016). Storing massive Resource Description Framework (RDF)
data: A survey. The Knowledge Engineering Review,31(4), 391–413. https:// doi. org/ 10. 1017/
S0269 88891 60002 17

https://doi.org/10.1109/ICDE.1987.7272420
https://doi.org/10.1007/978-3-642-41338-4_20
https://doi.org/10.1007/978-3-642-41338-4_20
https://doi.org/10.1145/3269206.3269230
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1007/978-3-642-04329-1_21
https://doi.org/10.1016/j.ipm.2013.08.003
https://doi.org/10.1109/BigData.2013.6691586
https://doi.org/10.1109/BigData.2013.6691586
https://doi.org/10.1145/49346.50065
https://doi.org/10.1007/978-3-030-00847-5_27
https://doi.org/10.1007/978-3-030-00847-5_27
https://doi.org/10.1109/TKDE.2007.34
https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/10.1145/3447772
https://doi.org/10.1145/3447772
https://doi.org/10.4018/JDM.2015070103
https://doi.org/10.4018/JDM.2015070103
https://doi.org/10.1007/s11280-019-00754-1
https://doi.org/10.1007/978-3-642-13486-9_29
https://doi.org/10.1145/2380776.2380786
https://doi.org/10.14778/2556549.2556571
https://doi.org/10.1007/978-3-642-17746-0_33
https://doi.org/10.14778/3352063.3352122
https://doi.org/10.14778/3352063.3352122
https://doi.org/10.1017/S0269888916000217
https://doi.org/10.1017/S0269888916000217

608 Journal of Intelligent Information Systems (2023) 61:569–609

1 3

McBride, B. (2002). Jena: A Semantic Web toolkit. IEEE Internet Computing,6(6), 55–59. https:// doi.
org/ 10. 1109/ MIC. 2002. 10677 37

Mckenzie, L. E., & Snodgrass, R. T. (1991). Evaluation of relational algebras incorporating the time
dimension in databases. ACM Computing Surveys,23(4), 501–543. https:// doi. org/ 10. 1145/
125137. 125166

Neumann, T., & Weikum, G. (2008). RDF-3X: a RISC-style engine for RDF. Proceedings of the
VLDB Endowment,1(1), 647–659. https:// doi. org/ 10. 14778/ 14538 56. 14539 27

O’Connor, M. J., & Das, A. K. (2010). A lightweight model for representing and reasoning with tem-
poral information in biomedical ontologies. Proceedings of the 3rd International Conference on
Health Informatics 90–97. INSTICC Press.

Papailiou N et al. (2013), H2RDF+: High-performance distributed joins over large-scale RDF graphs,
Proceedings of the 2013 IEEE International Conference on Big Data, IEEE, 255–263. https:// doi.
org/ 10. 1109/ BigDa ta. 2013. 66915 82

Perry M, Jain P and Sheth A P (2011), SPARQL-ST: Extending SPARQL to support spatiotemporal queries. Geo-
spatial Semantics and the Semantic Web, Springer, 61–86. https:// doi. org/ 10. 1007/ 978-1- 4419- 9446-2_3

Pugiles A, Udrea O and Subrehmanian V S (2008), Scaling RDF with time. Proceedings of the 17th Inter-
national Conference on World Wide Web, ACM, 605–614. https:// doi. org/ 10. 1145/ 13674 97. 13675 79

Salas P E et al (2011), RDB2RDF plugin: relational databases to RDF plugin for eclipse. Proceedings of the
1st Workshop on Developing Tools as Plug-ins, ACM, 28–31. https:// doi. org/ 10. 1145/ 19847 08. 19847 17

Shao B, Wang H X and Li Y T (2013), Trinity: a distributed graph engine on a memory cloud. Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data, ACM, 505–
516. https:// doi. org/ 10. 1145/ 24636 76. 24677 99

Sintek M and Kiesel M (2006), RDFBroker: a signature-based high-performance RDF store. Proceedings of
the 3rd European Semantic Web Conference, Springer, 363–377. https:// doi. org/ 10. 1007/ 11762 256_ 28

Snodgrass, R. (1987). The temporal query language TQuel. ACM Transactions on Database Sys-
tems,12(2), 247–298. https:// doi. org/ 10. 1145/ 22952. 22956

Snodgrass, R. (1994). TSQL2 language specification. ACM SIGMOD Record,23(1), 65–86. https:// doi.
org/ 10. 1145/ 181550. 181562

Stonebraker M R et al. (2005), C-Store: a column-oriented DBMS. Proceedings of the 31st International
Conference on Very Large Data Bases, ACM, 553–564. https:// doi. org/ 10. 1145/ 32265 95. 32266 38

Straccia U et al. (2010), A general framework for representing and reasoning with annotated Semantic Web data.
Proceedings of the 24th AAAI Conference on Artificial Intelligence. https:// doi. org/ 10. 1609/ aaai. v24i1. 7499

Tappolet J and Bernstein A (2009), Applied temporal RDF: efficient temporal querying of RDF data
with SPARQL. Proceedings of the 6th European Semantic Web Conference, Springer, 308–322.
https:// doi. org/ 10. 1007/ 978-3- 642- 02121-3_ 25

Udrea, O., Recupero, D. R., & Subrahmanian, V. S. (2010). Annotated RDF. ACM Transactions on Com-
putational Logic,11(2), 1–41. https:// doi. org/ 10. 1145/ 16562 42. 16562 45

Wang, H.-T., & Tansel, A. U. (2019). Temporal extensions to RDF. Journal of Web Engineering,18(1–3),
125–168. https:// doi. org/ 10. 13052/ jwe15 40- 9589. 18134

Wang Y F et al (2010), Timely YAGO: harvesting, querying, and visualizing temporal knowledge from
wikipedia. Proceedings of the 13th International Conference on Extending Database Technology,
ACM, 697–700. https:// doi. org/ 10. 1145/ 17390 41. 17391 30

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: sextuple indexing for semantic web data manage-
ment. Proceedings of the VLDB Endowment,1(1), 1008–1019. https:// doi. org/ 10. 14778/ 14538 56. 14539 65

Wolff, B. G. J., Fletcher, G. H. L., & Lu, J. J. (2015). An extensible framework for query optimization on
TripleT-based RDF stores, Proceedings of the 2015 EDBT/ICDT Workshops 190–196. CEUR-WS.org.

Wu, G., et al. (2009). System II: A native RDF repository based on the hypergraph representation for
RDF data model. Journal of Computer Science and Technology, 24 (4), 652–664. https:// doi. org/
10. 1007/ s11390- 009- 9265-9

Xuan D N, Bellatreche L and Pierra G (2006), A versioning management model for ontology-based data
warehouses. Proceedings of the 8th International Conference on Data Warehousing and Knowledge
Discovery, Springer, 195–206. https:// doi. org/ 10. 1007/ 11823 728_ 19

Yan, L., Zhao, P., & Ma, Z. M. (2019). Indexing temporal RDF graph. Computing,101(10), 1457–1488.
https:// doi. org/ 10. 1007/ s00607- 019- 00703-w

Zaniolo, C., et al. (2018). User-friendly temporal queries on historical knowledge bases. Information and
Computation,259(3), 444–459. https:// doi. org/ 10. 1016/j. ic. 2017. 08. 012

Zhong Y, Fang J and Zhao X (2013), VegaIndexer: a distributed composite index scheme for big spatio-
temporal sensor data on cloud. Proceedings of the 2013 IEEE International Geoscience and Remote
Sensing Symposium, IEEE, 1713–1716. https:// doi. org/ 10. 1109/ IGARSS. 2013. 67231 26

https://doi.org/10.1109/MIC.2002.1067737
https://doi.org/10.1109/MIC.2002.1067737
https://doi.org/10.1145/125137.125166
https://doi.org/10.1145/125137.125166
https://doi.org/10.14778/1453856.1453927
https://doi.org/10.1109/BigData.2013.6691582
https://doi.org/10.1109/BigData.2013.6691582
https://doi.org/10.1007/978-1-4419-9446-2_3
https://doi.org/10.1145/1367497.1367579
https://doi.org/10.1145/1984708.1984717
https://doi.org/10.1145/2463676.2467799
https://doi.org/10.1007/11762256_28
https://doi.org/10.1145/22952.22956
https://doi.org/10.1145/181550.181562
https://doi.org/10.1145/181550.181562
https://doi.org/10.1145/3226595.3226638
https://doi.org/10.1609/aaai.v24i1.7499
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1145/1656242.1656245
https://doi.org/10.13052/jwe1540-9589.18134
https://doi.org/10.1145/1739041.1739130
https://doi.org/10.14778/1453856.1453965
https://doi.org/10.1007/s11390-009-9265-9
https://doi.org/10.1007/s11390-009-9265-9
https://doi.org/10.1007/11823728_19
https://doi.org/10.1007/s00607-019-00703-w
https://doi.org/10.1016/j.ic.2017.08.012
https://doi.org/10.1109/IGARSS.2013.6723126

609Journal of Intelligent Information Systems (2023) 61:569–609

1 3

Zhu, C C et al. (2021), Learning from history: modeling temporal knowledge graphs with sequential copy-
generation networks. Proceedings of the 2021 AAAI Conference on Artificial Intelligence, AAAI,
4732–4740. https:// doi. org/ 10. 1609/ aaai. v35i5. 16604

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1609/aaai.v35i5.16604

	Modeling and querying temporal RDF knowledge graphs with relational databases
	Abstract
	1 Introduction
	2 Related Work
	2.1 RDF storage
	2.2 Temporal databases
	2.3 Temporal RDF models and query languages

	3 Preliminaries
	3.1 RDF Model
	3.2 SPARQL
	3.3 SQL:2011

	4 Temporal RDF Model
	4.1 Overview of the tRDF model
	4.2 tRDF syntax
	4.2.1 tRDF triple
	4.2.2 tRDF graph

	4.3 tRDF semantics
	4.3.1 Temporal interpretation
	4.3.2 Temporal satisfaction
	4.3.3 Temporal entailment

	5 Storage of tRDF
	5.1 Design of database schema
	5.2 Mapping rules
	5.3 Mapping algorithms

	6 Query of Temporal RDF
	6.1 Syntax of tSPARQLt
	6.1.1 tRDF terms
	6.1.2 tRDF triple pattern

	6.2 Query statement of tSPARQLt
	6.2.1 Query form of tSPARQLt
	6.2.2 Dataset in tSPARQLt
	6.2.3 Graph patterns of tSPARQLt
	6.2.4 Solution modifiers of tSPARQLt

	6.3 Transformation from tSPARQLt to SQL
	6.3.1 Transformation rules
	6.3.2 Transformation of query types
	6.3.3 Transformation examples

	7 Experimental Evaluations
	7.1 Datasets
	7.2 Experimental results
	7.2.1 Storage time
	7.2.2 Query efficiency

	8 Conclusion and Future Work
	Acknowledgements
	References

