
https://doi.org/10.1007/s10844-022-00763-z

MaMiPot: a paradigm shift for the classification
of imbalanced data

Hossein Ghaderi Zefrehi1 ·Hakan Altınçay1

Received: 5 June 2022 / Revised: 1 November 2022 / Accepted: 3 November 2022 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The most frequently used approach for imbalance learning is resampling. In this technique,
the minority class is oversampled. Most of the algorithms used for this purpose are variants
of the well-known algorithm named as SMOTE, which is based on creating synthetic sam-
ples on the lines connecting selected minority instances. The variants are mainly designed
to alleviate the shortcomings of SMOTE where, the idea of generating synthetic samples to
avoid the bias on the majority class is preserved. This study aims at following a different
path. Instead of balancing, the proposed approach is based on repositioning the samples.
In particular, the classifier is enforced to learn the decision regions of the minority class
by repositioning the majority class samples. Consequently, the regions in which positive
instances exist will not be outnumbered the majority class samples. Hence the classifier
labels these regions as the minority class. To tackle the outliers, the minority samples are
repositioned in small steps to avoid distorting the original distribution. The potential of the
proposed repositioning scheme is also evaluated as a preprocessing algorithm for SMOTE.
The experiments that are conducted on 52 datasets from the KEEL repository have shown
that the proposed approach is highly effective, when evaluated in terms of F -score, G-mean
and AUC.

Keywords Imbalance learning · Balancing · Repositioning · SMOTE ·
Binary classification

1 Introduction

In binary classification, the number of samples in one class may be much smaller than the
other, leading to the so-called class imbalance problem (He & Ma, 2013; Fernández et al.,
2018a). The class with smaller number of samples is generally labeled as the minority (or,

� Hossein Ghaderi Zefrehi
hossein.zefrehi@emu.edu.tr

Hakan Altınçay
hakan.altincay@emu.edu.tr

1 Department of Computer Engineering, Eastern Mediterranean University, Famagusta,
North Cyprus, via Mersin 10, Turkey

Published online: 7 December 2022

Journal of Intelligent Information Systems (2023) 61:299–324

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-022-00763-z&domain=pdf
mailto: hossein.zefrehi@emu.edu.tr
mailto: hakan.altincay@emu.edu.tr


positive) class and the other as majority (or, negative). When other distribution-dependent
factors such as availability of rare instances representing infrequent sub-concepts and over-
laps between minority and majority classes are combined with the bias on the majority class
due to imbalance, the test samples are generally classified as the majority class (Napierala
& Stefanowski, 2016). Most of the conventionally used learners achieve poor performance
on the minority class since they compute decision regions by considering the number of
classification errors on the whole training data (Jo & Japkowicz, 2004). The imbalance
problem is generally tackled using two main approaches (Gong & Kim, 2017). The first is
based on resampling the minority samples to balance the training data (Bej et al., 2021).
After balancing by resampling, some parts of the feature space where the minority samples
were outnumbered by the negatives will be learned as positive decision regions. Numer-
ous techniques have been proposed for synthetic sample generation, most of which are
variants of a well known algorithm named as synthetic minority oversampling technique
(SMOTE) (Chawla et al., 2002; Fernández et al., 2018b; Kovács, 2019). In this approach,
new instances are generated on lines connecting existing minority samples. Particularly,
given a minority point named as seed, a sample from its k-nearest minority samples is ran-
domly selected. Then, a synthetic sample is generated on the line joining these two points.
This process is repeated until the desired number of synthetic samples are obtained. Such
data-level approaches are also combined with ensembling techniques to improve the gen-
eralization performances (Ghaderi Zefrehi & Altınçay, 2020; Galar et al., 2013; Haixiang
et al., 2017; Dı́ez-Pastor et al., 2015). As an alternative approach, algorithm-level modi-
fications of existing classifiers is addressed. For instance, in cost-sensitive decision trees,
the cost of misclassifying a minority class sample is set to be higher than a majority sam-
ple (Ling et al., 2006). The penalty of misclassifying minority class samples by a support
vector machine classifier is set to be higher than that of the majority class (Veropoulos
et al., 1999). Similarly, a weighted cross-entropy loss is employed for XGBoost to consider
misclassified positive samples as larger loss compared to the misclassified negatives (Wang
et al., 2020).

SMOTE has been criticized to have several shortcomings (Barua et al., 2014), which can
be itemized as follows: (1) The samples in dense clusters will have the neighbors that are
likely to be from the same clusters. In such cases, the synthetic samples will be near repli-
cas of the seed sample lying in dense clusters. (2) The relative positions and distances of
the minority samples are not considered in k-nearest-based neighbor selection. Because of
this, the selected samples may be in incorrect regions. For instance, the seed sample may
be noisy or an outlier and hence located in a region that is far away from the other minority
samples. In such a case, the synthetic samples may also be away from the other minority
examples. (3) The nearest neighbor of a seed may be in a different cluster. In this type of
cases, the synthetic sample may be located in space of the majority class. (4) Due to the
linear interpolation-based sample generation, true distribution of the minority samples will
be distorted (Halimu & Kasem, 2021; Xie et al., 2022). If a classifier takes into account
the variance of the minority samples, incorrect variance estimates will lead to additional
challenges for the classifiers during testing (Blagus & Lusa, 2013). Moreover, the train-
ing samples will not be independent after balancing, violating independence assumption, if
employed by the classifier (Blagus & Lusa, 2013). (5) Using an a priori fixed k value is
another weakness since variations of the density of samples in different regions is ignored.
(6) All samples are not equally important from oversampling point of view. For instance,

300 Journal of Intelligent Information Systems (2023) 61:299–324



some samples such as those located close to the decision boundary are harder-to-classify but
SMOTE does not differentiate between the samples (Barua et al., 2014; Napierala &
Stefanowski, 2016).

The solutions for binary imbalanced classification tasks are generally easier to formulate
when compared to multi-class setting. For instance, samples can be categorized by taking
into account their positions with respect to the decision boundary, such as boundary sam-
ple, safe or outlier (Napierala & Stefanowski, 2016). Since there are two classes, each class
is either minority or majority. However, multi-class problems are more challenging, mainly
due to having more complex relations between the classes than the binary case (Krawczyk,
2016; Lango & Stefanowski, 2022). Moreover, learning the decision boundaries is expected
to be more difficult in the multi-class case. Binary imbalanced classification has attracted
more interest and many variants of SMOTE have been proposed for this purpose, each
addressing some of its shortcomings (Fernández et al., 2018b; Kovács, 2019). Most of these
techniques employ alternative strategies for selecting and/or weighting the minority samples
during resampling. Two well-known and frequently-mentioned methods are Borderline-
SMOTE and ADASYN (Han et al., 2005; He et al., 2008). In Borderline-SMOTE, a subset
of minority samples is considered as seed samples. For instance, if all k-nearest neighbors
of a minority sample are from the majority class, it is assumed to be noise and it is not con-
sidered during oversampling. A sample in the remaining set is considered as a seed only
if most of its nearest samples are from the majority class. This criterion is expected to be
mainly satisfied by the borderline samples and hence the learner will more accurately learn
the decision boundary. A variant of Borderline-SMOTE which takes into account the neigh-
boring majority samples as well in generating synthetic samples is also proposed (Han et al.,
2005). On the other hand, ADASYN assigns different weights to the minority samples (He
et al., 2008). The likelihood that a sample will be selected as a seed is proportional with its
weight. The weight of a sample is computed by taking into account the number of major-
ity samples in its nearest sample set. Using weights, it is aimed at focusing on the samples
that are harder to classify. However, noisy samples that are located in majority class region
may also get large weights, leading to introducing additional noisy samples (Barua et al.,
2014). SMOTE may generate synthetic samples that overlap with the majority class space,
leading to expanded minority clusters. Data cleaning is an alternative technique used for
post-processing the balanced datasets to correct the distortions of the class clusters. For
instance, in SMOTE-ENN, any instance that is not correctly labeled by employing three
nearest neighbors is deleted (Batista et al., 2004). Similarly, SMOTE-TomekLinks discards
the instances that form Tomek links (Batista et al., 2004). CCR is another data-cleaning
based approach where, before oversampling, the neighborhood of each minority sample is
cleaned by removing majority class instances (Koziarski & Wożniak, 2017).

The ultimate goal of oversampling is to enforce the learner to label the feature space
including minority samples as the positive class, although some of these regions might be
outnumbered by the negative samples. In fact, this can be achieved using an alternative
approach. Rather than increasing the numbers of positive samples in the subspace where
they appear, we propose to reposition the negative samples towards their centroid so as to
reduce the number of majority samples in the subspace where the minority samples exist.
Similarly, the positives are repositioned but for small steps to effectively deal with differ-
ent types of minority samples such as borderline or outlying instances. This approach has
several advantages compared to the oversampling-based approaches. For instance, small

301Journal of Intelligent Information Systems (2023) 61:299–324



displacements will keep the positive borderline samples close to their original positions and
hence do not distort the boundary. After repositioning, the outliers that are more likely to be
in majority class space will not mislead the learner as their original forms since they will be
closer to the other positives. Moreover, irrelevant positive regions are not generated since
the minority instances are slightly modified. Consequently, the assumptions made by some
classifiers about the original class distribution such as normality of feature values are not
violated. The hard-to-classify minority samples problem is also addressed by reducing the
number of negatives in the corresponding spaces.

The first step of the proposed MAjority and MInority rePOsitioning Technique
(MaMiPot) is to train the learner on the given dataset to identify the misclassified samples,
that is the set of false positives (sFP) and false negatives (sFN). The initial set of the seed
samples is computed as the union of sFP and sFN. The algorithm repositions the seed sam-
ples in sFP using the centroid of the true negatives by linear interpolation. Similarly, the
samples in sFN are repositioned by employing centroid of the correctly classified positive
samples. The learner is re-trained by employing the updated training set and evaluated on the
original training data to check for improvement in the performance metric. The procedure
is repeated until further performance gain is not achieved.

The following section presents a brief review of the resampling-based techniques to
alleviate the aforementioned shortcomings of SMOTE. The complete description of the pro-
posed imbalance learning approach is presented in Section 3. The experimental work done
on 52 datasets is presented in Section 4. The conclusions drawn are given in Section 5.

2 Literature review

More than hundred variants of SMOTE have been proposed after it was published in
year 2003 (Fernández et al., 2018b; Kovács, 2019). These methods mainly differ in the
approaches utilized in selecting and/or weighting the minority seed samples, the methods
for generating new samples to replace linear interpolation and, elimination of existing noisy
samples and incorrect synthetic samples that are located in the majority class region. In this
brief review, some of these variants are presented to highlight the solutions they proposed
for one or more shortcomings of SMOTE.

In SMOTEFUNA, the furthest sample from the seed is selected and the synthetic
sample is generated within the cuboidal space, allowing to produce diverse synthetic
instances (Tarawneh et al., 2020). This technique is argued to have several advantages.
For instance, the synthetic samples are not expected to be close to their seeds in the cases
when the seed is from a dense cluster. Hence, the shortcoming mentioned in item (1) is
improved. Moreover, since only the furthest instance is considered, setting the value of
tuning parameter k is not needed.

In order to avoid employing noisy instances as seed that is mentioned in item (2),
DBSMOTE utilizes a clustering algorithm (Bunkhumpornpat et al., 2012). The samples that
do not lie in a cluster are labeled as noisy instances and they are not utilized in oversam-
pling. In MSMOTE, if all k neighbors of a minority sample belong to the majority class,
it is labeled as a noisy instance and ignored (Liang et al., 2009). MWMOTE checks the
neighbors of all minority samples (Barua et al., 2014). The samples which do not have
any minority example in their neighbor set are discarded. Hence, such samples will not be

302 Journal of Intelligent Information Systems (2023) 61:299–324



considered as either seed or neighbor during linear interpolation. In Safe-Level SMOTE,
the safety of the two samples selected for linear interpolation is computed by checking their
neighbors (Bunkhumpornpat et al., 2009). The synthetic sample is generated closer to the
instance that is more safe.

As a solution to the weakness mentioned in item (3), (Hu et al., 2014) proposed to use
a classifier to evaluate the validity of each synthetic sample. A classifier is initially trained
using the training samples. Two randomly selected minority samples are employed to gener-
ate a new synthetic sample by linear interpolation. This sample is accepted if the confidence
score of the classifier is within a predetermined confidence interval. In GSMOTE, a safe
area is defined for each minority sample (Douzas & Bação, 2019). Safe area represents the
feature space where the generated samples are not noisy. In SMOTEFUNA algorithm, the
distances of each synthetic sample from the nearest minority and nearest majority sample
are utilized to evaluate its validity (Tarawneh et al., 2020). In particular, if a synthetic sam-
ple is closer to the negative nearest neighbor, it is discarded. In RBO, the synthetic samples
are generated by computing Gaussian radial basis function-based distributions of samples
in both positive and negative classes (Koziarski et al., 2019). The difficult regions are iden-
tified by using these potential surfaces and oversampled. ADPCHFO proposed by Tao et
al. applies oversampling by employing samples within the same clusters (Tao et al., 2020).
Density peak clustering is applied to cluster the minority samples. Using clusters allows
generation of samples within valid regions. In order to avoid overfitting due to duplicate
samples, a heuristic filter is applied to eliminate overlapping instances.

GSMOTE addresses the shortcoming mentioned in item (4) by using geometric regions
rather than linear interpolation for generating synthetic instances (Douzas & Bação, 2019).
For each minority sample, a safe radius is computed. Based on this value, sample generation
takes place in a truncated hyper-spheroid. Xie et al. proposed the use of Gaussian distri-
bution around the seed samples for generating synthetic instances (Xie et al., 2022). For a
given seed, a random direction that originates from the seed is initially selected. The new
sample is generated in that direction where the distance is computed using a Gaussian distri-
bution whose parameters are computed from the training data. In ROSE, synthetic instances
are sampled from a kernel density estimate that is centered at the selected samples (Menardi
& Torelli, 2014). For both GSMOTE and ROSE, setting the value of tuning parameter k is
not needed. Hence, the shortcoming mentioned in item (5) is avoided. SWIM employs the
density of the well-represented majority class for generating new samples (Bellinger et al.,
2020). In particular, the synthetic samples have approximately the same density as the seed.

In order to address the shortcoming mentioned in (6), ADASYN selects the seeds by
considering the weights computed for each minority samples. The weight is proportional
with the number of neighbors from the majority class. Hence, the learner is expected to
focus on the hard-to-classify samples. In order to put more emphasis on hard-to-classify
samples, SDSMOTE identifies the borderline samples by defining the degree of support on
the minority samples (Li et al., 2014). In MWMOTE, the hard-to-learn samples are selected
by considering the distance of each minority sample to its closest majority instance (Barua
et al., 2014).

Many other variants of SMOTE have also been proposed. For instance, SMOTE-IPF
addresses the shortcoming in item (2) by removing both the noisy samples in the original
data and noisy synthetic samples (Sáez et al., 2015). TRIM-SMOTE proposes preprocessing
the minority instances to generate multiple seed sets to be utilized for generating synthetic

303Journal of Intelligent Information Systems (2023) 61:299–324



instances (Puntumapon & Waiyamai, 2012). In Polynom-fit-SMOTE method, synthetic
instances are generated using polynomial fitting (Gazzah et al., 2008). MCT generates syn-
thetic samples using cloning where the instances on the borderline are cloned less than those
that are internal to the minority class region (Jiang et al., 2015). SMOTE-D considers the
distances between each seed and its k-nearest neighbors to calculate the number synthetic
instances between each sample pair (Torres et al., 2016). Cluster-SMOTE aims at generat-
ing artificial samples withing the major clusters of the minority class (Cieslak et al., 2006).
CURE-SMOTE is another clustering-based approach (Li & Fan, 2017). The minority sam-
ples are clustered to identify small clusters. These are assumed to be noisy and removed.
MDO generates synthetic samples in dense regions of the minority class and hence reduces
the risk generating instances in majority class space (Abdi & Hashemi, 2016). In ANS,
the number of neighbors considered, i.e. k is not fixed but dynamically calculated for each
minority sample (Siriseriwan & Sinapiromsaran, 2017). In kmeans-SMOTE, the training
data is clustered in an unsupervised way (Douzas et al., 2018). The clusters including small
proportion of minority samples are not selected for oversampling. Moreover, dense minority
clusters are oversampled more than sparse clusters.

Balancing is also addressed by analyzing the types of samples in the minority class.
For instance, the minority samples are categorized as safe, rare, borderline and outlier and,
the weights of a one-class classifier are adjusted based on the types of samples (Krawczyk
et al., 2014). Sampling by analyzing the neighborhood of the positive samples is also pro-
posed (Błaszczyński & Stefanowski, 2015). A bagging-based ensemble of classifiers is
constructed where each boostrap is formed by mainly including hard-to-learn samples. In
particular, the probability of drawing an instance depends on its difficulty of classification
that is quantified using the number of neighbors from the majority class.

3 The proposed approach: MaMiPot

The proposed approach is based on repositioning the training samples. In order to under-
stand the main idea behind this approach, consider the toy example given in Fig. 1. Due to
class imbalance, most of the positives (represented by red diamonds) are expected to be mis-
classified, as shown on the left part of the figure. In other words, the decision region for the
minority class covers much smaller space than the actual space where the positive samples
appear. Such solutions generally lead to low classification accuracy on the positive samples
(i.e. sensitivity) but high accuracy on the negatives (i.e. specificity). As shown in the upper
right part of the figure, the solution by SMOTE is to generate synthetic minority samples to
enlarge the positive decision region, leading to a more acceptable solution. As an alternative
approach, the idea behind MaMiPot is presented in the lower right part of the figure. The
positive and negative samples are repositioned for the same purpose of enlarging the minor-
ity decision region. The repositioned instances are shown using the same symbol of the class
but not filled with the corresponding color. Since the majority samples overlapping with
the minority are moved away from the minority region, minimizing the classification accu-
racy will correspond to labeling a wider space as positive. Moreover, since the distribution
of minority samples is not distorted, the borderline is computed more accurately. Although
the motivation behind moving the majority samples is intuitively reasonable, repositioning
of the minority instances needs further clarification. As mentioned above, one of the main
challenges in SMOTE is outliers. These samples may lead to generating synthetic instances
in the majority class region and hence severely mislead the learner. To alleviate this

304 Journal of Intelligent Information Systems (2023) 61:299–324



Fig. 1 Comparison of SMOTE and MaMiPot on a toy example

problem, the proposed approach repositions the minority samples as well. However, in order
not to distort the distribution of the minority samples, the amount of repositioning is set to
be in smaller steps for the minority class.

There are two main issues that need to be addressed for the implementation of the idea.
These are selection of the samples and the directions to which they will be moved. In
MaMiPot, the decision boundary computed on the original training data is employed for
guiding the selection and repositioning tasks. The details of the proposed method is pre-
sented in Algorithm 1. The first step of the algorithm is to train a classifier. In Step 2, it
the classifier is tested using the training data. The next step, Step 3 is to obtain the decision
boundary by computing the best-fitting decision threshold, τopt . The performance metric is a
design parameter of the algorithm. Hence, τopt should be defined by taking into account the
metric, M . Using the selected threshold, the value of the metric, Mopt is recorded. Selection
of τopt is explained in detail in the following context.

Using the decision boundary obtained, the training samples are partitioned into four sets.
sT P denotes the set of correctly classified minority samples (i.e. true positives). sFN rep-
resents the set of misclassified minority samples (i.e. false negatives). The set sT N includes
correctly classified majority samples (i.e. true negatives). sFP denotes the set of misclassi-
fied majority samples (i.e. false positives). The next step is to compute the centroids of the
correctly classified minority samples denoted by μP and the correctly classified majority
samples denoted by μN .

305Journal of Intelligent Information Systems (2023) 61:299–324



Algorithm 1 MaMiPot.

The samples in sFN and sFP are the candidates to be repositioned. In the first part
of the iterations starting on line 11, the misclassified minority samples in sFN are reposi-
tioned towards the centroid of the correctly classified minority samples using the positive
repositioning factor, αP . ̂sFN is computed as the updated set after repositioning. In this
study, we assumed that the correctly classified samples form a single cluster.

It should be noted that, at this step only the locations in the set sFN changed. As a
condition for making the repositioning, we check whether the number of correctly classi-
fied samples is above a threshold denoted by γ . The motivation for this condition can be
explained as follows. The centroid is computed using only the correctly classified minority
samples. In MaMiPot algorithm, the centroids are used as the representatives for the poten-
tial regions to be enlarged. By moving samples towards these points, it is aimed to enforce

306 Journal of Intelligent Information Systems (2023) 61:299–324



the learner to focus on that part of the feature space. Because of this, for a centroid to con-
vey a potential for the learner to discover additional minority regions, a predefined number
of samples denoted by γ are required to be already correctly classified. For instance, if all
minority samples are misclassified, none of them is repositioned.

In the second part of the iterations starting on line 16, the misclassified majority samples
are repositioned towards the centroid of correctly classified majority samples using the neg-
ative repositioning factor, αN . The new positions are recorded, obtaining the updated set,
̂sFP . As in the case of minority samples, we check whether the number of correctly classi-

fied majority samples is above the threshold, γ . The new training set, Tnew containing the
correctly classified samples (i.e. sT P and sT N ) and, repositioned samples (i.e. ̂sFN and
̂sFP ), is used to construct a new classifier, Cnew as presented on line 21. This classifier is

tested on the original training set, T to evaluate whether the performance is improved. If the
performance is improved, Tnew is recorded as Topt and the iterations are repeated.

During the iterations, the centroids are not updated. The main reason can be explained
as follows: The ultimate goal of the algorithm is to reposition the samples but not the class.
Allowing changes in the direction of repositioning may lead to translation of the classes in
the feature space which is not desired. Actually, such operation will not be rewarded since
the repositioning done in each iteration is evaluated using the original training set on Line
22 of the algorithm.

The repositioning factors αP and αN represent the percentage of repositioning on the
lines connecting the minority and majority instances, respectively. In order not to distort
the distribution of minority samples, αP should be kept small. In other words, the minority
samples must be repositioned in small steps. On the other hand, larger displacements should
be allowed by employing large αN values. In fact, αP is mainly used to deal with the outliers.
During the iterations, they are moved towards the centroid computed for the minority class.
Figure 2 presents the execution of MaMiPot, where αN = 0.9 and αP = 0.1. The figure on
the left shows the dataset. The minority samples are presented using the symbol ‘�’ filled
by red color. The repositioned instances are plotted using non-filled symbols. As it can be
seen, the positive and negative samples in the overlapping regions are moved towards the

Fig. 2 Repositioning of positive and negative samples using MaMiPot. The design parameters were set as
αN = 0.9 and αP = 0.1

307Journal of Intelligent Information Systems (2023) 61:299–324



corresponding centroids. Consequently, the classifier is expected to increase the number of
true positives. It can be also be seen that the minority samples are moved slightly.

If three consecutive updates do not lead to further performance improvement, the itera-
tions are terminated and Topt is returned as the best-fitting training set. Remember that the
centroids μP and μN are kept fixed during the iterations. Since αN is selected as a large
value, after the first iteration, the repositioned negatives will be close to μP . As a matter
of fact, the remaining room for repositioning is small for the majority samples after the
first iteration. On the other hand, since the minority samples are repositioned in small steps,
they can continue to reposition as the number of iterations increase. Consequently, the first
priority of the algorithm is to solve the problems due to imbalance by repositioning the neg-
atives. If a performance gain is not achieved any more, by running for two more iterations,
MaMiPot tries the lower priority option and targets at achieving further improvements by
repositioning the minority samples. When αP = 0.1, the distance between a minority sam-
ple and its centroid will be reduced by 1 − (0.9)3 = 0.27 (i.e. 27%) after three iterations
which is much less than the repositioning of majority samples in the first iteration (i.e. 0.90).
This is consistent with our main target of avoiding altering the distribution of positive sam-
ples. Alternative values for the number of iterations can be empirically evaluated for the
task under concern.

The performance metric is another design parameter of the algorithm. Accuracy is not
an appropriate measure in imbalance learning. Since the number of minority samples is
only a few in general, very high accuracy values can be obtained even by classifying all
samples as negative. Alternatively, metrics that measure the performance separately for
different classes are employed for this purpose. However, since the performances on the
positive and negative classes are competing, trade-off forms of these metrics are generally
utilized. These metrics are F -score, G-mean and AUC. F -score is defined as the harmonic
mean of precision and recall where precision is the ratio of correctly classified positive
instances and the number of all samples that are classified as positive (i.e. TP / (TP+FP))
and recall is the percentage of correctly classified positives (i.e. sensitivity, TP/ (TP+FN)) as
follows:

F -score = 2 × Precision × Recall

P recision + Recall
. (1)

G-mean, which is defined as the geometric mean of sensitivity (i.e. recall) and specificity
(i.e the classification accuracy of the negative class) is calculated as

G-mean = √

Sensitivity × Specif icity. (2)

AUC is the third metric used that is computed as the area under the receiver operating
characteristic curve. As mentioned above, the main idea of MaMiPot is to reposition the
misclassified minority and majority samples. As a matter of fact, AUC can be used as a
design parameter only if the samples to be repositioned are determined using a heuristic
approach. For instance, majority samples that appear in highest P ranks and minority sam-
ples appearing in lowest N ranks can be selected. Alternatively, as done in several variants
of SMOTE, the neighborhoods of the minority samples or density of the minority sam-
ples in different clusters can be considered. On the other hand, F -score or G-mean can be
employed directly since they are threshold-dependent. In this study, in order not to bias the
results by re-running the algorithm for all metrics, the algorithm is run only for F -score

308 Journal of Intelligent Information Systems (2023) 61:299–324



and the performance scores of all three metrics are reported. In a recent study, the following
threshold is proposed for F -score (Collell et al., 2018):

τopt = 1

2

(

P

P + N
+ 0.5

)

(3)

where 0.5 is the maximum possible threshold value for maximizing F -score and P/(P +N)

is the a-priori probability of the minority class (Lipton et al., 2014). The midway between
these two term is proposed as the threshold for F -score. In our simulations, we used this
threshold value.

In general, since the minority samples are outnumbered by the majority, we expect low
recall values (Erenel & Altınçay, 2013). In other words, the classification performance on
the positive samples is generally low. The main reason for this is the bias in favor of the
majority class samples. On the other hand, precision will be higher when compared to
employing a balanced dataset. This can be explained as follows: After balancing, the deci-
sion region for the minority enlarges, including more correctly classified minority samples
and hence higher recall. However, the number of false positives will also increase. Due to
the imbalance, we expect a larger increase in FP than T P , leading to a smaller precision
score. Let the balancing factor, β be defined as the proportion of the synthetic samples to
the difference in the class sizes, β = Nsyn/(Nmaj − Nmin) where Nsyn denotes the num-
ber of synthetic samples that are generated in the case of Nmaj majority and Nmin minority
instances. In order to tackle the low recall problem, SMOTE oversamples with balancing
factor equal to one whereas MaMiPot aims to alleviate the imbalance problem by moving
the negatives away from the positives. When the minority class is small, if the performance
metric is selected as recall, a large degradation in precision may occur. In order to avoid
this, the algorithm should be run using a trade-off metric such as F1 and G-mean.

For a better understanding of the way MaMiPot will contribute the performance scores
for different metrics, both class-imbalance and characteristics of the metrics should be taken
into consideration. As it was emphasized in the recent study by (Soleymani et al., 2020),
both AUC and G-mean favor increasing the number of true positives, even for much higher
number of misclassified instances from the majority class. This can be understood by con-
sidering the toy example presented in Fig. 3. Assume that there are 10 minority and 100
test samples. Using a learner that is trained on the training set which is not balanced, let the
number of true positives and true negatives be 5 and 90, respectively. After oversampling
the minority class, we expect a higher true positive value. However, this can be achieved
at the expense of true negatives. Let the number of true positives be increased by only one
whereas the number of true negatives is decreased by 5. This corresponds an increase in
sensitivity from 5/10 to 6/10 and a decreased specificity from 90/100 to 85/100. When
compared to employing the original training data, although the total number of misclassi-
fied samples increased by 5 − 1 = 4, G-mean increases from 0.67 to 0.71. Hence, G-mean
favors increasing the number of true positives.

MaMiPot improves the performance on the minority class mainly by repositioning the
majority samples. However, this is done in a global way. In particular, the algorithm does not
focus on any specific region by evaluating the clustering of samples. Similarly, in SMOTE,
the whole feature space of the minority class benefits from oversampling. On the other
hand, in some variants of SMOTE, oversampling is applied in a selected subspace. For
instance, kmeans-SMOTE considers the density of minority samples to select clusters to be
oversampled. Since MaMiPot is not cluster or region-based, some minority samples may
not benefit from repositioning. Oversampling the minority class has the potential to be a

309Journal of Intelligent Information Systems (2023) 61:299–324



Fig. 3 An example to illustrate the effect of balancing in terms of the metric values

complementary tool for such samples. In this setting, MaMiPot will be utilized as a pre-
processing step before oversampling, providing several advantages for the oversampler. For
instance, due to repositioning of the majority samples by MaMiPot, a smaller balancing
factor than one is expected to be better-fitting, leading to less distortion on the minority dis-
tribution when compared to SMOTE and most of its variants. Moreover, utilizing a small
balancing factor will result in a similar imbalance for both training and test data, which is
another important concern in imbalance learning (Pozzolo et al., 2015). By repositioning
outlying minority samples towards the centroid of the correctly classified instances, the risk
of generating synthetic samples in invalid regions is reduced.

Precision replaces the specificity in the case of F -score (Soleymani et al., 2020). Since
the minority class includes small number of samples in general, if the increase in true posi-
tive rate due oversampling is achieved at the expense of precision due to increased number
of false positives, F -score value will degrade. As shown in Fig. 3, F -score decreases from
0.40 to 0.39. Consequently, when F -score is the performance metric, SMOTE is expected
to contribute MaMiPot only if it is run using a small balancing factor. The left part of Fig. 4
presents the execution of SMOTE on the data given in Fig. 2. The dataset obtained after
running MaMiPot using αN = 0.9 and αP = 0.1, followed by oversampling using SMOTE
for β = 0.5 is illustrated on the right. It can be seen in the figure that, since many majority
samples are repositioned, a smaller number of synthetic samples is expected to be sufficient
for achieving a reasonable recall value.

4 Experimental work

In order to evaluate the proposed approach, the experiments are conducted using three clas-
sifiers, namely support vector machine (SVM) with radial basis function kernel, naive Bayes
(NB) and decision tree (J48) which are widely employed for imbalanced datasets (Haixiang

310 Journal of Intelligent Information Systems (2023) 61:299–324



Fig. 4 Balancing the data using SMOTE (left figure) and balancing positive samples after repositioning by
MaMiPot and using β = 0.5 (right figure). The design parameters of MaMiPot were set as αN = 0.9 and
αP = 0.1

et al., 2017). The computational cost of SVM is high. Based on the empirical evidence from
preliminary experiments, we fixed its parameters as σ = 0.25 and C = 0.25 in all simula-
tions. The default settings are utilized for J48, i.e. confidence factor = 0.25 and minimum
instances per leaf is 2. The experiments are conducted on KEEL collection (Alcalá-Fdez
et al., 2011). Fourteen datasets having imbalance ratios less than 5 are discarded. All of the
remaining 52 datasets having the imbalance ratios between 5.14 and 129.44 are considered.
The datasets are presented in Table 1.

For each dataset, the experiments are repeated 20 times and the average scores are
reported. In each experiment, 5 × 2-fold cross validation is applied. In particular, the data
is randomly split into two equal-sized parts five times. Both parts are then utilized as either
training or test data. The performance of the proposed method is compared with SMOTE
and nineteen extensions namely, ADASYN (He et al., 2008), Borderline-SMOTE1 (Han
et al., 2005), DBSMOTE (Bunkhumpornpat et al., 2012), GSMOTE (Douzas & Bação,
2019), SMOTEFUNA (Tarawneh et al., 2020), MWMOTE (Barua et al., 2014), ANS (Siris-
eriwan & Sinapiromsaran, 2017), CCR (Koziarski & Wożniak, 2017), CURE-SMOTE (Li
& Fan, 2017), kmeans-SMOTE (Douzas et al., 2018), SMOTE-D (Torres et al., 2016),
MDO (Abdi & Hashemi, 2016), MCT (Jiang et al., 2015), SMOTE-ENN (Batista et al.,
2004), SMOTE-TomekLinks (Batista et al., 2004), Polynom-fit-SMOTE (Gazzah et al.,
2008), SMOTE-IPF (Sáez et al., 2015), TRIM-SMOTE (Puntumapon & Waiyamai, 2012)
and Cluster-SMOTE (Cieslak et al., 2006).

In the first set of experiments, MaMiPot is run using five balancing factors, β ∈
{0, 0.25, 0.50, 0.75, 1}. As mentioned above, αP and αN which are in the interval (0, 1)

represent the percentage of repositioning on the lines connecting the minority and majority
instances to the centroids of the corresponding classes. To reposition the minority instances
in small steps, we set αP = 0.1. On the other hand, we set αN = 0.9 to allow larger
displacements for the majority class. A large value of αN is expected to allow MaMiPot ter-
minate in small number of iterations. Since the minority class is rare in many datasets, we
set γ = 1. When β = 0, only MaMiPot is applied. For β > 0, SMOTE is applied after
MaMiPot where the number of synthetic samples is determined by β. The results obtained

311Journal of Intelligent Information Systems (2023) 61:299–324



Table 1 The datasets selected from KEEL repository

Rank Data set #Positives IR Rank Data set #Positives IR

1 abalone19 32 129.44 27 glass-0-1-6 vs 2 17 10.29

2 yeast6 35 41.40 28 ecoli-0-6-7 vs 5 20 10.00

3 ecoli-0-1-3-7 vs 2-6 7 39.14 29 vowel0 90 9.98

4 yeast5 44 32.73 30 yeast-0-5-6-7-9 vs 4 51 9.35

5 yeast-1-2-8-9 vs 7 30 30.57 31 ecoli-0-3-4-7 vs 5-6 25 9.28

6 yeast4 51 28.10 32 ecoli-0-3-4-6 vs 5 20 9.25

7 yeast-2 vs 8 20 23.10 33 glass-0-4 vs 5 9 9.22

8 glass5 9 22.78 34 ecoli-0-2-6-7 vs 3-5 22 9.18

9 yeast-1-4-5-8 vs 7 30 22.10 35 ecoli-0-1 vs 2-3-5 24 9.17

10 shuttle-c2-vs-c4 6 20.50 36 ecoli-0-4-6 vs 5 20 9.15

11 glass-0-1-6 vs 5 9 19.44 37 yeast-0-2-5-6 vs 3-7-8-9 99 9.14

12 abalone9-18 42 16.40 38 yeast-0-2-5-7-9 vs 3-6-8 99 9.14

13 page-blocks-1-3 vs 4 28 15.86 39 yeast-0-3-5-9 vs 7-8 50 9.12

14 ecoli4 20 15.80 40 glass-0-1-5 vs 2 17 9.12

15 glass4 13 15.46 41 ecoli-0-2-3-4 vs 5 20 9.10

16 yeast-1 vs 7 30 14.30 42 ecoli-0-6-7 vs 3-5 22 9.09

17 shuttle-c0-vs-c4 123 13.87 43 yeast-2 vs 4 51 9.08

18 ecoli-0-1-4-6 vs 5 20 13.00 44 ecoli-0-3-4 vs 5 20 9.00

19 cleveland-0 vs 4 13 12.62 45 page-blocks0 559 8.79

20 ecoli-0-1-4-7 vs 5-6 25 12.28 46 ecoli3 35 8.60

21 glass2 17 11.59 47 yeast3 163 8.10

22 glass-0-1-4-6 vs 2 17 11.06 48 glass6 29 6.38

23 ecoli-0-1 vs 5 20 11.00 49 segment0 329 6.02

24 glass-0-6 vs 5 9 11.00 50 ecoli2 52 5.46

25 led7digit-0-2-4-5-6-7-8-9 vs 1 37 10.97 51 new-thyroid2 35 5.14

26 ecoli-0-1-4-7 vs 2-3-5-6 29 10.59 52 new-thyroid1 35 5.14

are presented in Fig. 5. The rightmost column presents the specificity, recall and preci-
sion scores. As expected, increasing the minority samples by applying SMOTE results in
decreased precision but increased recall, when compared to using the original training set.
Due to reducing the bias on the majority class using oversampling, specificity which denotes
the performance on the majority samples decreases as β increases.

The leftmost column in Fig. 5 presents the performance scores obtained for three
trade-off metrics and several balancing factors. It can be seen in the figure that, applying
oversampling after MaMiPot degrades the average F -score for NB. On the other hand, G-
mean improves for all three classifiers when β = 0.25. Similarly, a notable improvement
is observed for AUC in the case of J48. For β > 0.25, there is not any notable improve-
ment for SVM and NB. When all metrics are considered, it can be argued that β = 0.25 is
a reasonable setting.

The average F -score, G-mean and AUC scores obtained using 52 KEEL datasets are
presented in Table 2. The results obtained for both β = 0 and oversampling using β = 0.25
are reported. For each classifier and metric, the highest score is presented in boldface and
the second highest score is underlined. The table shows that, using β = 0.25 our method

312 Journal of Intelligent Information Systems (2023) 61:299–324



Fig. 5 Average F -score, G-mean and AUC values (in leftmost column) and, sensitivity (recall), specificity
and precision scores (in rightmost column) obtained by MaMiPot (β = 0) and oversampling after MaMiPot
using different balancing factor values, β > 0. Each row corresponds to a different classifier

achieves the highest average scores for all three metrics for SVM. Similarly, it provides
better scores than all references for F -score and G-mean using NB. Another observation is
that, for all three performance metrics, the scores obtained for SVM are superior to those
obtained for both NB and J48. For G-mean, the importance of applying oversampling after
repositioning by MaMiPot is evident from the scores obtained using all classifiers. On the
other hand, when the average performance over all folds is considered, MaMiPot is not
among the top-ranked systems for J48.

For a deeper evaluation of MaMiPot for different β, the performance scores are compared
in terms of the average ranks over all folds for different values. In particular, a rank score
is assigned for each β value and each fold. Then, the sums of these ranks over all folds
are calculated for each β. After sorting in ascending order, the overall ranks are recorded.
Table 3 presents the overall ranks corresponding to each classifier and performance metric
pair. The last column presents the row-wise averages. β = 0.25 is found to be the top-ranked
when the ranking performance is evaluated for all metrics and classifiers. It can be seen in
the table that, when G-mean and AUC are considered, J48 benefits more from higher β

values when compared to SVM and NB.
Taking into account the ranking scores presented in Table 3, we set β = 0.25 in the

following context. Table 4 presents the overall rank of each classifier and performance met-
ric pair. The last column presents the row-wise averages. It can be seen in Table 4 that,
MaMiPot using β = 0.25 is the top-ranked technique when the ranking performance is

313Journal of Intelligent Information Systems (2023) 61:299–324



Table 2 The average performance scores obtained using SVM, NB and J48

SVM NB J48

F -score G-mean AUC F -score G-mean AUC F -score G-mean AUC

SMOTE 0.6239 0.7753 0.9080 0.5309 0.7928 0.8946 0.6152 0.7939 0.8251

ADASYN 0.5965 0.7580 0.9038 0.5058 0.7839 0.8907 0.6067 0.7897 0.8211

Borderline-SMOTE1 0.6292 0.7598 0.9084 0.5374 0.7873 0.8919 0.6228 0.7816 0.8192

DBSMOTE 0.6234 0.7581 0.9071 0.5396 0.7764 0.8815 0.6165 0.7674 0.8246

GSMOTE 0.6288 0.8017 0.9127 0.5200 0.7891 0.9021 0.6108 0.8120 0.8384

SMOTEFUNA 0.6157 0.7402 0.9034 0.5188 0.7453 0.8901 0.6126 0.7618 0.8145

MWMOTE 0.6070 0.7587 0.9026 0.4987 0.7658 0.8689 0.5993 0.7665 0.8096

ANS 0.5948 0.6874 0.8958 0.5077 0.7017 0.8548 0.6021 0.7235 0.7971

CCR 0.5736 0.7638 0.8921 0.4281 0.5742 0.8721 0.5779 0.7019 0.7978

CURE-SMOTE 0.5925 0.7017 0.8958 0.4762 0.6899 0.8574 0.5865 0.7155 0.7957

kmeans-SMOTE 0.5666 0.6336 0.8952 0.4914 0.6790 0.8605 0.6001 0.7026 0.7933

SMOTE-D 0.6058 0.7472 0.9049 0.5078 0.7579 0.8866 0.6075 0.7760 0.8152

MDO 0.5920 0.7060 0.8957 0.4430 0.6521 0.8699 0.6072 0.7299 0.8148

MCT 0.6165 0.7691 0.9083 0.4997 0.7681 0.8710 0.6057 0.7588 0.8032

SMOTE-ENN 0.6067 0.7835 0.9061 0.5257 0.7855 0.8942 0.6059 0.8132 0.8326

SMOTE-TomekLinks 0.6228 0.7737 0.9078 0.5311 0.7924 0.8938 0.6146 0.7941 0.8244

Polynom-fit-SMOTE 0.6255 0.7534 0.9082 0.5118 0.7238 0.8794 0.6079 0.7261 0.8139

SMOTE-IPF 0.6225 0.7733 0.9080 0.5299 0.7921 0.8942 0.6157 0.7939 0.8252

TRIM-SMOTE 0.6237 0.7288 0.9022 0.5399 0.7585 0.8805 0.6124 0.7458 0.8042

Cluster-SMOTE 0.6046 0.7428 0.9038 0.4989 0.7392 0.8692 0.6011 0.7583 0.8049

MaMiPot (β = 0) 0.6528 0.7503 0.9030 0.5558 0.7626 0.8928 0.5720 0.6705 0.7809

MaMiPot (β = 0.25) 0.6587 0.8129 0.9153 0.5462 0.7991 0.8929 0.6151 0.7722 0.8138

evaluated for all metrics and classifiers. It should be noted that, when evaluated using F -
score, MaMiPot is top-ranked for SVM and second ranked for both NB and J48. The ranks
achieved using J48 are low for G-mean and AUC. In a recent study, the performances of

Table 3 The rankings of MaMiPot for different β values

SVM NB J48 Avg.

F -score G-mean AUC F -score G-mean AUC F -score G-mean AUC Rank

MaMiPot (β = 0.25) 1 2 1 2 1 2 1 4 4 2.00

MaMiPot (β = 0.50) 3 1 3 3 2 3 3 3 3 2.67

MaMiPot (β = 0.75) 4 3 4 4 3 4 2 2 1 3.00

MaMiPot (β = 0.00) 2 5 2 1 5 1 5 5 5 3.44

MaMiPot (β = 1.00) 5 4 5 5 4 5 4 1 2 3.89

The averages of all nine ranks are presented in the last column

314 Journal of Intelligent Information Systems (2023) 61:299–324



Table 4 The rankings of different schemes according to their fold-based performance scores for SVM, NB
and J48

SVM NB J48 Avg.

F -score G-mean AUC F -score G-mean AUC F -score G-mean AUC Rank

MaMiPot 1 1 2 2 1 7 2 10 13 4.33

SMOTE-IPF 6 6 7 7 3 5 4 3 4 5.00

Borderline-SMOTE1 4 10 3 4 6 4 1 7 7 5.11

SMOTE 9 7 4 8 4 2 6 5 3 5.33

SMOTE-TomekLinks 5 5 8 6 2 6 8 4 5 5.44

GSMOTE 8 2 1 14 7 1 16 2 1 5.78

SMOTE-ENN 16 3 11 9 5 3 20 1 2 7.78

TRIM-SMOTE 2 14 10 1 8 8 3 14 16 8.44

DBSMOTE 10 13 9 3 11 17 9 11 6 9.89

Polynom-fit-SMOTE 3 12 6 10 16 19 10 17 11 11.56

MCT 7 4 5 16 10 10 15 16 21 11.56

SMOTE-D 13 16 16 13 13 9 14 9 10 12.56

SMOTEFUNA 11 17 13 12 15 16 5 13 12 12.67

Cluster-SMOTE 12 15 15 15 14 12 13 12 15 13.67

MDO 17 11 12 21 18 14 7 15 9 13.78

MWMOTE 15 9 18 18 12 13 17 8 14 13.78

ADASYN 19 18 19 19 9 11 18 6 8 14.11

ANS 14 19 17 5 17 18 12 18 17 15.22

kmeans-SMOTE 20 21 14 11 19 15 11 20 20 16.78

CCR 21 8 20 20 21 20 21 21 19 19.00

CURE-SMOTE 18 20 21 17 20 21 19 19 18 19.22

The averages of all nine ranks are presented in the last column

seven classifiers are evaluated on datasets that are grouped according to their characteris-
tics (Napierala & Stefanowski, 2016). Considering the set of 5 neighboring samples, rare
and outlying instances are defined to have one or zero minority instances in their sets of 5
neighbors, respectively. A sample is labeled as safe if at most one of its neighbors is from the
majority class. It is shown that SVM performs better than J48 on datasets which include safe
and borderline instances (Napierala & Stefanowski, 2016). It can be argued that, by repo-
sitioning the majority samples away from the minority class, training sets are transformed
into safer forms, leading to better performance for SVM, when compared to J48.

It is well known that decision trees are unstable classifiers whereas SVM and NB are
stable (Ting et al., 2011). Training unstable classifiers like decision trees is challenging
when the training set size is small because a small perturbation in the training set may
result in a highly different model, leading to substantial differences in the performance
scores obtained on unseen test sets (Skurichina & Duin, 2002; Dietterich, 2000). As a mat-
ter of fact, the standard deviations in performance scores obtained from different folds are
expected to be larger for unstable classifiers. In fact, variations in the predicted labels due to
small perturbations on the training sets is effectively used in constructing classifier ensem-
bles (Breiman, 1996; Bauer & Kohavi, 1999). In this approach, the predictions of unstable

315Journal of Intelligent Information Systems (2023) 61:299–324



Table 5 The average standard
deviations over all folds for
MaMiPot

F-score G-mean AUC

SVM 0.0326 0.0234 0.1005

NB 0.0372 0.0316 0.1128

J48 0.2560 0.1929 0.1404

learners such as decision trees are combined to obtain more accurate decisions (Skurichina
& Duin, 2000). Table 5 presents the average standard deviations for 20 repetitions over all
folds for MaMiPot. It can be seen that the standard deviations are much larger for J48.
For a better evaluation of relative performances of the schemes considered, 5-fold cross-
validation is also performed. In this approach, 80% of the data is employed during training
instead of 50%. The average scores and the corresponding ranks are presented in Tables 6
and 7, respectively. It can be seen that, for J48, the average ranks of MaMiPot are improved
from 10 to 3 for G-mean and 13 to 10 for AUC. For stable classifiers SVM and NB, only
the rank for G-mean is increased from 1 to 3 in the case of NB. Taking into account the size
of datasets employed and the observations listed above, we argue that the inferior rankings
achieved using J48 can be attributed to its unstable behavior on small datasets.

Table 6 The average performance scores obtained using SVM, NB and J48 using 5-fold cross validation

SVM NB J48

F-score G-mean AUC F-score G-mean AUC F-score G-mean AUC

SMOTE 0.6477 0.8049 0.9136 0.5390 0.7994 0.9044 0.6223 0.7939 0.8326

ADASYN 0.6150 0.7845 0.9088 0.5053 0.7836 0.9011 0.6099 0.7852 0.8276

Borderline SMOTE1 0.6605 0.8005 0.9168 0.5391 0.7925 0.8991 0.6354 0.7876 0.8323

DBSMOTE 0.6550 0.7925 0.9144 0.5499 0.7793 0.8903 0.6327 0.7696 0.8378

GSMOTE 0.6538 0.8332 0.9199 0.5308 0.7972 0.9138 0.6306 0.8165 0.8532

SMOTEFUNA 0.6459 0.7616 0.9102 0.5305 0.7460 0.8984 0.6419 0.7744 0.8392

MWMOTE 0.6210 0.7806 0.9147 0.5265 0.7912 0.8934 0.6186 0.7803 0.8266

ANS 0.6492 0.7427 0.9119 0.5547 0.7735 0.8836 0.6358 0.7503 0.8117

CCR 0.5752 0.7473 0.8804 0.4394 0.5580 0.8785 0.6236 0.7358 0.8228

CURE SMOTE 0.6330 0.7328 0.9031 0.4929 0.6979 0.8622 0.6207 0.7221 0.8115

kmeans SMOTE 0.6309 0.6855 0.9103 0.5240 0.7098 0.8691 0.6460 0.7400 0.8220

SMOTE D 0.6371 0.7892 0.9114 0.5144 0.7570 0.8996 0.6288 0.7873 0.8290

MDO 0.6113 0.7245 0.8972 0.4575 0.6636 0.8767 0.6269 0.7388 0.8350

MCT 0.6376 0.8003 0.9161 0.5237 0.7819 0.8904 0.6319 0.7711 0.8186

SMOTE ENN 0.6300 0.8130 0.9141 0.5353 0.7864 0.9024 0.6278 0.8234 0.8518

SMOTE TomekLinks 0.6476 0.8025 0.9134 0.5336 0.7942 0.9058 0.6349 0.8019 0.8367

polynom fit SMOTE 0.6578 0.7857 0.9142 0.5300 0.7421 0.8877 0.6213 0.7190 0.8254

SMOTE IPF 0.6462 0.8017 0.9138 0.5381 0.7983 0.9076 0.6203 0.7910 0.8355

TRIM SMOTE 0.6656 0.7652 0.9166 0.5449 0.7815 0.8952 0.6468 0.7707 0.8267

Cluster SMOTE 0.6313 0.7752 0.9136 0.4899 0.7384 0.8835 0.6332 0.7782 0.8244

MaMiPot 0.6815 0.8358 0.9236 0.5616 0.7927 0.8992 0.6529 0.7948 0.8327

316 Journal of Intelligent Information Systems (2023) 61:299–324



Table 7 The rankings of different schemes according to their fold-based performance scores for SVM, NB
and J48 using 5-fold cross validation

SVM NB J48 Avg. Rank

F-score G-mean AUC F-score G-mean AUC F-score G-mean AUC

MaMiPot 1 1 2 2 3 7 2 3 10 3.44

TRIM SMOTE 2 8 3 3 1 6 1 4 5 3.67

ANS 4 15 11 1 2 10 4 6 11 7.11

GSMOTE 13 2 1 16 11 1 16 2 2 7.11

SMOTE TomekLinks 8 3 9 10 7 4 14 5 7 7.44

Borderline SMOTE1 6 7 5 11 9 8 6 11 9 8.00

DBSMOTE 5 11 10 4 5 18 9 9 3 8.22

SMOTE IPF 11 6 7 8 4 2 17 8 14 8.56

SMOTEFUNA 7 16 14 5 8 15 5 7 4 9.00

SMOTE 9 5 8 9 6 3 20 14 12 9.56

SMOTE ENN 19 10 13 13 10 5 19 1 1 10.11

polynom fit SMOTE 3 9 4 7 12 19 13 21 8 10.67

kmeans SMOTE 10 21 12 6 15 13 3 17 13 12.22

MCT 14 4 6 14 14 12 11 16 21 12.44

SMOTE D 15 13 18 15 16 11 12 13 15 14.22

MWMOTE 17 12 17 17 13 9 18 10 18 14.56

Cluster SMOTE 16 14 15 19 17 17 10 12 17 15.22

MDO 18 17 16 18 20 16 7 19 6 15.22

CURE SMOTE 12 19 19 12 19 21 8 18 20 16.44

ADASYN 20 18 20 20 18 14 21 15 16 18.00

CCR 21 20 21 21 21 20 15 20 19 19.78

The averages of all nine ranks are presented in the last column

The KEEL repository includes datasets having a wide range of imbalance ratios. Sim-
ilarly, the numbers of positive samples and dimensionalities of the feature vectors are
different. In order to investigate the relative performance of different techniques for datasets
having different characteristics, the average ranks of different KEEL subsets are computed.
The results are presented in Table 8. The scores reported for IR ≥ 10 are obtained using
the datasets for which the imbalance ratio is greater than or equal to ten. Similarly the col-
umn labeled as P > 30 is for the list of datasets where the number of positive samples
is above 30. In last two columns, the datasets are partitioned according to the number of
available features, d. MaMiPot is top-ranked for highly imbalanced datasets. Similarly, it
is the best-performing scheme when the number of positive samples is small. This is inline
with the main target that was set as alleviating the imbalance problem without altering the
distribution of the minority class.

As another comparison of different approaches, Nemenyi test is performed as shown in
Figs. 6, 7 and 8, respectively for SVM, NB and J48 (Demšar, 2006). The black lines connect
the methods for which the difference of mean ranks is smaller than the critical difference
(CD). The test is done in a pairwise manner, for three classifiers and three different perfor-
mance metrics. In part (a), F -scores are compared. Parts (b) and (c) compare G-mean and
AUC scores, respectively. It can be observed that significantly better scores than most of

317Journal of Intelligent Information Systems (2023) 61:299–324



Table 8 The ranks on different subsets of KEEL datasets

IR ≥ 10 IR < 10 P > 30 P ≤ 30 d ≥ 9 d < 9

MaMiPot 3.00(1) 9.78 6.56(3) 3.33(1) 7.44 4.00(1)

SMOTE-IPF 6.44(5) 5.33(1) 5.00(1) 6.44 3.89(2) 7.89(5)

Borderline-SMOTE1 4.11(4) 9.56 7.00(5) 4.89(2) 7.22 5.67(3)

SMOTE 4.11(3) 8.89(5) 7.22 5.22(4) 6.22(5) 6.00(4)

SMOTE-TomekLinks 7.22 5.44(2) 5.33(2) 6.67 3.67(1) 8.33

GSMOTE 3.22(2) 9.33 7.89 5.00(3) 5.67(4) 5.33(2)

SMOTE-ENN 8.22 7.33(4) 7.44 9.11 5.11(3) 9.67

TRIM-SMOTE 11.00 6.78(3) 6.89(4) 8.33 9.33 9.33

DBSMOTE 6.67 13.33 12.67 6.33(5) 10.22 10.11

Polynom-fit-SMOTE 12.89 10.22 12.44 10.44 10.67 12.33

MCT 14.22 9.22 10.78 12.56 10.56 12.67

SMOTE-D 12.33 12.33 11.11 13.78 8.33 15.22

SMOTEFUNA 9.33 15.78 15.22 10.33 14.33 12.67

Cluster-SMOTE 13.89 11.67 11.78 15.00 14.00 13.22

MWMOTE 15.11 10.67 12.00 15.44 12.22 13.44

MDO 16.56 11.11 12.00 14.78 20.00 8.00

ADASYN 8.11 16.11 14.33 13.22 10.67 14.56

ANS 18.33 9.89 11.78 16.44 18.89 11.22

kmeans-SMOTE 18.00 13.67 15.56 16.67 18.78 14.11

CCR 19.78 16.33 19.56 17.56 17.22 17.89

CURE-SMOTE 18.44 18.22 18.44 19.44 16.56 19.33

The numbers in parentheses indicate the order of top 5 schemes

Fig. 6 Statistical test results for SVM: (a) Using F -scores, (b) Using G-mean scores (c) Using AUC scores

318 Journal of Intelligent Information Systems (2023) 61:299–324



Fig. 7 Statistical test results for NB: (a) Using F -scores, (b) Using G-mean scores (c) Using AUC scores

the reference techniques are obtained for majority of the classifier/metric pairs, especially
for SVM and NB. Although MaMiPot is not among top-ranked schemes for G-mean and
AUC when J48 is used, it can be seen in Fig. 8 that the only method that is consistently in
top five for all three metrics is SMOTE-IPF. However, this technique is not ranked in top

Fig. 8 Statistical test results for J48: (a) Using F -scores, (b) Using G-mean scores (c) Using AUC scores

319Journal of Intelligent Information Systems (2023) 61:299–324



Table 9 The ties of the method providing the highest average rank over all folds for each classifier and
performance metric pair

Classifier Perf. Measure Winner Tying Methods and the p-values

SVM F -score MaMiPot −
SVM G-mean MaMiPot −
SVM AUC GSMOTE −
NB F -score TRIM-SMOTE MaMiPot (0.062)

NB G-mean MaMiPot SMOTE-IPF (0.654), SMOTE-TomekLinks (0.717)

NB AUC GSMOTE −
J48 F -score Borderline-SMOTE1 MaMiPot (0.900), TRIM-SMOTE (0.900)

J48 G-mean SMOTE-ENN GSMOTE (0.900)

J48 AUC GSMOTE −

five for any metric in the case of SVM. Table 9 presents the ties of the method that is top
ranked according to Table 2 for each classifier and performance metric. Pairwise compar-
isons between individual systems are performed using Nemenyi post-hoc test and the pairs
having p − value ≥ 0.05 are reported. The corresponding p-values are also provided. It
can be seen that MaMiPot is tied with the winner, TRIM-SMOTE in the case of NB and F -
score. Similarly, MaMiPot is tied with the winner, borderline-SMOTE1 in the case of J48
and F -score.

5 Conclusions and future work

In this study, repositioning of the instances is proposed as an alternative approach for
imbalance learning. The main motivation behind the proposed approach was to effectively
learn the minority decision regions without distorting the true distribution. The proposed
approach is evaluated on 52 datasets, covering a wide range of imbalance ratios. The exper-
iments conducted using three different classifiers have shown that MaMiPot achieves the
best average ranking score, when evaluated in terms of three different performance metrics.
The relative performance of MaMiPot and reference techniques were also compared for six
groups of datasets which were formed by taking into account the imbalance ratios, num-
bers of positive samples and numbers of features. Among these groups, it is observed that
MaMiPot is particularly effective on datasets that have higher imbalance ratio and on those
having smaller number of positive samples.

In our experimental work, we considered MaMiPot as a preprocessing algorithm only for
SMOTE. As a further study, the performance of MaMiPot should also be assessed for the
variants of SMOTE. As it can be seen on lines 14 and 19 of the algorithm, the misclassified
samples are moved towards the centroids denoted by μP and μN . Various alternatives can
be considered for this purpose. For instance, the samples may be clustered as done in some
variants of the SMOTE and the samples in sFP and sFN are moved towards the nearest
cluster. Alternatively, given a majority sample in sFP , a randomly selected sample in sT N

can be selected. In other words, misclassified majority samples may be moved towards a
randomly selected true negative instance.

MaMiPot should be evaluated by using parameters other than the imbalance ratio. For
instance, the datasets can be partitioned into subsets, each of which is dominated by either

320 Journal of Intelligent Information Systems (2023) 61:299–324



safe, borderline, outlier or rare samples. After categorizing the datasets, MaMiPot should
be run on each group to further explore its strengths and weaknesses. Moreover, MaMiPot
can be modified to reposition the majority samples in different ways by taking into account
the types of neighboring minority samples.

Author Contributions Hakan Altınçay conceived the original idea. He planned the experiments, analyzed
the results, and wrote the main manuscript text. Hossein Ghaderi Zefrehi developed the theory and carried
out the experiments All authors discussed the results and contributed to the final manuscript.

Availability of supporting data The data is available at https://sci2s.ugr.es/keel/datasets.php

Declarations

Competing interests The authors declare that they have no conflict of interest.

References

Abdi, L., & Hashemi, S. (2016). To combat multi-class imbalanced problems by means of over-
sampling techniques. IEEE Transactions on Knowledge and Data Engineering, 28(1), 238–251.
https://doi.org/10.1109/TKDE.2015.2458858.

Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garcı́a, S., Sánchez, L., & Herrera, F. (2011). KEEL
Data-mining software tool: Data set repository, integration of algorithms and experimental analysis
framework. Journal of Multiple-Valued Logic and Soft Computing, 17, 255–287.

Barua, S., Islam, M. M., Yao, X., & Murase, K. (2014). MWMOTE–Majority weighted minority over-
sampling technique for imbalanced data set learning. IEEE Transactions on Knowledge and Data
Engineering, 26(2), 405–425. https://doi.org/10.1109/TKDE.2012.232.

Błaszczyński, J., & Stefanowski, J. (2015). Neighbourhood sampling in bagging for imbalanced data.
Neurocomputing, 150, 529–542. https://doi.org/10.1016/j.neucom.2014.07.064.

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for
balancing machine learning training data. SIGKDD Explor Newsl, 6(1), 20–29. https://doi.org/10.1145/
1007730.1007735.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: bagging,
boosting, and variants. Machine Learning, 36, 105–139. https://doi.org/10.1023/A:1007515423169.

Bej, S., Davtyan, N., Wolfien, M., Nassar, M., & Wolkenhauer, O. (2021). LoRAS: An oversampling
approach for imbalanced datasets. Machine Learning, 110, 279–301. https://doi.org/10.1007/s10994-
020-05913-4.

Bellinger, C., Sharma, S., Japkowicz, N., & Zaı̈ane, O. R. (2020). Framework for extreme imbalance classi-
fication: SWIM—sampling with the majority class. Knowledge and Information Systems, 62, 841–866.
https://doi.org/10.1007/s10115-019-01380-z.

Blagus, R., & Lusa, L. (2013). SMOTE For high-dimensional class-imbalanced data. BMC Bioinformatics,
14, 106. https://doi.org/10.1186/1471-2105-14-106.

Breiman, L. (1996). Bias, variance and arcing classifiers. Technical Report 460, Statistics Department,
Berkeley https://www.bibsonomy.org/bibtex/265f179a69a81cebd376b94f71f35b31d/brefeld.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-SMOTE: Safe-level synthetic
minority over-sampling technique for handling the class imbalanced problem. In T. Theeramunkong,
B. Kijsirikul, N. Cercone, & T. B. Ho (Eds.) Advances in Knowledge Discovery and Data Mining
(pp. 475–482). Berlin: Springer, https://doi.org/10.1007/978-3-642-01307-2 43.

Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE: Density-based syn-
thetic minority over-sampling technique. Applied Intelligence, 36(3), 664–684. https://doi.org/10.1007/
s10489-011-0287-y.

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953.

Cieslak, D., Chawla, N., & Striegel, A. (2006). Combating imbalance in network intrusion
datasets. In 2006 IEEE International Conference on Granular Computing, pp. 732–737.
https://doi.org/10.1109/GRC.2006.1635905.

321Journal of Intelligent Information Systems (2023) 61:299–324

https://sci2s.ugr.es/keel/datasets.php
https://doi.org/10.1109/TKDE.2015.2458858
https://doi.org/10.1109/TKDE.2012.232
https://doi.org/10.1016/j.neucom.2014.07.064
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1023/A:1007515423169
https://doi.org/10.1007/s10994-020-05913-4
https://doi.org/10.1007/s10994-020-05913-4
https://doi.org/10.1007/s10115-019-01380-z
https://doi.org/10.1186/1471-2105-14-106
https://www.bibsonomy.org/bibtex/265f179a69a81cebd376b94f71f3 5b31d/brefeld
https://doi.org/10.1007/978-3-642-01307-2_43
https://doi.org/10.1007/s10489-011-0287-y
https://doi.org/10.1007/s10489-011-0287-y
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/GRC.2006.1635905


Collell, G., Prelec, D., & Patil, K. R. (2018). A simple plug-in bagging ensemble based on threshold-moving
for classifying binary and multiclass imbalanced data. Neurocomputing, 275, 330–340. https://doi.org/
10.1016/j.neucom.2017.08.035.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30. http://jmlr.org/papers/v7/demsar06a.html.

Dı́ez-Pastor, J. F., Rodrı́guez, J. J., Garcı́a-Osorio, C., & Kuncheva, L. I. (2015). Random balance: Ensembles
of variable priors classifiers for imbalanced data. Knowledge-Based Systems, 85, 96–111. https://doi.
org/10.1016/j.knosys.2015.04.022.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensem-
bles of decision trees: bagging, Boosting, and Randomization. Machine Learning, 40, 139–157.
https://doi.org/10.1023/A:1007607513941.

Douzas, G., & Bação, F. (2019). Geometric SMOTE a geometrically enhanced drop-in replacement for
SMOTE. Information Sciences, 501. https://doi.org/10.1016/j.ins.2019.06.007.

Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a heuristic oversampling
method based on K-Means and SMOTE. Information Sciences, 465(C), 1–20. https://doi.org/10.1016/
j.ins.2018.06.056.

Erenel, Z., & Altınçay, H. (2013). Improving the precision-recall trade-off in undersampling-based
binary text categorization using unanimity rule. Neural Computing and Applications, 22(S1), 83–100.
https://doi.org/10.1007/s00521-012-1056-5.

Fernández, A., Garcı́a, S., Galar, M., Prati, R., Krawczyk, B., & Herrera, F. (2018a). Learning from
Imbalanced Data Sets. Springer. https://doi.org/10.1007/978-3-319-98074-4.

Fernández, A., Garcia, S., Herrera, F., & Chawla, N. (2018b). SMOTE for learning from imbalanced data:
progress and challenges, marking the 15-year anniversary. Journal of Artificial Intelligence Research,
61, 863–905. https://doi.org/10.1613/jair.1.11192.

Galar, M., Fernández, A., Tartas, E. B., & Herrera, F. (2013). EUSBOost: Enhancing ensembles for
highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition, 46(12), 3460–3471.
https://doi.org/10.1016/j.patcog.2013.05.006.

Gazzah, S., Essoukri, B., & Amara, N. (2008). New oversampling approaches based on polynomial fitting for
imbalanced data sets. In 2008 The Eighth IAPR International Workshop on Document Analysis Systems,
pp. 677–684. https://doi.org/10.1109/DAS.2008.74.

Ghaderi Zefrehi, H., & Altınçay, H. (2020). Imbalance learning using heterogeneous ensembles. Expert
Systems with Applications 142. https://doi.org/10.1016/j.eswa.2019.113005.

Gong, J., & Kim, H. (2017). RHSBoost: Improving classification performance in imbalance data. Computa-
tional Statistics & Data Analysis, 111, 1–13. https://doi.org/10.1016/j.csda.2017.01.005.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-
imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.
https://doi.org/10.1016/j.eswa.2016.12.035.

Halimu, C., & Kasem, A. (2021). A novel ensemble method for classification in imbalanced datasets using
split balancing technique based on instance hardness (sbal IH). Neural Computing and Applications,
33(17), 11,233–11,254. https://doi.org/10.1007/s00521-020-05570-7.

Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in
imbalanced data sets learning. Adv Intell Comput, 3644, 878–887. https://doi.org/10.1007/11538059 91.

He, H., & Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications, 1st edn. Wiley-
IEEE Press.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEEWorld Congress
on Computational Intelligence), pp. 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969.

Hu, J., He, X., Yu, D. J., Yang XB, & Yang, H. B. S. J. Y. (2014). A new supervised over-sampling
algorithm with application to protein-nucleotide binding residue prediction. PLOS ONE, 9(9), 1–10.
https://doi.org/10.1371/journal.pone.0107676.

Jiang, L., Qiu, C., & Li, C. (2015). A novel minority cloning technique for cost-sensitive learning. Interna-
tions Journal of Pattern Recognition and Artificial Intelligence, 29, 1551,004:1–1551,004:18. https://doi.
org/10.1142/S0218001415510040.

Jo, T., & Japkowicz, N. (2004). Class imbalances versus small disjuncts. SIGKDD Explor Newsl, 6(1), 40–49.
https://doi.org/10.1145/1007730.1007737.

Kovács, G. (2019). An empirical comparison and evaluation of minority oversampling techniques on a
large number of imbalanced datasets. Applied Soft Computing, 83, 105,662. https://doi.org/10.1016/
j.asoc.2019.105662.

322 Journal of Intelligent Information Systems (2023) 61:299–324

https://doi.org/10.1016/j.neucom.2017.08.035
https://doi.org/10.1016/j.neucom.2017.08.035
http://jmlr.org/papers/v7/demsar06a.html
https://doi.org/10.1016/j.knosys.2015.04.022
https://doi.org/10.1016/j.knosys.2015.04.022
https://doi.org/10.1023/A:1007607513941
https://doi.org/10.1016/j.ins.2019.06.007
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1016/j.ins.2018.06.056
https://doi.org/10.1007/s00521-012-1056-5
https://doi.org/10.1007/978-3-319-98074-4
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1016/j.patcog.2013.05.006
https://doi.org/10.1109/DAS.2008.74
https://doi.org/10.1016/j.eswa.2019.113005
https://doi.org/10.1016/j.csda.2017.01.005
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1007/s00521-020-05570-7
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1371/journal.pone.0107676
https://doi.org/10.1142/S0218001415510040
https://doi.org/10.1142/S0218001415510040
https://doi.org/10.1145/1007730.1007737
https://doi.org/10.1016/j.asoc.2019.105662
https://doi.org/10.1016/j.asoc.2019.105662


Koziarski, M., & Wożniak, M. (2017). CCR: A combined cleaning and resampling algorithm for imbalanced
data classification. International Journal of Applied Mathematics and Computer Science, 27(4), 727–
736. https://doi.org/10.1515/amcs-2017-0050.

Koziarski, M., Krawczyk, B., & Woźniak, M. (2019). Radial-based oversampling for noisy imbalanced data
classification. Neurocomputing, 343, 19–33. https://doi.org/10.1016/j.neucom.2018.04.089.

Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in
Artificial Intelligence, 5(4), 221–232.

Krawczyk, B., Woźniak, M., & Herrera, F. (2014). Weighted one-class classification for different types of
minority class examples in imbalanced data. In 2014 IEEE Symposium on Computational Intelligence
and Data Mining (CIDM), pp. 337–344. https://doi.org/10.1109/CIDM.2014.7008687.

Lango, M., & Stefanowski, J. (2022). What makes multi-class imbalanced problems difficult? an experimen-
tal study. Expert Systems with Applications, 199, 116,962. https://doi.org/10.1016/j.eswa.2022.116962.

Li, K., Zhang, W., Lu, Q., & Fang, X. (2014). An improved SMOTE imbalanced data classification method
based on support degree. In International Conference on Identification, Information and Knowledge in
the Internet of Things, pp. 34–38. https://doi.org/10.1109/IIKI.2014.14.

Li, M., & Fan, S. (2017). CURE-SMOTE Algorithm and hybrid algorithm for feature selection and parameter
optimization based on random forests. BMC Bioinform, 18(1), 169,1–169,18. https://doi.org/10.1186/
s12859-017-1578-z.

Liang, Y., Hu, S., Ma, L., & He, Y. (2009). MSMOTE: Improving classification performance when train-
ing data is imbalanced. Computer Science and Engineering, International Workshop on 2:13–17.
https://doi.org/10.1109/WCSE.2009.756.

Ling, C., Sheng, V., & Yang, Q. (2006). Test strategies for cost-sensitive decision trees. IEEE Transactions
on Knowledge and Data Engineering, 18(8), 1055–1067. https://doi.org/10.1109/TKDE.2006.131.

Lipton, Z., Elkan, C., & Naryanaswamy, B. (2014). Optimal Thresholding of Classifiers to Maximize F1
Measure. In Machine learning and knowledge discovery in databases : European Conference, ECML
PKDD : Proceedings ECML PKDD (Conference), 8725. https://doi.org/10.1007/978-3-662-44851-9 15.

Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data
Mining and Knowledge Discovery, 28, 92–122. https://doi.org/10.1007/s10618-012-0295-5.

Napierala, K., & Stefanowski, J. (2016). Types of minority class examples and their influence on learn-
ing classifiers from imbalanced data. Journal of Intelligent Information System, 46(3), 563–597.
https://doi.org/10.1007/s10844-015-0368-1.

Pozzolo, A. D., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating probability with undersam-
pling for unbalanced classification. In IEEE Symposium series on computational intelligence, SSCI2015,
(pp. 159–166). South Africa: Cape Town. https://doi.org/10.1109/SSCI.2015.33.

Puntumapon, K., & Waiyamai, K. (2012). A pruning-based approach for searching precise and generalized
region for synthetic minority over-sampling. In Advances in Knowledge Discovery and Data Mining,
Springer Berlin Heidelberg, pp. 371–382. https://doi.org/10.1007/978-3-642-30220-6 31.

Sáez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE–IPF: Addressing the noisy and border-
line examples problem in imbalanced classification by a re-sampling method with filtering. Information
Sciences, 291, 184–203.

Siriseriwan, W., & Sinapiromsaran, K. (2017). Adaptive neighbor synthetic minority oversampling tech-
nique under 1NN outcast handling. Songklanakarin Journal of Science and Technology, 39, 565–576.
https://doi.org/10.14456/sjst-psu.2017.70.

Skurichina, M., & Duin, R. P. W. (2000). Boosting in linear discriminant analysis. In Proceedings of the First
International Workshop on Multiple Classifier Systems, Springer-Verlag, (pp. 190–199). Heidelberg:
Berlin. https://doi.org/10.1007/3-540-45014-9 18.

Skurichina, M., & Duin, R. P. W. (2002). Bagging, boosting and the random subspace method for linear
classifiers. Pattern Analysis & Applications, 5(2), 121–135.

Soleymani, R., Granger, E., & Fumera, G. (2020). F-measure curves: a tool to visualize classifier perfor-
mance under imbalance. Pattern Recognition, 100, 107,146. https://doi.org/10.1016/10.1016/j.patcog.
2019.107146.

Tao, X., Li, Q., Guo, W., Ren, C., He, Q., Liu, R., & Zou, J. (2020). Adaptive weighted over-sampling for
imbalanced datasets based on density peaks clustering with heuristic filtering. Information Sciences,
519, 43–73. https://doi.org/10.1016/j.ins.2020.01.032.

Tarawneh, A. S., Hassanat, A. B. A., Almohammadi, K., Chetverikov, D., & Bellinger, C. (2020). SMOTE-
FUNA: Synthetic minority over-sampling technique based on furthest Neighbour algorithm. IEEE
Access, 8, 59,069–59,082. https://doi.org/10.1109/ACCESS.2020.2983003.

Ting, K. M., Wells, J. R., Tan, S. C., Teng, S. W., & Webb, G. I. (2011). Feature-subspace aggregating:
ensembles for stable and unstable learners. Machine Learning, 82(3), 375–397. https://doi.org/10.1007/
s10994-010-5224-5.

323Journal of Intelligent Information Systems (2023) 61:299–324

https://doi.org/10.1515/amcs-2017-0050
https://doi.org/10.1016/j.neucom.2018.04.089
https://doi.org/10.1109/CIDM.2014.7008687
https://doi.org/10.1016/j.eswa.2022.116962
https://doi.org/10.1109/IIKI.2014.14
https://doi.org/10.1186/s12859-017-1578-z
https://doi.org/10.1186/s12859-017-1578-z
https://doi.org/10.1109/WCSE.2009.756
https://doi.org/10.1109/TKDE.2006.131
https://doi.org/10.1007/978-3-662-44851-9_15
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1007/s10844-015-0368-1
https://doi.org/10.1109/SSCI.2015.33
https://doi.org/10.1007/978-3-642-30220-6_31
https://doi.org/10.14456/sjst-psu.2017.70
https://doi.org/10.1007/3-540-45014-9_18
https://doi.org/10.1016/j.patcog.2019.107146
https://doi.org/10.1016/j.patcog.2019.107146
https://doi.org/10.1016/j.ins.2020.01.032
https://doi.org/10.1109/ACCESS.2020.2983003
https://doi.org/10.1007/s10994-010-5224-5
https://doi.org/10.1007/s10994-010-5224-5


Torres, F. R., Carrasco-Ochoa, J. A., & Martı́nez-Trinidad, J. F. (2016). SMOTE-D a deterministic version
of SMOTE In J. F. Martı́nez-Trinidad, J. A. Carrasco-Ochoa, V. Ayala Ramirez, J. A. Olvera-López,
& X. Jiang (Eds.) Pattern recognition, (pp. 177–188). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-39393-3 18.

Veropoulos, K., Campbell, C., & Cristianini, N. (1999). Controlling the sensitivity of support vector
machines. In Proceedings of International Joint Conference Artificial Intelligence.

Wang, C., Deng, C., & Wang, S. (2020). Imbalance-XGBoost: Leveraging weighted and focal losses
for binary label-imbalanced classification with XGBoost. Pattern Recognition Letters, 136, 190–197.
https://doi.org/10.1016/j.patrec.2020.05.035.

Xie, Y., Qiu, M., Zhang, H., Peng, L., & Chen, Z. (2022). Gaussian distribution based oversampling for
imbalanced data classification. IEEE Transactions on Knowledge &Data Engineering, 34(02), 667–679.
https://doi.org/10.1109/TKDE.2020.2985965.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

324 Journal of Intelligent Information Systems (2023) 61:299–324

https://doi.org/10.1007/978-3-319-39393-3_18
https://doi.org/10.1016/j.patrec.2020.05.035
https://doi.org/10.1109/TKDE.2020.2985965

	MaMiPot: a paradigm shift for the classification of imbalanced data
	Abstract
	Introduction
	Literature review
	The proposed approach: MaMiPot
	Experimental work
	Conclusions and future work
	Declarations
	References


