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Abstract
We present a platform and a dataset to help research on Music Emotion Recognition 
(MER). We developed the Music Enthusiasts platform aiming to improve the gathering 
and analysis of the so-called “ground truth” needed as input to MER systems. Firstly, our 
platform involves engaging participants using citizen science strategies and generate music 
emotion annotations – the platform presents didactic information and musical recommen-
dations as incentivization, and collects data regarding demographics, mood, and language 
from each participant. Participants annotated each music excerpt with single free-text emo-
tion words (in native language), distinct forced-choice emotion categories, preference, and 
familiarity. Additionally, participants stated the reasons for each annotation – including 
those distinctive of emotion perception and emotion induction. Secondly, our dataset was 
created for personalized MER and contains information from 181 participants, 4721 anno-
tations, and 1161 music excerpts. To showcase the use of the dataset, we present a meth-
odology for personalization of MER models based on active learning. The experiments 
show evidence that using the judgment of the crowd as prior knowledge for active learning 
allows for more effective personalization of MER systems for this particular dataset. Our 
dataset is publicly available and we invite researchers to use it for testing MER systems.
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1 Introduction

Music Emotion Recognition (MER) is a computational task that aims at automatically 
predicting emotions that are expressed by music (emotion perception) or those felt by the 
listener (emotion induction) (Yang & Chen, 2011). It has been historically built around sig-
nal processing to extract emotionally relevant features from music and associate these fea-
tures to the listeners’ emotion judgments. This task seeks to narrow the so-called semantic 
gap between high-level musical constructions/concepts and low-level, handcrafted repre-
sentations of sound – centering it around the processing of musical content (e.g., acous-
tic features and lyrics). However, more recent studies have argued that user-aware music 
retrieval systems should include user-related factors (Barthet et  al., 2013; Schedl et  al., 
2013; Zangerle et al., 2021; Yang et al., 2021): user context – fluctuating characteristics 
from the listener, and user properties – features from the listener which are more constant. 
In short, user context involves collecting data regarding listening mood, uses of music, or 
physiological signals, while user properties include demographics, musical experience, or 
preference. In this direction, we have previously argued that the typical response variability 
in annotation gathering may be exploited positively to account for listener diversity – we 
promote the creation of context-sensitive MER systems (which draw upon the users’ con-
text), and personalized MER systems (which rely on information from the users’ properties 
and annotations) (Gómez-Cañón et al., 2021).

To this extent, the present study aims at delivering a MER dataset that includes 
anonymized user data (containing context and properties). To demonstrate the potential of 
the dataset, we present a personalization strategy based on the collective judgment of the 
crowd of participants. To collect the dataset, we created the Music Enthusiasts platform1 
in the context of the TROMPA EU research project (Towards Richer Online Music Public-
domain Archives).2

1.1  Contributions

A typical MER workflow is summarized in five steps (see Fig. 1): (1) researchers determine 
a music selection and a particular emotion taxonomy for annotation, (2) listeners annotate 
the perceived or induced emotion in music, (3) emotionally relevant features are extracted 
and matched to subjective annotations, and (4) a machine learning model is trained and 
tested with the annotated data. Thus, the music selection becomes central to experimental 
design and performance of MER systems (Warrenburg, 2020) – motivating the contribu-
tions of this work:

• Inspired on work by Kim et al. (2008), Aljanaki et al. (2016), Eerola et al. (2021), and 
Honing (2021), we propose a citizen science approach by engaging music enthusiasts 
(see step 2, Fig. 1): we provide music training on the musical properties of emotion and 
incentivize listeners with personalized recommendations for discovery of non-Western 
music (in fact, music from the Global South).

• We use a categorical emotion taxonomy (see step 1, Fig. 1): free-text annotations, cat-
egorical core affects (Barrett, 2017), perceived basic emotions tags (Ekman, 1992), 

1 https:// ilde. upf. edu/ trompa/
2 https:// tromp amusic. eu/
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and musically-specific induced emotions (Zentner et al., 2008). We gather annotations 
of music in different styles and containing lyrics in different languages. Our aim is to 
account for different cultural backgrounds, languages, and response diversity.

• In order to favor reproducibility and open source research (see step 2, Fig. 1), our data-
set is publicly available and we offer a list of links to the musical excerpts, extracted 
acoustic features, anonymized annotations and user profiles, and a complementary 
website to reproduce the findings of this study.3 Additionally, we deliver a visualization 
platform to navigate and listen to the music from the dataset, and better understand the 
agreement and diversity of the annotations.4

• We enhance listeners’ annotations with text data about the reasoning for each annota-
tion (see step 2, Fig. 1). This allows to better understand if a listener chose a particular 
emotion due to properties of music (perceived emotions) or to psycho-physiological 
responses (induced emotions).

• We test and improve a personalization strategy that uses prior knowledge about the 
uncertainty of an excerpt with respect to the collective judgment of a crowd. Music 
excerpts on which we disagree upon define our personal opinions and should be taken 
into account for personalization (see step 4, Fig.  1). Our aim is to create an explicit 

Fig. 1  Capturing personalized judgments in human-centered Music Emotion Recognition -  adapted from 
Gómez-Cañón et al. (2021)

3 https:// github. com/ juans gomez 87/ vis- mtg- mer
4 https:// trompa- mtg. upf. edu/ vis- mtg- mer/
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feedback loop between the listener and the models, that allows for progressive evalua-
tion and improvement.

The rest of this paper is structured as follows. Section  2 reviews previous work and 
definitions for MER. In Section  3 we specify the music selection, annotation gathering 
approach, incentivization strategies, and personalization methodologies. Section 4 provides 
statistical analysis on the annotations and the validation of the personalization scheme, 
later discussed in Section 5.

2  Related work

MER has been subject to extensive criticism given the ambiguous and subjec-
tive nature of emotions in music (Sturm, 2013; Hong et  al., 2017; Lange & Frieler, 
2018; Schedl et  al., 2018; Vempala & Russo, 2018; Gómez-Cañón et  al., 2021; Gre-
kow, 2021). Namely, different listeners are likely to provide diverse emotional judg-
ments due to several factors: (1) intrinsic constructions of music (e.g., lyrics content 
and style), (2) socio-cultural conventions (e.g., functionality of music), (3) personal 
differences (e.g., listener’s mood, preferences, personality, and musical experience), 
(4) high-level emotional evaluation mechanisms (e.g., language differences, aesthetic 
experience, familiarity, episodic memory, and identity confirmation), and (5) general-
ized confusion between the concepts of induced and perceived emotions in music. We 
stress the distinction between these concepts: perceived emotions are recognized by 
the listener through judgment/interpretation of musical properties (e.g., Western happy 
music is typically in major mode and has fast tempo); induced emotions are felt by the 
listener and involve psycho-physiological responses to music (e.g., happy music might 
induce sadness when triggering a nostalgic memory). Despite the criticism, great 
advances have been accomplished over the years to tackle the inherent subjectivity of 
the task - for in-depth reviews on MER see Laurier (2011); Kim et al. (2010); Yang & 
Chen (2012); Yang et al. (2018); Panda et al. (2020); Han et al. (2022).

2.1  Datasets for MER

Open datasets for MER have been developed mainly from benchmarking initiatives 
from the Audio Mood Classification task in the Music Information Retrieval Evaluation 
eXchange (MIREX)5 and the Multimedia Evaluation Benchmark (MediaEval)6. The for-
mer released the DEAM dataset (Aljanaki et al., 2017): 1802 excerpts of royalty-free music 
rated by at least 10 MTurk7 workers with dynamic annotations of arousal and valence.8 
The latter resulted in the Jamendo Mood and Theme subset (Bogdanov et al., 2019): 18486 
audio tracks from Jamendo annotated with multi-label mood or theme tags gathered from 
users (e.g., happy, positive, or epic). We also highlight the AMG1608 dataset, unique for 
personalization purposes (Chen et  al., 2014): 1608 excerpts from All Music Guide that 

5 https:// www. music- ir. org/ mirex/ wiki
6 https:// multi media eval. github. io/
7 https:// www. mturk. com/
8 Core affects are arousal (the amount of energy/activation) and valence (pleaseantness/positiveness).
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were annotated with static arousal and valence ratings by MTurk workers and students from 
the National Taiwan University. We refer the reader to Warrenburg Warrenburg (2020) for 
a thorough review of stimuli selection in music emotion studies and to Gómez-Cañón et al. 
(Gómez-Cañón et al., 2021) for a broad introduction on the typical methodologies for data-
set creation in MER. We also offer the reader a summary website, with detailed informa-
tion regarding existing datasets for MER (annotation strategy, music style, and emotion 
taxonomy).9

Importantly, it has been argued that the annotation procedure is time-consuming, tedi-
ous, expensive, and a heavy cognitive load for listeners (Yang & Chen, 2011) – inter-
fering with the dataset creation step (see step 2, Fig.  1). Crowdsourcing strategies have 
been designed to attract participants (Law et al., 2007; Schedl et al., 2014) – collaborative 
gamification strategies lower the cost of labeling and could maximize consensus across 
listeners. For the case of MER, the MoodSwings game was created to annotate continu-
ous, perceived emotion values of valence and arousal (Kim et al., 2008), while the Emo-
tify game collected discrete, induced emotion labels (Aljanaki et  al., 2016) - for theory 
on discrete and continuous models of music emotion see  (Eerola & Vuoskoski, 2011). 
Thus, approaches for dataset creation that incentivize participation and reward listeners are 
highly desirable.

2.2  Personalized MER models

In the context of this paper, the use-case for our dataset is to produce personalized mod-
els – a central topic in the field of Affective Computing (Tkalčič et al., 2016). Moreover, 
personalization could promote emotion-based music recommendation applications with 
beneficial purposes in the context of healthcare and well-being (Grekow, 2021): improv-
ing concentration (Agres et al., 2021), promoting prosociality (Cespedes-Guevara & Dib-
ben, 2021), aiding learning (Hu et al., 2021), or supporting tinnitus patients (Tarnowska, 
2021). Given the subjective nature of emotions and the typical low agreement across 
annotations (Liebetrau & Schneider, 2013; Schedl et al., 2018), it is reasonable to train 
models exclusively with the annotations from a particular person. Particularly for MER, 
Yang et al. (2007) considered the role of individuality from two perspectives: (1) assem-
bling group-based MER models that average annotations from groups of listeners with 
similar properties (i.e., demographics and musical experience), and (2) training personal-
ized models which train on the annotations of a specific user. Evidence has shown that 
personalized models significantly outperform general models (i.e., those trained with an 
average rating across all listeners), although group-based models do not (Yang & Chen, 
2011). Contrarily, Gómez-Cañón et  al. (2020) found that group-based MER algorithms 
trained on the annotations of users that reported understanding the lyrics, consistently 
outperformed general models for a small dataset with a large amount of annotations per 
excerpt.

Regarding personalization for MER, Su and Fung (2012) proposed using active learning 
(Settles, 2012; Aggarwal et al., 2014; Yang, 2018) – the strategy relies on cleverly select-
ing unlabeled data instances so that the algorithms require less training. Chen et al. (2014; 
2017) proposed model adaptation – they developed a general MER regression model 
(namely, Gaussian Mixture Models) and progressively tied the Gaussian components 

9 https:// github. com/ juans gomez 87/ datas ets_ emoti on
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to adapt the models based on the maximum a posteriori (MAP) linear regression. More 
recently, Gómez-Cañón et al. (2021) introduced consensus entropy for MER: disagreement 
of a committee of classifiers and/or listeners is used to progressively re-train models with 
personal annotations (Cohn et al., 1994).

Aiming at personalization, we evaluated the following research questions:
RQ1: Are there differences in emotion judgments of both perceived and induced emo-

tions, according to musical and user properties?
RQ2: Can novel personalization classification schemes, i.e., consensus entropy (Gómez-

Cañón et al., 2021), generalize to the TROMPA-MER dataset?

3  Dataset creation

3.1  Music selection

The TROMPA project included several international partners including the Stichting Cen-
trale Discotheek Rotterdam (CDR) and their online library Muziekweb.10 Muziekweb is 
the music library of the Netherlands, which offers an automatic selection of 30 second 
excerpts of each song and metadata accessible to everyone: 600,000 CDs, 300,000 LPs, 
and 30,000 music DVDs. Muziekweb presents a general taxonomy including genres, but 
is also indexed by different countries of the world. This allowed us to focus on non-West-
ern styles of music from the Global South, since cross-cultural research of MER models 
is important to target user groups with different cultural and socioeconomic backgrounds 
(Gómez-Cañón et  al., 2021). WEIRDness in music psychology studies has been openly 
discussed recently by the research community (Henrich et al., 2010; Jacoby et al., 2020) 
– researchers and participants are typically from Western, Educated, Industrialized, Rich, 
and Democratic backgrounds.

To gather initial data from the possible pool of songs, we used the Spotify Web API11 
to pre-select songs which were both available to Muziekweb and Spotify – we gathered 
information regarding danceability, key, mode, energy, and valence. Our aim was to select 
songs which, according to Spotify, had strong indicators of belonging to a particular quad-
rant. Since the calculation of energy and valence is unknown (i.e., Spotify’s algorithms are 
essentially a black box), we standardized the values retrieved from the API (zero mean and 
unit variance), and balanced the selection of songs for each resulting quadrant.

• Music in Spanish (100 excerpts) and Portuguese (100 excerpts). We gather recent pop-
ular music containing lyrics in both languages. Over 91% of the songs were recorded 
after the year 2000.

• Music from Africa (120 excerpts). We rely on Muziekweb’s music taxonomy to retrieve 
music with lyrics in the Griot tradition from West Africa, which usually contains Kora 
(a stringed instrument with 21 strings played by plucking with the fingers).

• Music from Latin America (539 excerpts). We gather traditional and popular music 
with lyrics from the following countries: Argentina, Bolivia, Brazil, Chile, Colombia, 

11 https:// devel oper. spoti fy. com/ docum entat ion/ web- api/

10 https:// www. muzie kweb. nl/
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Costa Rica, Cuba, Dominican Republic, Ecuador, Mexico, Panamá, Perú, Puerto Rico, 
Uruguay, and Venezuela.

• Music from the Middle-East (219 excerpts). We gather traditional and popular music 
with and without lyrics from the following countries: Syria, Irak, Yemen, Kurdistan, 
and Lebanon.

• Choir music (83 excerpts). We gather music with singing voice balanced in the follow-
ing languages: Spanish, English, German, and other languages (Dutch, French, Danish, 
and Finnish).

Following recommendations from Gebru et al. (2018) and Prabhakaran et al. (2021) to 
document the properties a dataset, we offer an interactive “datasheet” for our dataset: a 
complementary website to listen to the music collection, emotion representations, and par-
ticipants’ annotations and agreement.12 The aim is to highlight the issue of subjectivity to 
future MER researchers.

3.2  Citizen science and music recommendations

As a citizen science approach, the platform offers examples as concise guides to Western 
musical properties which are typically related particular emotions – allowing the listener 
to better understand the annotation task. We used two types of music recommendations to 
incentivize participation to our platform:

• Informative recommendations: we split the music into annotation campaigns of 20 
songs, and participants received a recommendation belonging to their most rated cat-
egory after completing the campaign (e.g., if a listener is biased toward annotating 
music with a given category, the platform presents recommendations from this cate-
gory). We inform musical properties of tempo, mode (major or minor), and danceabil-
ity. For example, a song with 120 BPM, major tonality, and 70% danceability is likely 
be classified as happy – reinforcing concepts of musical properties of emotion.

• Personalized recommendations: using the personalization framework described in 
Section 3.4, each user annotated 10 songs, personalized models were trained, partici-
pants chose the location of the desired recommendation (West Africa, Latin America, 
and Middle East), and received four recommendations according to their personalized 
model. Participants gave explicit feedback of their agreement with these recommenda-
tions – they rated if each recommendation category agrees to their opinions.

To obtain greater response variability, we translated our platform into English, Spanish, 
Italian, Mandarin, and Dutch. We refer the reader to Gutiérrez Páez et al. (2021) for a full 
description of other incentivization strategies that were implemented (e.g., using gamifica-
tion to compare participants’ engagement).

3.3  Annotations and emotion taxonomies

Previous to annotation, all participants accept the data management consent form and 
we collect the annotators’ current mood (with a free-text in native language and a visual 

12 https:// trompa- mtg. upf. edu/ vis- mtg- mer/
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category from Pick-a-mood (Vastenburg et  al., 2011)).13 We refer the reader to Meyer 
(1961), Budd (1992), Yang and Chen (2011), Eerola & Vuoskoski (2011), Eerola (2018), 
Céspedes-Guevara & Eerola (2018), Juslin (2019), Warrenburg (2020), and Dufour & 
Tzanetakis (2021) for thorough studies of emotion representation in music. For our par-
ticular platform, we offer variable granularity for the categorical/discrete representation of 
emotions (Ekman, 1992): each annotation describes a particular class/label (e.g., happy, 
sad). Although this approach is naturally ambiguous by using language to describe emo-
tions and is limited compared to the richness of human emotion (Yang & Chen, 2011), it 
has been argued that musical emotions are likely to be prototypical (Juslin, 2019). Inspired 
by Cowen (Cowen et al., 2019) and Warrenburg (Warrenburg, 2020; 2020), we attempt to 
provide coarse and fine emotion granularity to our participants through different catego-
ries: single free-text emotion word in the listener’s native language, forced-choice categori-
cal arousal and valence, and eleven emotion adjectives typically used in music emotion 
studies. We use four basic emotions (anger, surprise, fear, and sadness) (Ekman, 1992), 
and seven music-specific emotions from the Geneva Emotion Music Scale – GEMS (joy, 
power, tension, bitterness, peace, tenderness, transcendence) (Zentner et al., 2008). Since 
Russell’s circumplex model of emotion is dimensional (Russell, 1980), we can further 
categorize music into four quadrants resulting from the separation of arousal and valence 
axes (see Panda et al. (2018): Q1 corresponds to positive arousal and valence, Q2 to posi-
tive arousal and negative valence, Q3 to negative arousal and valence, and Q4 to negative 
arousal and positive valence. In order to decrease the amount of time for each annotation 
and following our previous research (Gómez-Cañón et  al., 2020), we present subsets of 
the emotion adjectives depending on the choice of quadrant: Q1 (joy, power, surprise), Q2 

Fig. 2  Collection of reasons presented to the participants

13 Moods reflect affective states that have lower intensity than emotions, do not have a clear “object”, 
have a low intensity, and are more lasting than emotions – they reflect an overall status of the person (e.g., 
gloomy).
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(anger, fear, tension), Q3 (bitterness, sadness), and Q4 (peace, tenderness, transcendence). 
It is questionable that these emotion words are effectively mapped to the given quadrants 
(e.g., the adjective surprise could have either positive or negative valence). However, the 
annotation of each musical excerpt is highly demanding and this procedure reduced anno-
tation time significantly (see (Gómez-Cañón et  al., 2020)). Furthermore, we collect the 
listener’s preference and familiarity for each music excerpt. Finally, listeners state the rea-
sons behind each annotation. From a citizen science perspective, the aim is to educate each 
participant and as a result obtain higher quality annotations. We offer a pool of reasons for 
both emotion perception (musical properties like consonance, harmony, sound level) and 
for induced emotions (psycho-physiological reactions such as chills, thought associations, 
memories). The latter are simplifications of the BRECVEMA model that includes eight 
mechanisms of emotion induction (Juslin, 2013): Brain Stem Reflex, Rhythmic Entrain-
ment, Evaluative Conditioning, Contagion, Visual Imagery, Episodic Memory, Musi-
cal Expectancy, and Aesthetic Judgment. We offer reasons such as the music “makes me 
feel pleasure”, “makes me want to dance or move”, or “makes me feel like singing” (see 
Fig.  2). Importantly, the set of reasons for induced emotions can have positive or nega-
tive valence (e.g., goosebumps, memories, mental images, thought associations). Thus, we 
can analyze data reliability and better understand how emotional judgments are converted 
into annotations. It must be noted that research on physiological reactions to music should 
involve analyzing biosignals such as heart rate variability, electrodermal activity, or elec-
tro-encephalography (Poli et al., 2021; Saganowski et al., 2022) – however, our approach 
is centered on understanding the underlying reasoning in order to understand agreement 
and improve personalization. Thus, one annotation contains the following information, for 
example: Q1 (positive arousal and valence), joy (force-choice), merry (free-text), positive 
familiarity, negative preference, and three reasons for choosing arousal (e.g., fast tempo), 
valence (e.g., major mode), and emotion (e.g., thought associations).

3.4  Personalization methodology

Our personalization methodology is based on the assumption that prior knowledge about 
the collective judgment of the crowd of annotators results in indicative instances of classi-
fication boundaries across individual listeners (Gómez-Cañón et al., 2021). For this reason, 
we gathered multiple annotations from the same excerpt and evaluated their agreement 
as input to the algorithm. Music excerpts on which we disagree upon define our personal 
opinions and should be taken into account to create personalized classification bounda-
ries. We used active learning to progressively fine-tune an ensemble of pre-trained classi-
fiers according to each participant’s annotations of four classes (i.e., quadrants in arousal-
valence space). Active learning is based on consensus entropy (Cohn et al., 1994; Settles, 
2009): (1) an ensemble of classifiers predict the quadrant probability of unlabeled data, 
(2) probabilities are averaged across classifiers and Shannon’s entropy is calculated across 
quadrants, (3) instances with highest entropy are queried to the participant, and (4) classi-
fiers are re-trained with the provided annotations. For example, an ensemble of four classi-
fiers analyze a song and reach high uncertainty: each classifier predicts one quadrant with 
100% probability yielding an average probability of pavg = {Q1 : 0.25,Q2 : 0.25,Q3 : 0.25,Q4 
: 0.25} and high inter-class entropy of 1.386. In Gómez-Cañón et al. (2021), we enhanced 
this methodology by introducing inter-rater agreement as input. Instead of using the output 
probabilities from the classifiers, we calculate entropy on the normalized annotation histo-
gram. For example, given six annotations for song i we calculate a relative frequency fi = 
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{Q1 : 1/6,Q2 : 2/6,Q3 : 3/6,Q4 : 0/6} and its corresponding entropy of 1.011. We proposed 
four methods to choose informative query instances: (1) analyzing the agreement achieved 
by an ensemble of pre-trained models (machine consensus - MC), (2) analyzing the agree-
ment from an ensemble of annotators (human consensus - HC), (3) taking into account 
both ensembles (hybrid consensus - MIX), and (4) randomly selecting instances as a base-
line (RAND). In short, q instances with highest entropy (i.e., highest uncertainty) with 
respect to the method are queried to each participant, annotations are used to re-train each 
algorithm, and the process is repeated throughout e epochs (see top schematic in Fig. 3).

In this work, we enhance the methodology from Gómez-Cañón et al. (2021) to improve 
class balancing for each epoch: (1) before calculating entropy, we split the probabilities 
pavg or fi into four matrices corresponding to the instances with high probability of belong-
ing to each quadrant, (2) we calculate entropy independently for each matrix, and (3) we 
select instances with highest entropy from each matrix. Thus, we alleviate the issue of 
imbalanced classes for each epoch, since the instances selected for query are more likely 
to belong to a particular quadrant. In the case that the probabilities do not favor a particular 
quadrant (i.e., models/annotators are biased towards particular classes), we simply select 

Fig. 3  Schematic of each proposed method. We show online personalized recommendations and offline 
evaluation
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the instances with highest entropy from the initial matrix. We extracted 260 emotionally 
relevant acoustic features (mean and standard deviation of 65 low-level music descrip-
tors and their first order derivatives) from segments of 1 second (Aljanaki et  al., 2017), 
with 50% overlap, and standardize across features – using the IS13 ComParE feature set 
(Weninger et al., 2013) and the OpenSMILE toolbox (Eyben et al., 2013). For each par-
ticipant, we created an ensemble of 15 machine learning algorithms, pre-trained using 
the DEAM dataset (Aljanaki et  al., 2017) – 5 Gaussian Naive Bayes classifiers (GNB), 
5 Logistic Regression classifiers optimized with Stochastic Gradient Descent (SGD), and 
5 Extreme Gradient Boosting classifiers (XGB). Each ensemble of 5 classifiers is trained 
from a different cross-validation split from the DEAM dataset to assure different predic-
tion outputs. We use these algorithms since they offer probabilistic outputs and are less 
computationally expensive than novel methodologies like neural networks. In total, 181 
annotators completed 4721 annotations of 691 music excerpts – which we use as the prior 
information for the HC and MIX methods. For the online platform, each participant was 
randomly assigned to a sampling method and q = 10 the sampling method is kept through-
out their participation: each participant annotated 10 excerpts and then received recom-
mendations as the models were re-trained. However, we had no control over the amount of 
epochs e that our participants were willing to complete. Hence, we used their annotations 
to test all methods offline (MC, HC, MIX, RAND) with different combinations of q and e, 
and analyzed which models were effectively personalized with respect to each participant 
(see online and offline schematics in Fig. 3).

4  Analysis and discussion

After implementing the personalization strategy on the platform, we result with a total of 
181 participants (44 new participants) that completed 4721 annotations (1312 new anno-
tations) of 691 music excerpts (470 still require annotations). Given past research on the 
impact of language on music emotion annotation (Gómez-Cañón et  al., 2020), we gath-
ered information on the birth place, native language and second languages. 85% of our 
participants were born in Europe, 8% in America (6% in South America and 2% in North 
America), and 6% in Asia. The main native languages from our participants were Spanish 
(32.7%) and Català (34.9%), followed up by Romanian, Dutch, English, Croatian, Ukra-
nian, Greek, Italian, French, Chinese, Russian, Galician, Turkish, Portuguese, Korean, 
German, Serbian, Japanese, Swedish, and Arabic (≤ 3%). The main second languages were 
English (45.4%), Spanish (21.4%), Català (11.4%), French (8.7%), followed up by German, 
Italian, Basque, Dutch, Russian, Chinese, Polish, Hungarian, Bosnian, Vietnamese, Gali-
cian, and Arabic (≤ 2%).

4.1  Inter‑rater agreement

Following (Schedl et al., 2018; Gómez-Cañón et al., 2020), we assessed the agreement of 
participants using reliability statistics with respect to self-reported characteristics of anno-
tations (i.e., preference and familiarity) and music properties retrieved from Spotify (i.e., 
mode, tempo, danceability, acousticness, and popularity) (Krippendorff, 2004). Among 
other agreement indexes considered, the benefits of using Krippendorff’s α are: offering 
several types of metric (in this case, nominal since annotations are categorical), handling 
of missing data and any number of observers, and not requiring a minimum of sample 
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size. When there is no disagreement among annotators, there is perfect reliability (α = 1). 
Conversely, if agreement and disagreement are due to chance, there is a lack of reliability 
of the data (α = 0). However, α could be smaller than zero if agreement is below what is 
expected by chance or the sample size is too small. According to Krippendorff (2004), 
data with 0.4 ≤ α ≤ 0.67 shows fair agreement and α ≥ 0.8 is considered to have good 
agreement.

We report our inter-rater agreement results in Table 1. Although annotation properties 
(i.e., preference and familiarity) depend on the users’ annotations, we attempted to split the 
dataset into a balanced number of annotations with respect to musical properties. Hence, 
the bounds to split the annotations with respect to properties of tempo, danceability, acous-
ticness, and popularity were selected accordingly. In general, our results are consistent with 
findings from (Lange & Frieler, 2018; Gómez-Cañón et  al., 2020): only arousal annota-
tions have a fair agreement according to Krippendorff (2004), which justifies the creation 
of personalized models for MER – although we only use four quadrants to describe emo-
tion, subjectivity plays a major role in the creation of a possible “ground truth” to machine 
learning algorithms for MER. We also remark the following findings, with respect to other 
comparisons on the table: (1) participants that reported disliking and being familiar with 
the music show higher agreement for arousal-valence annotations, while the opposite hap-
pens for emotion words – we observe that negative preference and familiarity could result 
in basing judgments on musical properties (i.e., arousal-valence), but preference and nega-
tive familiarity relate more to induced emotions (i.e., emotion words – see Section 4.2); (2) 
although higher agreement for arousal is reached over songs with minor tonality, higher 
agreement for quadrants, valence, and emotion words is reached for major tonality – it is 
likely that the annotated excerpts are not necessarily in the same mode as the one cal-
culated by Spotify’s algorithms (which produce song-level predictions); (3) excerpts with 
tempo over 100 BPM, high danceability, low acousticness and not popular show higher 

Table 1  Krippendorff’s α for annotations of quadrants, arousal, valence, and emotion

 The annotation dataset is also filtered by preference, familiarity, mode, tempo, danceability, acousticness, 
and popularity. Bold indicates higher agreement for positive or negative filters

Properties Configuration Annotations % Quadrant Arousal Valence Emotion

– All 4721 100% 0.313 0.449 0.310 0.182
Annotation Proper-

ties
Positive Preference 1843 39% 0.305 0.455 0.229 0.189

Negative Preference 2878 61% 0.322 0.456 0.329 0.175
Positive Familiarity 1418 30% 0.343 0.479 0.360 0.172
Negative Familiarity 3303 70% 0.299 0.434 0.287 0.184

Musical Properties Major tonality 2835 60% 0.318 0.421 0.325 0.191
Minor tonality 1886 40% 0.296 0.482 0.273 0.160
Tempo ≥ 100 bpm 2412 51% 0.341 0.485 0.329 0.208
Tempo < 100 bpm 2309 49% 0.273 0.397 0.286 0.148
Danceability ≥ 0.35 2397 51% 0.316 0.440 0.315 0.203
Danceability < 0.35 2324 49% 0.263 0.388 0.279 0.131
Acousticness ≥ 0.98 2280 48% 0.250 0.388 0.256 0.113
Acousticness < 0.98 2441 52% 0.337 0.448 0.360 0.227
Popularity ≥ 0.1 1976 42% 0.274 0.412 0.259 0.177
Popularity < 0.1 2745 58% 0.330 0.468 0.330 0.181

560 Journal of Intelligent Information Systems (2023) 60:549–570



1 3

agreement – these are song-level features from Spotify and it is likely that their algorithms 
are mainly trained on Western music, which do not completely capture the variability of 
music from Africa, Latin America, and the Middle East.

4.2  Reasoning behind emotion judgments

The collection of reasons behind each annotation allowed to perform a deeper analysis to 
understand the emotion judgments (for both perceived and induced emotions). As men-
tioned in Section 3, we gathered four sources of text data: (1) free-text emotion annota-
tions, (2) reasoning for arousal annotation, (3) reasoning for valence annotation, and (4) 
reasoning for emotion words. Importantly, the reasoning from (2), (3), and (4) can be free-
text or chosen from a pool of explanations that relate to perceived emotions (musical prop-
erties) and induced emotions (psycho-physiological responses). To perform this analysis 
we employ generalized word shift graphs (Gallagher et al., 2021), a methodology that pro-
vides word-level explanations on how and why two texts differ. This method uses two text 
corpora (e.g., reasoning for positive/negative valence) and the relative word frequencies for 
each corpus to perform pairwise comparisons between texts and obtain a list of the most 
characteristic words for each text. For our case, we used Shannon’s entropy to calculate 
each word’s contribution to a given text: a word will appear higher in the ranking when it is 

Fig. 4  Entropy shift for reasoning of arousal/valence (in purple) vs. emotion words (in yellow). Σ denotes 
the overall contribution of the compared corpora
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more suprising (i.e., when it is more diverse from the other corpus). Hence, the difference 
of contribution δΦt for each word τ can be calculated as:

where p(1,2)
�

 is the relative frequency of each word in texts T1 and T2.
In order to analyze these texts, we performed two comparisons: (1) how explanations 

for core affects (T1) differ from explanations for emotion words (T2) – we assume that core 
affects (i.e., arousal and valence) are more related to perceived emotions, and (2) how 
free-text words contribute to differences between annotations of positive (T1) and negative 
valence (T2) – as seen in Table 1, valence is highly subjective and shows less inter-rater 
agreement as a core affect. Regarding comparison 1, we obtained 16951 reasons to explain 
arousal/valence and 8135 to explain emotion words (see Fig. 4). Interestingly, we find that 
the explanations for core affects (i.e., arousal and valence) relate more to musical prop-
erties (consistent with work by Barrett (2017) and Panda et  al. (2018)). Conversely, the 
annotations of emotion words (e.g., joy) are typically explained with reasons for induced 
emotions. We remark that this is particularly important finding when creating a labeled 
dataset – careful thought must be given to describe emotions with words in music datasets.

Regarding comparison 2, we analyzed 1043 free-text annotations for positive and nega-
tive valence (see Fig.  5). We found that most of our annotators use Spanish and Català 

(1)�Φ
�
= p(2)

�
log2(1∕p

(2)
�
) − p(1)

�
log2(1∕p

(1)
�
)

Fig. 5  Entropy shift for free-text annotations of positive valence (in purple) vs. negative valence (in yel-
low). Σ denotes the overall contribution of the compared corpora
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languages (see matched translations). In short, it is interesting to see that several of the 
words can refer to both perceived and induced emotions, and the word surprise is more 
related towards a positive valence. However, more work is needed in order to map multi-
lingual description of emotion words used to describe music.

4.3  Personalized models

36 participants annotated more than 80 excerpts each (i.e., between 80 and 173 annota-
tions) and we used their annotations to evaluate personalization independently from the 
online platform. Hence, we have a total of 3289 annotations and split each participant’s 
dataset with non-overlapping excerpts into 85% for training (at least 68 excerpts) and 15% 
for testing (at least 12 excerpts). We tested different combinations of number of query 
instances q and epochs e to use most of the training data for all participants and balanced 
amount of queries with respect to the four quadrants: {q : 4,e : 12}, {q : 4,e : 15}, and {q : 
8,e : 6}. We also test non-balanced queries: {q : 2,e : 33}, {q : 33,e : 2}, {q : 5,e : 10}, {q : 
10,e : 5}, {q : 6,e : 11}, and {q : 11,e : 6}.

We obtained a total of 2160 trained classifiers – 36 participants × 3 algorithms (GNB, 
SGD, XGB) × 5 models per ensemble (cross-validation iteration) × 4 consensus entropy 
methods (HC, MC, MIX, RAND). We evaluated the classification scores and reported 
weight-averaged F1-scores, since most personal datasets turn out to be class-imbalanced 
(i.e., it is likely that annotators are possibly biased towards a particular class).

Our findings are consistent with Gómez-Cañón et al. (2021) and summarized in Fig. 6 
for {q : 4,e : 15}: (1) while the overall classification performance is low, we observe that 
SGD and XGB models consistently improve as new annotations are presented to the algo-
rithms – personalized MER models appear to benefit of using active and ensemble learn-
ing. (2) We use pairwise, one-sided t-tests (d.f. = 179, statistical significance p < 0.0125 
with Bonferroni correction) to evaluate differences after training among consensus 
entropy methods (HC, MC, MIX, and RAND) – for the SGD algorithm, all methods are 
significantly better than the random baseline (HC: p = 0.003, MIX: p = 0.001, and MC: 
p = 0.001). For the XGB algorithm, our proposed methods significantly outperform the 
random baseline (HC: p < 0.001, MIX: p < 0.001), and the typical MC approach (HC: p 
= 0.001, MIX: p = 0.002). (3) Two-way ANOVAs were made independently for each algo-
rithm to compare the effect of the consensus entropy method and cross-validation iterations 

Fig. 6  Average results of weight-averaged F1-scores for each type of model, across 36 users and 5 classifi-
ers (shaded area corresponds to CI = 95%,n = 180). HC stands for Human Consensus, MC for machine con-
sensus, MIX for hybrid consensus and RAND for random selection. Initial refers to the F1-score previous to 
introducing active learning and {q : 4,e : 15}
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on the F1-score after training. These tests revealed significant interactions between the 
methods and iterations for the GNB and SGD algorithms (p < 0.001 and p = 0.010 respec-
tively) and a significant effect of the consensus entropy method for the XGB algorithm 
(p = 0.048). (4) Tukey HSD tests for multiple comparisons found that the mean value of 
F1-score for the XGB algorithm was significantly different between HC and RAND/MC 
(p < 0.001 and p = 0.010 respectively) and between MIX and RAND/MC (p < 0.001 and p 
= 0.005 respectively). (5) RAND is a strong baseline – significant differences appear across 
consensus entropy methods, but improvements only appear after most of the data has 
been used to train the models and deeper analysis of each personalized ensemble showed 
varying behaviors (i.e., effective personalization is not reached for every participant). (6) 
GNB models appear not to personalize, consistent with findings from Gómez-Cañón et al. 
(2021) – naive bayesian models are expected to have limited generalization to new data. 
(7) Empirical tests with q and M show improvements with a low amount of queries and 
higher amount of epochs (e.g., {q : 5,e : 10}, {q : 2,e : 33}, {q : 6,e : 11}) – it is likely that 
more iterations are beneficial for the models to progressively adapt to the new annotations, 
however best performance is achieved by attempting to balance the queries, using the HC 
method, and XGB.

Since personalization is not reached for all participants, we evaluate them independently 
and fitted linear regressors on the average performance metrics of each ensemble of classi-
fiers for each algorithm and assume effective personalization when the slope of the regres-
sor is positive (see Fig. 7). We fitted a linear regressor on the five F1-scores for the each 
participant’s ensemble and each epoch e = {0..14} – we assume that an ensemble is effec-
tively personalized when the slope is positive and performance increases with increasing 
number of epochs. Hence, we obtained 432 ensembles – 36 participants × 3 algorithms 
(GNB, SGD, XGB) × 4 consensus entropy methods (HC, MC, MIX, RAND). We summa-
rize our findings as follows: (1) SGD models show a similar amount of effectively person-
alized models across sampling methods. (2) XGB models show that all proposed consensus 
entropy methods appear to produce more personalized models than RAND (particularly for 
the HC method). This indicates that, although the tendencies described in Fig. 6 show that 
RAND is a strong baseline, other methods produce more cases with effective personaliza-
tion. (3) As expected, GNB models produce a few personalized models regardless the con-
sensus entropy method – it is likely this algorithm is inappropriate given the non-gaussian 
distribution of data, reducing the performance of the ensemble. (4) MIX method produces 

Fig. 7  Number of users with effective personalization per algorithm from a total of 35 participants
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a high amount of personalized GNB and SGD models – MIX possibly exploits comple-
mentary advantages from HC and MC.

We also analyzed the information regarding the users that exhibited effective personali-
zation. Each of the 36 participants had 12 ensembles: 3 algorithms (GNB, SGD, XGB) × 4 
consensus entropy methods (HC, MC, MIX, RAND). On average for all participants, seven 
ensembles showed effective personalization (μ = 7.47 ± σ = 2.26). Thus we selected out-
lier participants: 5 participants had 10-12 effective ensembles (HIGH personalization) and 
5 participants had 2-4 effective ensembles (LOW personalization). We analyze inter-rater 
agreement for these groups and we present our findings in Table 2: users for which person-
alization was effective (HIGH) exhibit high agreement in annotations and viceversa – this 
group of participants appear to exhibit the highest agreement in annotations even when 
comparing to the results from Table 1.

5  Conclusions

The Music Enthusiasts platform is an ongoing citizen science project which explores learn-
ing about music and emotion. This paper presents the TROMPA-MER dataset, an openly 
available dataset with diverse categorical annotations to account for the subjectivity of 
the task and foster response diversity. Our dataset offers advantages over existing MER 
datasets which can be exploited by future researchers: (1) additional information regard-
ing each annotator (spoken languages, current mood, and birth place), (2) diverse styles of 
non-Western music belonging to the Global South, (3) high amount of annotations for cer-
tain excerpts (up to 143 annotations), (4) gathering reasons for annotation improves under-
standing of our participants’ judgments, and (5) free-text annotations in native language 
enhance response diversity. Comparatively to other MER datasets, ours shows the follow-
ing limitations: (1) using a categorical taxonomy is restricted due to language ambiguity 
(see Soundtracks dataset by Eerola & Vuoskoski (2011)), and (2) not taking into account 
temporal variability of annotations (see Aljanaki et al., (2017)). Our aim was to enrich our 
dataset with high quality annotations from multiple listeners, in order to place the listener 
“in-the-loop” of the MER framework by means of: (1) promoting the study of non-Western 
music and allowing our participants to discover music from different parts of the world, (2) 
engaging our participants with musical training and gamification strategies, (3) allowing 
for explicit feedback in order to continuously improve the performance of the algorithms.

Our answers to the research questions posed in Section 2 would be as follows. Regard-
ing RQ1 - Are there differences in emotion judgments of both perceived and induced 
emotions, according to musical and user properties? In short, we found an overall lack 
of agreement of categorical annotations of emotion in music – the illusion of universal-
ity in emotion has led to the typical practice of averaging annotations to create “ground 
truths”. Moreover, we found higher inter-rater agreement in cases that participants reported 
to be familiar with the music – we remark that employing cultural experts with knowledge 

Table 2  Krippendorff’s α for 
annotations of quadrants, arousal, 
valence, and emotion for typical 
(AVG) and outlier users (HIGH 
and LOW)

User type # of users Quadrant Arousal Valence Emotion

HIGH 5 0.345 0.567 0.299 0.189
AVG 26 0.324 0.455 0.312 0.176
LOW 5 0.159 0.165 0.314 0.127
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from music styles is important for data reliability purposes. In our intention to enrich our 
dataset, we asked participants to explicitly state the reasons behind each annotation. We 
found that, not only the annotation task is highly subjective, but participants tended to con-
fuse reasoning behind the annotation of perceived and induced emotions. We also found 
that the reasons which were chosen by participants to describe annotations of arousal and 
valence are more related to purely musical properties and perceived emotions (e.g., tempo, 
note duration, sound level), while the reasoning for emotion words relate more to psycho-
physiological responses to music and induced emotions (e.g., associations to a thought, 
wanting to dance or move). We remark that these findings pose a fundamental issue to the 
generation of emotion-based classification strategies relying on tags for streaming services 
– broad arousal/valence annotations should be used to describe perceived emotion and pre-
cise free-text annotations in native language could better capture induced emotions. Thus, 
we propose that the issue of subjectivity can be addressed by creating personalized mod-
els – personalized MER uses the annotations from a specific user to train a user-tailored 
model.

With respect to RQ2 - Can novel personalization classification schemes generalize to 
the TROMPA-MER dataset? To the best of our knowledge, the use of the collective judg-
ment as a personalization strategy has never been explored in MER so far. We are able to 
replicate and improve the findings from (Gómez-Cañón et al., 2021) on a different dataset 
and we argue that a human-centered approach that selects informative instances for active 
learning might result beneficial for personalization. Particularly, the proposed HC and MIX 
methods appear to significantly outperform the random baseline for SGD and XGB mod-
els. This finding leads us to promote the creation of subjectivity-aware machine learning 
methods which could have a high impact in novel applications of immersion in virtual reality 
(Warp et  al., 2022) and emotion-based music recommendation (Grekow, 2021; Tarnowska, 
2021)– several other tasks display low inter-rater agreement too: music auto-tagging (Bigand 
& Aucouturier, 2013), music similarity and diversity (Flexer et al., 2021; Porcaro et al., 2022), 
automatic chord estimation (Koops et al., 2019), and beat tracking (Holzapfel et al., 2012). 
In short, MER has been openly criticized due to the subjectivity issue (Gómez-Cañónet 
al., 2021) – however we advocate for “embracing subjectivity and potentially leveraging the 
opportunities it offers for better learning” (Rizos & Schuller, 2020).
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