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Abstract
With rapid and vast publishing of news over the Internet, there is a surge of interest to detect
underlying hot events from online news streams. There are two main challenges in event
detection: accuracy and scalability. In this paper, we propose a fast and efficient method to
detect events in news websites. First, we identify bursty terms which suddenly appear in a
lot of news documents. Then, we construct a novel co-occurrence graph between terms in
which nodes and edges are weighted based on important features such as click and document
frequency within burst intervals. Finally, a weighted community detection algorithm is used
to cluster terms and find events. We also propose a couple of techniques to reduce the size
of the graph. The results of our evaluations show that the proposed method yields a much
higher precision and recall than past methods, such that their harmonic mean is improved
by at least 40%. Moreover, it reduces the running time and memory usage by a factor of at
least 2.

Keywords Topic detection and tracking · Event detection · Data mining · Community
detection

1 Introduction

Nowadays, reading online news is very common among people. Due to the rapid growth
of information on the web, it is evident that a person cannot get all interesting events fast
and conveniently, since it is a time-consuming task. Moreover, in many companies, deci-
sions are made based on daily events around the world. Thus, there is a need for a system to
extract and report important real-world events from huge web information. Initially, Topic
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Detection and Tracking (TDT) project started with a pilot study in 1996, supported by
DARPA (Allan et al. 1998). They used multiple news sources such as newswires and
transcribed speech from television and radio news. Generally, three major concepts are
introduced in TDT researches (Allan 2002; Yang et al. 2009):

– Event is a happening, which occurs at a specific time and place, e.g. Plasco building
fire in Tehran, or airplane crash in Shahrekord (a city in Iran).

– Story is a news article that delivers information about the occurrence of an event. Each
document in an online news website is considered as a story.

– Topic is a set of news stories which are strongly relevant to an event.

The goal of event detection is to find the first story discussing an event and then catego-
rizing stories into topics, based on detected events. It is an unsupervised learning problem
which can be divided into retrospective (offline) and online categories (Yang et al. 1999;
Atefeh and Khreich 2015). The first category refers to the detection of unidentified events
in a corpus of documents, usually using hierarchical clustering algorithms such as Hierar-
chical Agglomerative Clustering (HAC) (Dai and Sun 2010). Such algorithms require the
entire document corpus to be able to categorize topics. The second category refers to the
real-time detection of events in news feeds. Since there is no prior information about events,
this process is recognized as a query-free retrieval task. As opposed to the former category,
clustering techniques used in this category are usually based on incremental (greedy) algo-
rithms that process the input sequentially and merge the same events in one cluster (Hu et al.
2017).

There is also a separate line of research on event detection that employs graph modeling
to solve the problem (Sayyadi and Raschid 2013; Mori et al. 2006). In this approach, a co-
occurrence graph, also known as KeyGraph (Sayyadi and Raschid 2013), is built between
terms of documents where there is an edge between two terms if they appear in the same
document. Then, various algorithms, including community detection or ranking algorithms,
are used to detect events (Sayyadi and Raschid 2013; Ge et al. 2016). Several studies have
shown the advantage of this approach over former methods (Sayyadi and Raschid 2013).

From another perspective, event detection algorithms follow either of document-pivot
and feature-pivot approaches. The former is usually performed by clustering documents
based on the similarity of their contents (Dai and Sun 2010; Yang et al. 1998). In the latter,
events are modeled as a bursty activity in which bursty features are extracted using feature
distribution analysis (Fung et al. 2005; Zhao et al. 2012). The burst of a term is a sudden
rise in its occurrence frequency in arriving documents within a specific time interval, e.g.
one hour or one day (Ge et al. 2016; Weng and Lee 2011). Kleinberg proposed two finite
and infinite state automatons to model the term flow and discover bursts in an interval
(Kleinberg 2003). His finite state machine is widely referred to in the literature (Zhao et al.
2012; Xiaomei et al. 2018).

In this paper, we propose a new feature-pivot graph-based method to detect events in
news websites. First, we identify bursty terms from streams of news documents using Klein-
berg’s state machine (Kleinberg 2003). Then, a co-occurrence graph, called WebKey, is
constructed between bursty terms. We suggest the idea of weighing this graph to improve
the quality of event detection. The weight of nodes and edges in WebKey are assigned using
a combination of important features such as click frequency and document frequency which
are calculated within the burst interval of terms. Finally, we use a weighted community
detection algorithm to detect events. Generally, community detection algorithms have a high
time complexity; therefore, we use a couple of graph reduction techniques, such as graph
sampling, to decrease the running time. The results of our experiments on a news dataset
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collected from more than 100 Persian news websites show that the precision and recall of
our method are improved significantly, compared with a couple of past methods. Moreover,
its running time and memory usage are reduced by a factor of at least 2. We also add an
online extension to our method which detects events much faster than the original one.

This paper is organized as follows: In the next section, we review the related works and
in Section 3, we describe our proposed method. The evaluation results are discussed in
Section 4. Finally, we conclude the paper in Section 5.

2 Related works

As mentioned before, event detection algorithms are generally divided into two categories:
Retrospective (Offline) Event Detection and Online Event Detection. In this section, we
discuss them in both news and social media.

2.1 Retrospective (Offline) event detection

Yang et al. introduced a clustering algorithm called Group-Average Clustering (GAC) which
is an agglomerative clustering algorithm, proposed for batch processing. They used GAC to
organize documents into topic clusters in TDT corpus (1998). Li and Yamanishi proposed a
topic model that uses the distribution of words to represent topics. They tested their model
on Reuters news articles (2000). Similarly, Wartene and Brussee investigated different dis-
tributional similarity measures on Wikipedia articles to detect topics (2008). Fung et al.
proposed a probabilistic approach to cluster documents as events in an English newspa-
per in Hong Kong. Their algorithm models word occurrences as binomial distribution to
extract bursty features and detect events (2005). Likewise, Li et al. proposed a probabilistic
model which employs both content and time information of news articles (2005). Dai et al.
suggested agglomerative algorithms to detect events by incorporating named entities as fea-
tures. They also proposed a method to calculate the weights of features (2010). Borsje et al.
introduced lexico-semantic patterns to extract events from several RSS news feeds. They
proposed an ontology framework that makes use of such patterns to detect events more
accurately (2010).

Modeling word co-occurrence as a graph of terms has been used in many event detection
research works (Mori et al. 2006). Mori et al. proposed an elegant graph-based approach
to detect and track topics in news web pages (2006). They first defined the KeyGraph data
structure and then employed suffix tree clustering on it to find events. KeyGraph is a graph
of keywords (including terms, noun phrases and named entities) and their co-occurrences
which are extracted from textual contents of documents. Each node in this graph represents
a keyword and each edge indicates the co-occurrence of two end keywords in the same doc-
ument, i.e. if two keywords co-occur in at least one document, there is an edge between
their corresponding nodes in the KeyGraph. Sayyadi et al. also adopted the KeyGraph idea
to represent the relationships between document terms. However, they calculated the edge
betweenness centrality, originally introduced for community detection algorithms, to detect
events (2013, 2009). Betweenness centrality of an edge is the number of shortest paths pass-
ing through that edge. They utilized the Breadth First Search (BFS) algorithm (Cormen et al.
2009a) to find shortest paths in the graph. As a result, the edges lying between communities
gain a higher betweenness centrality score and are removed from the graph. Each resulting
community represents a topic and each keyword in the community is considered as a fea-
ture for that topic. Finally, the likelihood of each topic being associated with a document
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is determined by the cosine similarity. Sayyadi et al. compared their method with LDA and
showed that it leads to a much better performance. One shortcoming of the KeyGraph is that
it is unweighted in a sense that it does not pay attention to the frequency of terms and their
co-occurrences in the graph.

In 2016, another graph-based method was introduced in Ge et al. (2016) that uses a
version of Kleinberg’s method (Kleinberg 2003) to build a graph of bursty keywords. The
authors also proposed two centroid-aware event detection models; Node-based Detection
Model (NDM) and Area-based Detection Model (ADM). In both models, key nodes are
detected and then clusters of events are formed around the nodes. In NDM, each cluster
is comprised of bursty keywords (or nodes), while in ADM, clusters are made of overlap-
ping documents (or areas). To obtain centroids, they first calculated the PageRank score for
every node and then sorted nodes based on their scores. They devised an iterative algorithm
in which in each iteration, the node with the highest score that does not belong to any com-
munity, is selected as a centroid and then, a community is constructed with the nearest free
neighbors of that centroid.

Chen et al. proposed another graph-based method, which works upon the KeyGraph
structure (2017). However, they incorporated semantic relations between keywords into
the graph using WordNet (Miller 1995). To detect events, they used modularity maximiza-
tion and pruned the graph using Markov decision process. Another recent study proposed
an offline algorithm which generates a semantic graph using different semantic similar-
ity measures, such as relative edit distance of keywords (Wei et al. 2018). Then, an edge
betweenness algorithm is used to detect events in the constructed semantic graph.

2.2 Online event detection

Incremental algorithms have been widely used for real-time detection of events in news
media (Hu et al. 2017; Yang et al. 1998). Yang et al. made use of a single-pass clustering
algorithm to detect events (Hu et al. 2017). In this algorithm, documents are sequentially
clustered based on their content similarity. Hu et al. proposed an adaptive online algo-
rithm that utilizes word embedding to reduce dimension (2017). They clustered semantically
similar words using K-means algorithm and then performed another clustering using time
slicing techniques where documents are clustered based on their publishing time. Finally, a
single-pass algorithm is executed on each cluster to detect events.

Since social media is a great source of information, it has attracted a lot of attention in
recent years. Many researchers have concentrated on the event detection problem in social
networks, especially in Twitter. Twitter is one of the most popular social networks which
provides microblogging service. Messages posted on Twitter are called ”tweets”. Tweets do
not always report a real-world event and they may include a lot of noises, e.g. grammatical
and spelling errors, informal language, rumors and fake news. Sankaranarayanan et al. pro-
posed TwitterStand that reports breaking news based on geographical information in tweets
(2009). It devised a leader-follower clustering algorithm to reduce noises. Cataldi et al. pro-
posed an algorithm that models the life cycle of terms using aging theory (2010). They
also made use of users’ relationships and the PageRank algorithm to incorporate author-
ity into content. Becker et al. utilized user-provided annotations to detect events in social
media sites such as YouTube, Flickr and Facebook (2010). Phuvipadawat and Murata sug-
gested a method to detect and track breaking news in Twitter (2010). They first downloaded
tweets that contain pre-defined hashtags (e.g. #breakingnews) using Twitter API. Next, they
indexed the collected tweets and grouped similar ones. The similarity between tweets is cal-
culated using TF-IDF, while boosting proper nouns, hashtags and usernames. Finally, they
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ranked clusters with a weighted combination of reliability and popularity. Aggarwal and
Subbian integrated network structure with the document content to detect events in Twitter
(2012).

Zhao et al. used Kleinberg’s method (Kleinberg 2003) to extract bursty features (or key-
words) (2012). They weighed obtained features based on TF-IDF in the burst interval and
then, clustered them using cosine similarity. Their proposed method is called split-cluster-
merge, since the dataset is split into small parts, then each part is clustered separately and
finally, similar clusters are merged. Sakaki et al. proposed a method to detect specific events
such as earthquakes in tweets (2010, 2013) They formulated the event detection as a classifi-
cation problem. They utilized the SVM classifier with statistical features such as the number
of words in each tweet and contextual features such as words related to the user’s query.

Instead of using word co-occurrence patterns, Petkos et al. proposed a soft frequent pat-
tern mining algorithm (SFPM) to detect events in Twitter (2014). In contrast, Garg and
Kumar suggested a method that analyzes a directed weighted graph to detect events. The
graph is build based on word co-occurrence in Twitter. They compared their method against
SFPM and reported a lower redundancy rate (2018). Xiaomei et al. utilized sentiment anal-
ysis and hashtags to detect bursty events in Sina Weibo, a Chinese social network. They also
used Kleinberg’s method (2003) for burst detection.

In this paper, we adopt the idea of constructing co-occurrence graph between bursty
terms. However, we weigh our graph based on some new features that can help to precisely
detect events. Moreover, we improve the running time and memory usage of the proposed
method with a number of graph reduction techniques. We also present an online extension
to our retrospective method.

3 Architecture of WebKeymethod

In this section, we propose a new event detection method, calledWeighted Bursty KeyGraph
(WebKey), which works based on the retrospective KeyGraph method (Xiaomei et al. 2018).
It includes several processing and storing steps which will be discussed in details in this
section. Figure 1 demonstrates the overall architecture of WebKey. The input to the system
is a collection of news pages or documents crawled from Persian news websites. Each doc-
ument contains title, summary, content and publishing time (all text fields are in Persian
language). We also collect the number of clicks on each document during 1-minute inter-
vals. We discuss more about our dataset in Section 4. We should emphasize that although
our dataset is in Persian, but we do not use any language-dependent feature in our method.
Therefore, it can be simply applied on other datasets as well.

First, we preprocess our data by removing stop-words, special characters (like %, #, @)
and punctuations from the text. We also stem our texts using open-source stemming tools,
such as PersianStemmer (Taghi-Zadeh et al. 2017).

3.1 Feature extraction

N -gram is a continuous sequence ofN items from the text where items can be letters, words,
characters. N represents the number of items in the sequence. For example, bi-gram and
tri-gram consists of two and three items in the sequence, respectively. We consider items
as words. For instance, in this sentence “There was a heavy rain in Tehran last night”, after
removing stop words, we have the following four bigrams: “heavy rain”, “rain Tehran”,
“Tehran last” and “last night”.
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Fig. 1 The architecture of
WebKey
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We first extract unique unigrams, bigrams, and trigrams from the title and summary of
news documents. Instead of using the whole news content, we focus on title and summary
fields to reduce the size of our problem and limit the running time, while keeping the pre-
cision high. Later, we analyze the impact of this decision on our results. Hereafter, we
generally use “terms” to refer to “N -grams”. For each term, we compute its term and doc-
ument frequencies, as described below. In our work, we extract term features within daily
time intervals, i.e. each day is regarded as a separate time interval. Let D be the set of all
news documents and Dt be the set of documents published within time interval t (Dt ⊆ D).
First, we get Dt(w) as the set of documents containing term w, published within time
interval t :

Dt(w) = {d|w ∈ d, d ∈ Dt } (1)
The term frequency of w in interval t is computed by:

T Ft (w) =
∑

∀d∈Dt (w)

fw,d (2)

where fw,d denotes the number of occurrences of w in the title and summary of document
d . To boost the importance of terms in the title, we suggest to use the weighted version of
term frequency in which the frequency of terms in the title is multiplied by a constant factor
c, i.e.:

WT Ft(w) =
∑

∀d∈Dt (w)

(
c × f title

w,d + f
summary
w,d

)
(3)

where f title
w,d and f

summary
w,d are the number of times w appears in the title and summary of d ,

respectively. Based on our experiments, we use c = 2. The document frequency of w within
interval t is simply computed by the following relation in which |D| refers to the size of
set D:

DFt(w) = |Dt(w)| (4)
We also extract a click feature for each term w during interval t . Let Ct be the set of docu-
ments clicked during interval t . We compute this set, according to the log file of clicks made
on news pages. Each record in this file contains the time of click, the id of news document
on which click has been made, the user id, etc. We only consider clicks made by unique real
users to get Ct . More precisely, we omit either duplicate clicks by identical users or spam
clicks made by automated bots from our log. Next, we obtain Ct(w) as the set of documents
containing term w, clicked within interval t :

Ct(w) = {d|w ∈ d, d ∈ Ct } (5)

Finally, we identify terms that contain named entities (i.e. real-world objects, such as
persons, locations, organizations, etc) using open-source tools like Polyglot.1 Since famous
people and places play an important role in most real-world events, recognizing named
entities is essential for an accurate event detection (Sayyadi and Raschid 2013). Our con-
tribution here includes considering title and summary, calculating weighted term frequency
and extracting the click frequency feature.

3.2 Burst detection

We identify bursty terms from the extracted terms using Kleinberg’s method (Kleinberg
2003). Kleinberg’s finitemachine includes two states for each terms:q0 andq1, corresponding

1https://github.com/abosamoor/polyglot
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to low rate and high rates of emission, respectively. This machine models the rate of terms
entering the system. For a term w, a transition between two states indicates a significant
change in term frequency of w over time intervals. Kleinberg calculated the probability
of state transitions using binomial distribution and reported burst intervals using hidden
Markov chain. As stated before, we assume a daily basis for time intervals, i.e. each day is
considered a new interval. Initially, the machine is in state q0 and the emission rate is:

f0 = T Ft (w)

|Dt | (6)

When the emission rate increases significantly in the next intervals, the machine enters state
q1 with the rate of at least f1 = f0 ∗ s, where s is a constant scaling factor. If s is large,
the probability of entering the burst interval is reduced. In Section 4, we show the impact of
configuring s on our results. The machine gets back to state q0, if the emission rate drops
again. At the end of this step, bursty terms are identified and stored along with their burst
intervals.

We now calculate a feature vector for each identified bursty term. These vectors will be
used later to give weights to the graph of terms. For a bursty term w in its burst interval b,
we compute T F .IDF (Manning et al. 2009), according to the following formula:

T F .IDFb(w) = (1 + log(WT Fb(w)) × log

( |Db|
DFb(w)

)
(7)

Combining the relations in (4), (5) and (6), the feature vector of term w in burst interval b

is modeled as the following six-tuple:

〈w, b,Db(w), Cb(w), T F .IDFb(w),NE(w)〉 (8)

where NE(w) is a binary function that indicates if w contains a named entity or not (it
returns 1, if w include a named entity. Otherwise, it returns 0). There may be multiple burst
intervals associated with term w. In such cases, we compute one separate feature vector for
each burst.

3.3 Graph construction

We construct an undirected graph between terms in which nodes represent bursty terms and
edges indicate co-occurrence of terms in news documents published during burst intervals.
In other words, there is an edge between any two terms, if and only if, they both have the
same burst interval and have co-occur in the same document during that interval. A bursty
term may have multiple burst intervals which means there are multiple nodes corresponding
to that term in the graph. We weigh nodes based on the value of T F .IDF feature exists in
their feature vectors. Then, in order to reduce the size of the graph, we remove trivial nodes
whose weight is smaller than a threshold. The value of this threshold is set to the mean
weight of nodes in burst intervals.

Finally, we assign a weight to each edge of the graph. Assume wi and wj are two terms
sharing the same burst interval b. Let eij denote the edge betweenwi and wj . DFb(wi ∩wj )

indicates the document frequency of both terms, i.e. the ratio of documents published during
interval b that contain both terms:

DFb(wi ∩ wj) = |Db(wi) ∩ Db(wj )|
|Db| (9)
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Likewise, CFb(wi ∩ wj) shows the click frequency of both terms, i.e. the ratio of clicks
made during interval b on documents containing both terms:

CFb(wi ∩ wj) =
∑

∀d∈Cb(wi)∩Cb(wj ) Cd
b

|Cb| (10)

where Cd
b is the number of clicks on document d during interval b. In addition, we define a

boost function η to encourage edges between named entities:

η(wi, wj ) = 1 + NE(wj ) + NE(wj )

2
(11)

If both wi and wj are named entities, η returns 2, and for the case where just one of them is
a named entity, it returns 1.5. Putting last three relations together, the weight of edge eij is
obtained as follows:

Wei,j
= (α ∗ DFb(wi ∩ wj) + β ∗ CFb(wi ∩ wj )) ∗ η(wi, wj ) (12)

where α and β are two hyper-parameters used to tune the importance of document and click
frequencies (α + β = 1). We discuss about the setting of α and β in the next section. Note
that both frequency features in (12) are normalized to the range [0, 1].

We refer to the above structure as Weighted Bursty KeyGraph (WebKey), since it is a
weighted version of KeyGraph that is comprised of just bursty terms, as opposed to the
original structure which holds all terms.

Because of using bursty terms and pruning trivial nodes, our WebKey is much smaller
than KeyGraph. However, it is still possible that the number of identified bursty terms is
very large. In such cases, the WebKey may become too large and complex for processing.
Graph sampling is a well-known technique that can help to reduce the size of graph, while
still preserving the main properties of base graph. Different methods have been proposed
for graph sampling (Leskovec and Faloutsos 2006). In our work, we use the simple Ran-
domNode algorithm (Leskovec and Faloutsos 2006) that randomly selects a node from the
base graph and adds it to the sample set. The algorithm repeats this step until the ratio of
nodes in the sample set (compared with nodes in the initial graph) reaches a threshold ρ.
Finally, it returns a sub-graph of the base graph which is composed of nodes in the sample
set and the edges between them.

3.4 Event detection

We use a modified version of edge betweenness centrality on WebKey graph to detect
communities. Each community is composed of a set of relevant bursty terms that together
represent an event or a topic. First, connected components are found using the Breadth
First Search (BFS) algorithm (Cormen et al. 2009a) and then shortest paths between
all pairs of nodes are calculated in each component. Unlike previous works, we use the
Dijkstra’s algorithm (Cormen et al. 2009b) to find shortest paths, because our graph is
weighted. Betweenness centrality for an edge is defined as the number of shortest paths
passing through that edge (Sayyadi and Raschid 2013). An edge with the highest central-
ity score is an intercommunity edge over which many paths go. Hence, it can be removed
from the graph to distinguish communities. The algorithm keeps removing intercommu-
nity edges until there is no edge with a centrality score higher than threshold θ . This
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threshold is calculated as a logarithmic function of the size of WebKey graph G (Sayyadi
and Raschid 2013):

θ = m × log

( |V |(|V | − 1)

2

)
+ 1 (13)

where |V | is the set of nodes in G and m is a constant factor (it is experimentally set to 0.4).
At the end of this step, there will be some connected components or communities remaining
in the graph. Each community represents an event and the nodes inside that community
describe the event. Algorithm 1 presents the pseudo-code of the above algorithm.

Algorithm 1 Event detection algorithm.

/* : WebKey graph (input) */
/* : Connected Components */
/* : Edge with maximum betweenness centrality */
/* : Betweenness centrality score for each node */
/* : Set of shortest paths */
/* : Detected Events (output) */

1 foreach node in do
2 0;

3 end
4 FindConnectedComponents ; // using Breadth-First Search (BFS)
5 foreach Connected Component in do
6 foreach node in do
7 Dijkstra( ) ; // returns the set of shortest paths from to

other nodes in
8 foreach path in do
9 foreach edge in do

10 ;

11 end
12 end
13 end
14 FindMaxBetweenness( ); // find edge with maximum betweenness

score in
15 if then
16 .add( );

17 .remove( ) ; // remove all nodes and edges in from
18 if 0 then
19 return ;

20 end
21 else
22 .remove( ) ; // remove maxEdge from
23 goto 1;
24 end
25 end

The time complexity of running Dijkstra’s algorithm is O(|E|+|V |log|V |), if Fibonacci
heap is used (Cormen et al. 2009b). In the worst case, we have to run this algorithm |E|
times for each node. This case happens when we have only one connected component in the
WebKey graph and the graph does not partition when we remove the edge with maximum
betweenness centrality. Thus, the worst case running time of Algorithm 1 is O(|E2||V | +
|E||V 2|log|V |). This worst case is however very unlikely to happen, because: 1) the initial
WebKey is usually partitioned, since it includes many irrelevant topics, and 2) due to the
notion of betweenness centrality, the graph gets more partitioned after removing edges with
maximum centrality score. Therefore, the actual running time is far below the worst case.
We experimentally analyze the running time in Section 4.
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Figure 2 depicts two sample communities detected by the above algorithm in our dataset
in which Persian terms are translated into English. One event is about an airplane crash acci-
dent and the other one tells about purchasing airplanes by Iran. Although both communities
share a common term (i.e. Bombardier), they are about two separate events.

3.5 Online extension of WebKey

In an online setting where documents are streaming, new nodes and edges are continuously
added to the graph, namely the graph is evolving. It is desirable to avoid re-computation
of betweenness centrality score for all edges when a new edge is added. There are several
researches on online community detection which incrementally compute or approximate the
betweenness centrality (Nasre et al. 2014; Kourtellis et al. 2015). Most of them are based
on the Brandes algorithm (Brandes 2001) that uses the notion of dependency accumula-
tion along with some auxiliary data structures to reduce running time and memory usage.
However, the running time of such algorithms is still prohibitive for online detection of
communities in weighted graphs, as the linear BFS algorithm cannot be used any more to
compute shortest paths.

Here, we propose an online extension to our method which works based on the simple
and fast online comminity detection algorithm proposed in Zhang et al. (2013). First of all,
we use a shorter time interval to extract bursty terms. Based on temporal patterns of our
data, we partition each day into two different-sized intervals: cold interval, from 12am till
9am, and hot interval, from 9am till the end of the day. For burst detection, we compute the
emission rate of terms in each interval using (6) and compare it with the emission rate in
the previous corresponding interval. For example, if the current interval is cold, we compare
the emission rate of term w with its rate in the past cold interval. This is because events

Fig. 2 Two sample communities detected in our dataset
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happenning in a cold interval usually have a smaller coverage and term frequency than those
belonging to a hot interval. It is very likely that a term detected bursty in the current cold
interval, is also identified as bursty in the next hot interval. But, we can recognize it much
sooner through differentiating cold and hot intervals. To avoid from over-detection of bursty
terms, we use a larger scaling factor in cold intervals. In general, we remove non-bursty
terms from our graph after one extra interval.

Our algorithm consists of two offline and online steps: 1) finding initial communities
using the WebKey method, and 2) incrementally updating the initial communities or adding
new communities to them using the online algorithm in Zhang et al. (2013). The first step is
done in an offline manner, e.g. with the whole data gathered during the past day. Throughout
the next day, we only use the online algorithm to update the initial set of communities.
Assume that we have already computed the initial set. When a new document d arrives, we
first extract its bursty terms. For each pair of bursty terms in d (like, wi and wj ), an edge
(like, eij ) is considered for addition to the initial graph, if its weight in (12) is greater than a
minimum threshold. We have four different cases regarding this edge:

1. both nodes of eij belong to the same existing community: we do nothing as the new
edge just increases the number of intra-community edges.

2. only one node of eij belongs to the existing graph: assume that wi is the existing node,
while wj is the new one. We split wj to a new community with probability inversely
proportional to the degree of the existing node wi in the graph. Otherwise, wj joins the
same community of node wi .

3. both nodes of eij belong to the existing graph, but they belong to different communities:
we move one node to another community according to the maximum modularity gain
principle (Zhang et al. 2013).

4. neither node of eij belongs to the existing graph: we just assign both to a new
community.

The above algorithm has O(m) time complexity and O(nk) memory space complexity
where m is the number of edges, n is the number of nodes and k is the number of commu-
nities in the graph (Zhang et al. 2013). At the end of each day, we update the initial set of
communities by running the WebKey method on the data obtained from that day. The main
advantage of the offline step is to merge similar communities and also reduce the number of
false positives/negatives via obtaining more precise values for node degree and modularity
gain factors which are used in case 2 and 3 of the above online algorithm. We also merge
communities that have at least a certain number of inter-community edges between their
nodes.

4 Evaluation

In this section, we first discuss the data and also the evaluation model, and then report the
results of our evaluations. We also compare our proposed method against famous KeyGraph
(Sayyadi and Raschid 2013) and BINets (Ge et al. 2016) methods. Our experiments are
conducted on a server with Intel Xeon E5-2699 CPU and 16GB RAM. To speed up the
event detection process, we use in-memory Redis2 database to store and retrieve nodes and
edges in graphs.

2https://redis.io
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4.1 Experimental dataset

The dataset for this research is collected from the log files of news service in an Iranian
local search engine, Parsijoo.3 The majority of users working with this search engine is from
the domestic Intranet, sending their queries in Persian language. Parsijoo crawls, parses and
stores daily news from more than 100 Persian news websites. We use two types of crawl and
click log files in our work. The records in the crawl log file include document id, publishing
time, news agency, title, summary, and body of news documents, while the records in the
click log file contain click time, document id, user id, and IP address. The first time a user
visits the search engine, a unique user ID is assigned to him and then stored in the cookie of
his browser. The user ID never expires, unless the user cleans his cookies. There is no record
belonging to DDoS attacks in the log, as these attacks are abandoned by the front firewall.
Moreover, we remove spam clicks from our log as much as possible (Shakiba et al. 2018).

The crawled dataset contains 132,315 documents from March 1 to 26 (2018) with the
total size of 287MB. We split the dataset into two validation and test parts. We use the
validation set for tuning our hyper-parameters and constructing the initial WebKey graph
and the test set for evaluation and comparison purposes. The click dataset belongs to the
same period of time, including 1,689,402 clicks from about 52,100 unique users.

4.2 Evaluationmodel

We adopt the evaluation model proposed by Petkos et al. (2014). First, we extract events
from our dataset. To do so, we investigate daily news manually and if a significant number of
documents cover an issue, we consider it an event. To speed up the investigation process, we
first index the whole content of news documents in order of their publishing time and then
for each document, we find the most similar previously-published documents to discover
the coverage of its topic. Due to manual investigation of news documents, this process is a
lengthy task and cannot be used as a practical event detection method. Overall, 106 events
are extracted as the ground truth. Then, according to the base model (Petkos et al. 2014),
three groups of terms are defined for each event in the ground truth:

– Mandatory terms: This group includes all terms that are required in a candidate event
in order to count it as a correctly detected event.

– Optional terms: This group includes a set of terms that are relevant to the event but are
not necessary for the correct detection of that event.

– Forbidden terms: This group includes a set of terms that should not be included in the
candidate event.

For example, for “Kermanshah earthquake” event (Kermanshah is a province in Iran),
the groups are:

– Mandatory: {Kermanshah, earthquake}
– Optional: {Richter, magnitude, quake, shake}
– Forbidden: {Bushehr, Hormozgan}
There are two other earthquakes around that time in Bushehr and Hormozgan, two other
provinces in Iran; therefore, we add these provinces as forbidden terms for this specific
event.

3http://parsijoo.ir
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The events in the ground truth along with their groups of terms are used to evaluate the
proposed method and compare it against other methods. We use the following evaluation
metrics:

– Recall: the percentage of the ground truth events detected by the method, i.e. the portion
of ground truth events that all their mandatory terms are returned by the method, while
none of their forbidden terms are included in the output.

– Precision: the percentage of returned events that are correctly detected by the method
(or the portion of returned events that are in the ground truth).

– F1 measure: the harmonic mean of precision (P) and recall (R), i.e.:

F1 = 2 × P × R

P + R
(14)

In the following two subsections, we concentrate on the results of the original WebKey
method. In the last subsection, we discuss the results of the proposed online extension.

4.3 Parameter tuning

As stated before in Section 3.2, there is an adjustable parameter s in Kleinberg’s burst detec-
tion method. Figure 3 shows the results of three evaluation metrics obtained with different
values of s. Moreover, Fig. 4 depicts the running time of our algorithm versus s. As much
as we increase s, the burst detection condition becomes tighter and thus, fewer bursty terms
and events are identified. As a result, we get a better result for the precision, while the recall
worsens. Also, a lower running time is observed for larger values of s, since the size of
our WebKey graph is reduced considerably as s grows. For example, the number of bursty
terms detected with s = 3 is about 40% of the one with s = 1.5. Based on these results,
we use s = 2 for the rest of our experiments, as it yields the highest F1 value. The results
in Fig. 3 are achieved when both α and β parameters in formula (12) are set to 0.5. We
get nearly the same trend of results for other values of α and β though. To tune α and β

hyper-parameters in the weight function of formula (12), we perform an exhaustive search
from 0 to 1 with step size of 0.1 for both parameters. Table 1 presents some of the obtained
results. The best recall and F1 is achieved at α = 0.4 and β = 0.6. In this case, the recall
is about 13% higher than two extreme cases where either α and β is zero. For the rest of

Fig. 3 The evaluation results of our algorithm with different values of burst parameter s
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Fig. 4 The running time of our algorithm with different values of burst parameter s

our experiments, we use these two values. From Table 1, it seems that user clicks have a
more impact on the quality of event detection, compared with the document frequency fac-
tor. However, considering the fact that most of nodes are removed from the WebKey graph
based on the minimum T F .IDF threshold, the remaining nodes generally have a high doc-
ument frequency. As a result of removing trivial nodes, the sensitivity of our algorithm to
the setting of α and β is lessened as well. As the third part of formula (12), the function η

for boosting named entities can successfully improve the evaluation results by about 5%.
We should assert that the user click factor alone is not a sufficient measure for detecting

events. Each day, a lot of hot news are published which can attract the attentions of many
users for further clicks, but none of them are events. For example, most of news around
celebrities are of this type (e.g. a famous actress attending the concert of a popular singer).
On the other hand, there are several news about some important events (e.g. news about an
ecological disaster) which absorb few user clicks. In such cases, an event can be correctly
detected merely by extracting the co-occurrence graph of bursty terms and integrating the
click and document frequency factors together.

We also investigate the impact of sampling threshold ρ on the performance of our algo-
rithm. Figure 5 illustrates the results of three evaluation metrics obtained with different
values of ρ. Similarly, Fig. 6 shows the running time and memory usage of our algorithm
which wemeasure during graph construction and event detection steps for the whole dataset.
With increasing ρ, the CPU and RAM usages are improved substantially, while the met-
rics are reduced gradually. For example, by removing 20% of nodes (i.e. ρ = 80%), both
running time and memory usage are improved by up to 35%, while the F1 is reduced only

Table 1 The evaluation results of
our algorithm with different
values of α and β

α β Precision Recall F1

1 0 0.45 0.6 0.51

0.7 0.3 0.46 0.62 0.52

0.6 0.4 0.46 0.62 0.52

0.5 0.5 0.43 0.63 0.51

0.4 0.6 0.44 0.68 0.53

0.3 0.7 0.43 0.66 0.52

0 1 0.39 0.61 0.48
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Fig. 5 The evaluation results of our algorithm with different values of sampling threshold ρ

4%. This is due to the fact that there are multiple bursty terms associated with each event
and an event can be still detected even if a number of its involved nodes are removed from
the graph. However, as a result of eliminating numerous nodes from the graph, some events
cannot be distinguished any more, while no new event is detected. Therefore, we observe a
rather significant drop in the recall for smaller values of ρ, whereas the precision does not
change much. Based on these results, we use ρ = 80% for our future experiments.

4.4 Comparing algorithms

Finally, we compare the proposed WebKey method with two other famous event detection
methods, KeyGraph (Sayyadi and Raschid 2013) and BINets (Ge et al. 2016). The results
of this comparison are shown in Fig. 7. WebKey evidently overcomes other two methods,
with respect to all three metrics. For example, the precision achieved by our method is 60%
higher than that of the closest rival, i.e. BINets. Despite this strong improvement in preci-
sion, WebKey also gets a better recall than BINets (overall, F1 is improved by about 40%).
In other words, not only more events are detected correctly, but also the number of false
events is reduced by our method. We should assert again that KeyGraph does not pay any

Fig. 6 The performance results of our algorithm with different values of sampling threshold ρ
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Fig. 7 The evaluation results of different event detection algorithms

attention to bursty terms and moreover, BINets does not differentiate between the impor-
tance of nodes and edges in the graph. Hence, they cannot compete with our WebKey which
weighs co-occurrence graph of bursty terms using an efficient combination of click and doc-
ument frequencies. From the viewpoint of running time, KeyGraph is the worst algorithm.
Since this algorithm does not identify bursty terms, its graph becomes very large and con-
sequently, the graph construction and event detection steps take a lot of time and space. On
the other hand, BINets uses the PageRank algorithm to compute score of nodes, which is
time consuming for large graphs. As discussed before, our algorithm employs a number of
graph reduction techniques, such as graph sampling, to make a good balance between pre-
cision and running time. When we consider only the title and summary of news (instead of
the whole news body), the size of WebKey graph is reduced by a factor of 10, whereas the
F1 worsens at most 1%. Put another way, the terms in title and summary are sufficient to
recognize and express news events. Moreover, the running time is improved about 10% as
we remove trivial nodes from the graph, without negatively influencing precision and recall
parameters. Overall, our algorithm is on average twice and ten times faster than BINets and
KeyGraph, respectively.

4.5 Online extension

For evaluating the performance of our online extension, we simulate news streams through
injecting all documents into the system one-by-one in order of their publish time. Based on
the result of our experiments, we set the scaling factor s as 4 and 2 for cold and hot intervals,
respectively. The response time of our online method for processing a new document is on
average below 0.1 seconds which is much smaller than the running time of the WebKey
method which lasts more than 6 seconds on 1-day data. More interestingly, the detected
communities and their corresponding events are idetified in less than 4 minutes from the
arrival of the first document describing that event. As a result of using cold and hot intervals,
we could identify the events happened during cold intervals about 2 hours sooner, compared
with the case where we use the same 1-day intervals.

Table 2 shows the results of the online extension, in comparison with the results obtained
from the WebKey method. Note that it is unfair to compare these two algorithms, as they
receive different volumes of input data to work. We here just aim to analyze the impact
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Table 2 The evaluation results of
the online extension, compared
with the WebKey method

Algorithm Precision Recall F1

WebKey 0.44 0.69 0.54

Online extension 0.38 0.67 0.48

of using the online extension on the proposed algorithm. Although the precision worsens
by about 14%, but we observe only 3% decrease in recall. Precisely speaking, the online
extension failed to detect 2 events which had been correctly identified by the WebKey (out
of total 106 events). Most of false positives are due to the wrong detection of events in the
cold intervals, as we use a looser burst detection during such intervals. It is clear that the
WebKey method can better identify events, as it considers the whole graph of bursty terms
and their weights and also the betweenness centrality score to detect communities. However,
the result of online algorithm is still promising, in a sense that it yields a comparable recall
with a much lower running time and memory space which is vital for a practical event
detection method. We can also improve the performance of the online method by running
the offline WebKey in a shorter time interval to construct the initial graph, since it has a
small running time. For instance, the precision increases by about 3% and 8% when we
use 12-hour and 1-hour intervals (instead of 1-day interval) to run WebKey, respectively.
However, the recall does not change much in either case.

5 Conclusion

In this paper, we propose a fast and efficient method, called WebKey, to detect events in
news websites. Our method is based on the detection of bursty terms from news documents
and then, constructing a new co-occurrence graph between them. As opposed to previous
works, we weigh our graph using important features, such as click and document frequency
of co-occurred terms. We also suggest various techniques to improve both accuracy and
running time, including: using the title and summary of documents to detect bursty terms,
boosting terms in the title, removing trivial nodes, and applying graph sampling to reduce
the size of graph. The results of our experiments on a real dataset collected from more than
100 online news websites indicate that our method outperforms a couple of well-known
methods by at least 40% in terms of F1 measure. Moreover, it reduces the running time by
a factor of at least 2.
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