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Abstract
Road owners are concerned with the state of the road surface and they try to reduce noise
coming from the road as much as possible. Using sound level measuring equipment installed
inside a car, we can indirectly measure the road pavement state. Noise inside a car is made
up of rolling noise, engine noise and other confounding factors. Rolling noise is influenced
by noise modifiers such as car speed, acceleration, temperature and road humidity. Engine
noise is influenced by car speed, acceleration, and gear shifts. Techniques need to be devel-
oped which compensate for these modifying factors and filter out the confounding noise.
This paper presents a hierarchical clustering method resulting in a mapping of the road
pavement quality. We present the method using a dataset recorded in multiple cars under dif-
ferent circumstances. The data has been retrieved by placing a Raspberry Pi device within
these cars and recording the sound and location during various trips at different times. The
sound data of our dataset was then corrected for correlation with speed and acceleration.
Furthermore, clustering techniques were used in order to estimate the type and condition
of the pavement using this set of noise measurements. The algorithms were run on a small
dataset and compared to a ground truth which was derived from visual observations. The
results were best for a combination of Generalised Additive Model (GAM) correction on
the data combined with hierarchical clustering. A connectivity matrix merging points close
to each other further enhances the results for road pavement quality detection, and results in
a road type detection rate around 90%.

Keywords Clustering methods · Road noise · Pavement quality · K-means ·
Ward’s method · Road detection

1 Introduction

Damaged road surfaces and potholes can lead to damage to vehicles and their freight on
the road and finally to damage claims. Also damaged roads lead to more traffic noise and
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possible noise annoyance (Ouis 2001; Lex Brown 2015). Therefore, the road surface condi-
tion of all major roads in many regions in the world is periodically screened with statistical
procedures, while regional roads are often monitored using visual inspection. Specialised
equipment needs to be bought to calibrate the road surface correction, and people need to
be trained in order to use the specialised equipment. It also results in difficulty to moni-
tor the state of the road continuously and find out about unexpected changes in the road
structure, caused by unexpected events (Singh et al. 2017). In this article a new method is
proposed where a car is equipped with a sound intensity sensor and a GPS sensor and the
measurements are analysed using machine learning methods. The method compensates for
statistical and deterministic noise level fluctuations using knowledge about the confounding
factors in the road data and uses statistical clustering methods to cluster by road pavement
type. This is a step into the direction of continuous road monitoring using existing devices
such as smartphones.

The remainder of this article consists of six sections. Section 2 lists related work for
analysing the road structure. Section 3 gives an overview of the method to analyse the road
structure used in this paper. Section 4 shows how the data is analysed to correct for unwanted
speed and acceleration influence in the data. Section 5 describes the different techniques
used to classify the data into different road types. Section 6 defines the metrics to evaluate
the clustering and compare the different techniques. Section 7 concludes the article.

2 Related work

There are a few existing methods for road surface monitoring, such as the state of the art
Statistical Pass-By (SPB) method (None 1997), an ISO standard where sound is recorded
along the side of the road, detecting the median noise and the speed of cars passing by
and compensating for the correlation of car speed with the emitted rolling noise. The value
measured is representative for the noise produced by the average traffic from the road. The
Close Proximity (CPX) method (None 2017), also an ISO standard, is a complementary
approach. This is a measurement technique where the road surface is evaluated using a
driving vehicle and an accurate GPS sensor. Two microphones are directed towards the tire
which monitor the road noise close to the road-tire contact surface. These are placed inside
an acoustical isolated housing, built into the chassis of a trailer driving around at a specific
reference speed. The car location is monitored using accurate GPS measurements. The latter
method can be executed more easily and it is more practical than the former method, but
it only takes into account the rolling noise. Absorption of propulsion noise on the road is
not taken into account because the measurements are done within the acoustical isolated
housing. The CPX method can be used for applications such as:

– Determining the compliance of existing road types with a road specification;
– Checking the acoustic effect of road maintenance and cleaning or ageing and damaging

of the road;
– Checking the homogeneity of a road section, both along the length of the road but also

on separate driving lanes;
– The development and research of new or existing road types.

Both methods described above can only be done in repeated intervals, there is specific
equipment needed and workers need to be specifically trained for the measurements. Also,
measurements can only be done under certain circumstances, which makes it difficult to
monitor the process of road surface deterioration.
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Interesting work for road classification using less specialised equipment and post-
processing with neural networks has already been researched before, for example with
supervised clustering methods using neural networks (Masino et al. 2017). Methods based
on the CPX method have been used to do road surface measurements, with compensa-
tion for the speed variation using a speed correction formula (Paje et al. 2007, 2009). A
technique based on acoustic characterisation with a spectrogram and Principal Component
Analysis (PCA) was proposed for the characterisation of the pavement texture (Zhang et al.
2014). There have been tests for acoustic classification of the road surface depending on the
weather conditions, using tire-road noise from a vehicle (Kongrattanaprasert et al. 2009).
J. Eriksson describes a method called Pothole Patrol, which also uses the inherent mobility
of vehicles, in this case taxis, which are running in the same area (Eriksson et al. 2008).

3 Method overview

Car noise is measured by placing a microphone pointed toward the wheel base within the
trunk of the car. The microphone monitors the car rolling noise while the car is moving.
Additionally, a GPS sensor is placed which monitors the speed and location of the car. A
Raspberry Pi device is used to store and synchronise both signals. Subsequently the data is
transferred to a database and processed. The data acquired consists of the one-third octave
bands with centre frequencies ranging from 20 Hz up to and including 20 kHz in dB (for
a total of 31 bands), the accelerometer data which was accumulated over 1 second, and
the GPS data. The trajectory evaluated in this paper is shown and described in Fig. 9. The
different road types were also monitored manually by driving over the road and noting down
where the road type visibly changes.

The model we use for speed and acceleration correction is based on theoretical
assumptions and former experiments described in literature, stated below:

We will execute the following steps:

– Compensate for speed and acceleration influences using statistical regression tech-
niques (Ejsmont and Sandberg 2002; Paje et al. 2007).

– Assign each measurement to the most likely road segment using a standard map-
matching algorithm (Newson et al. 2009).

– Use the remaining data for clustering-based classification, clustering road types with
similar properties together.

The novelties of the study are using a regression filter to filter out unwanted speed and
acceleration correlations before clustering the sound data, and the usage of Ward’s hierar-
chical clustering algorithm with spatial constraints in order to represent the connectivity of
road segments on the map. This way, larger stretches of road with a varying road quality
still might get marked as being one road segment with bad quality, making it more intuitive
for road owners to identify worn-out stretches of road.

4 Speed and acceleration corrections

4.1 Theoretical model

The data is corrected for interference coming from speed and acceleration of the car, using
statistical regression relying on the theoretical model from the Harmonoise project, but also
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using more advanced model fitting techniques. The Harmonoise sound propagation model
predicts long-term average sound levels in road and railway situations. The method of calcu-
lating outdoor sound propagation based on the Harmonoise model is described in Defrance
et al. (2007) and Salomons et al. (2011).

The Imagine project (Peeters and van Blokland 2007) and CNOSSOS-EU project (Pallas
et al. 2016) both note that the vehicle noise model consists of the contributions of rolling
noise Lwr , and motor or propulsion noise Lwp. This section will repeat some of the results
mentioned in these papers and apply this to the real-life situation where a car is driving over
the road in real-life conditions. The acoustic emission of both of these components has a
strong positive correlation with the speed.

4.1.1 Rolling noise

The rolling noise component Lw,r (v, f ) is formulated in relation to the reference speed
vref = 70 km/h:

Lwr(v, f ) = ar(f ) + br(f ) log10
v

vref

+ ΔLwr(f ) (1)

where the coefficients ar and br are dependent on the frequency in the one-third octave band
and the vehicle category. These factors are correct for one vehicle at the side of the road and
measured in certain reference conditions. In the CNOSSOS-EU project certain correction
coefficients are proposed for conditions deviating from the reference conditions. Because
we are measuring trips of the car in all conditions, there will be many possible deviations of
these reference conditions. Our model will need to include compensations for these factors
that are in our dataset.

The rolling noise correction factors ΔLwr(f ) are defined as follows:

ΔLwr(f ) = ΔLwr,road(v, f )(+ΔLwr,acc(a)) (2)

where ΔLwr,road(v, f ) is a correction factor for the road surface type dependent on the
vehicle location and ΔLwr,acc(a) indicates the acceleration correction factor. Other factors
are not related to the location of the car and the clustering model should takes care of these
factors.

4.1.2 Propulsion noise

The propulsion noise component can be formulated as a linear relation to the reference
speed vref = 70 km/h:

Lwp(v) = ap + bp

v − vref

vref

+ ΔLwp(v) (3)

with the coefficients ap and bp depending on the frequency in the 1/3 octave band and the
vehicle category.

The propulsion noise correction factors ΔLwp(v, f ) can be defined as follows:

ΔLwp(v, f ) = ΔLwp,road(f ) + ΔLwp,acc(f ) + ΔLwp,grad(v, f ) (4)

with ΔLwp,acc(f ) = cp · a the acceleration factor, ΔLwp,road(f ) the correction factor for
the type of road surface, and ΔLwp,grad(v, f ) the correction factor compensation for road
gradients.
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4.1.3 Total noise

We are mostly interested in frequencies where the monitored noise consists mostly of rolling
noise. If we suppose that the following equation gives the total noise contribution Ltot (v, a)

inside the trunk of the car (the dependency on f is left out here as this is calculated for each
frequency separately):

Ltot (v, a) = 10 log10
(
10

Lr (v)
10 + 10

Lm(v,a)
10

)
(5)

4.1.4 Fitting and conclusions

We can fit our measured noise signals using the above equation and obtain the coefficients
applicable for each car. The theoretical factors for ar , br , am and bm are indicated in the
Harmonoise model but will vary in different driving conditions and for different cars. We
use the above equations for a Least Squares (LS) fitting problem where we try to minimise
the difference between the practical data and the theoretical function above. This function
fitting has multiple local minima, which is why we will use the parameters from the Har-
monoise model as a starting point. The noise emission for both rolling noise and propulsion
noise sources in the ideal Harmonoise model with the theoretical coefficients inserted is
plotted in Fig. 1.

The fitting technique reduces the variance of the dataset and takes away a lot of the speed
dependency of the data. The R2 score (coefficient of determination) of the resulting model
versus the initial data is 0.699 for the training set and 0.685 for the test set. In Fig. 2, the
LS fitting derived from the theoretical parameters is illustrated for measurements where one

Fig. 1 Original Harmonoise model
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Fig. 2 LS Fitting of the Harmonoise parameters to the car measurements for 4 different 1/3 octave frequency
bands, the centre frequency is indicated with fc . Lr , Lp and Lt indicate the rolling noise, propulsion (engine)
noise, and total noise contributions respectively. The frequency fc = 1600 Hz has the most rolling noise
according to this model

car drove around in multiple conditions. The R2 score is defined in (6), where yi with mean
ȳ is the measured value, and fi is the predicted value using the Harmonoise model. The
goodness-of-fit increases as the R2 score results in a number closer to 1.

R2 = 1 −
∑

i (yi − fi)
2

∑
i (yi − ȳ)2

(6)

The resulting adapted Harmonoise model can be observed in Fig. 3. As can be seen in
this figure, the rolling noise at 50 km/h is more apparent between the frequencies starting
at roughly 500 Hz and ending at 5000 Hz. If we want to consider the state of roads where
you can drive 50 km/h and more, we need to consider that our data tries not to take into
account the engine noise of the car. From the results of our adapted Harmonoise model and
the fitted parameters, we calculate for a speed of 50 km/h or more if the rolling noise has
a larger contribution to the noise than the engine noise. If this is the case, this rolling noise
can be included in our data which we will use in the next step to do clustering. From the
data we have used, we can determine that the frequencies between approximately 400 Hz
and 6300 Hz will have mostly rolling noise, while other frequencies will mostly consist of
engine noise.
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Fig. 3 Harmonoise model fitting using LS fitting on recorded car data

4.2 Machine learningmodels

We compare the speed correction technique above with an approach using machine learning;
support vector machines using regression. The Support Vector Regression (SVR) tech-
nique can be used to do linear regression on the data and find a function that describes the
correlation between recorded audio data sound levels and car speed.

For SVR, the following error function needs to be minimised:

minimise C

N∑
n=1

Eε(y(xn) − tn) + 1

2
‖w‖2

where y(x) = wT φ(x) + b

φ(x) = exp

(−x2

2σ

)

where tn is the target value, Eε the ε-insensitive error function, determining how big the
error-insensitive region is, and φ(x) is a fixed feature-space transformation with an explicit
bias parameter b, and w is the weight vector of the function (Bishop 2006). We use the
squared-exponential kernel from the scikit-learn (Pedregosa et al. 2011) programming pack-
age as the desired feature transformation to fit a function to the noise data using a model
based on SVR machine learning. For each separate frequency, we do a fitting where x is
the speed and acceleration vector and y is the predicted noise intensity at a certain car fre-
quency. The result of such a fitting is then used to compensate for noise fluctuations due to
speed and acceleration differences.

We compare the SVR regression method with another machine learning method, the
Generalised Additive Model (GAM) fitting method. The model relates a univariate response
variable to the predictor variables using a structure relating all separate features with a
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function to the expected value of the noise intensity. The general function definition for a
GAM model is as in (7) (Hastie et al. 2001):

g(E(Y )) = β0 + f1(x1) + f2(x2) + f3(x3) + ... + fm(xm) (7)

where fj (xj ) =
Kj∑
k=1

βjkbjk(xj )

With bjk as known basis functions, in our case these are penalised b-splines. The back-
fitting algorithm is used in order to determine the coefficients. In order to generate a smooth
approximation of our speed and acceleration function we try to approximate, we keep the
number of splines constrained to 5. The result of the GAM fitting to the data compared to
the SVR fitting can be seen in Fig. 4.

To evaluate the speed correction, we can use the following formula, which compares the
within-segment variance to the total variance of the dataset, using (8) with s indicating a
segment. A segment is defined as a road surface with a length of 20 m or less. For the circuit
indicated in Fig. 9, we compared these values for a dataset without correction, with GAM
correction, and with SVR correction (Table 1).

∑
s nsσ

2
s

nσ 2
(8)
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Fig. 4 Fitting comparing the SVR and GAM method with a Gaussian kernel for 4 different 1/3 octave
frequencies
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Table 1 The variance ratio for a few frequencies and the mean variance ratio of the car dataset. The columns,
in order, are the dataset without speed correction, with GAM correction, and with SVR correction

freq. no corr. GAM SVR

25 Hz 0.784 0.678 0.624

100 Hz 0.670 0.516 0.466

250 Hz 0.709 0.449 0.453

1000 Hz 0.670 0.297 0.326

2500 Hz 0.779 0.590 0.592

5000 Hz 0.839 0.662 0.630

10000 Hz 0.938 0.780 0.773

20000 Hz 0.973 0.760 0.793

mean 0.776 0.572 0.562

5 Classification and clustering

For the data recorded using our own recording device, we will do a classification. We will
use clustering techniques; K-means clustering and hierarchical clustering. Because we do
not know how many road surfaces the road consists of and there is no database available, a
secondary goal of the clustering technique is figuring out how many natural clusters the data
consists of, i.e. finding out the number of roads which have a discernibly different noise
spectrogram. Additional information we can use is that road surfaces generally will be close
to each other, in other words, the road surface will not continually change but generally stay
the same if close together on the map.

There are some different clustering methods that we will execute and compare for effec-
tiveness. We will use K-means clustering, hierarchical clustering using Ward’s variance
minimisation algorithm, and hierarchical clustering supported by a connectivity matrix, and
compare the effectiveness of these three algorithms. The features used from this dataset
include the third octave frequency bands. The data is normalised before applying the follow-
ing algorithms to counteract the effect that some of the features would be inappropriately
scaled in comparison with the others. The normalisation consists of subtracting the mean
value and dividing with the variance for each separate feature.

5.1 K-means clustering

To determine the different types of road, we first use the K-means clustering method and
the K-means clustering algorithm (Dempster et al. 1977), for K varying from 2 to 20 and
evaluate the different clusterings using an elbow plot. The algorithm alternates between an
assignment step and the update step. During the assignment step, the K-means clustering
method initialises K cluster centres at random locations and assigns each observation to the
closest cluster centre using their Euclidean distance. In the update step, a new cluster centre
is calculated for each cluster, this is the centroid of all observations belonging to the cluster.
After numerous iterations, this algorithm will converge and the cluster centre locations will
no longer change.

The elbow plot is generated by calculating the Mean Squared Error (MSE) between the
data points and their respective cluster centres. As the number of clusters increases, this
error should decrease: The data points are closer to the cluster centre and the within-cluster
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variance decreases. As we plot the sum of squares versus the number of clusters, we can
often discern a point where the MSE is decreasing slower. This point is the ‘elbow’ of the
plot, and it is the point of maximum curvature within the plot.

The result of this adapted elbow detection method can be seen in Fig. 5, where K=5 is
chosen as the number of clusters (as also indicated by the elbow detection method).

Once we have chosen a number of clusters for our data, we visualise the cluster prop-
erties, visualising the mean and variance for each noise band. The clusters indicate which
road surfaces have similar sound properties according to the measurements. The noise spec-
trograms have been compensated for speed and centred around 0 using GAM correction, as
can be seen in Fig. 6.

Because of its random initialisation, the K-means method is susceptible for random vari-
ations and it does not always result in the same clustering. Also, the evaluation of the result
of K-means clustering is difficult apart from visual inspection and evaluating the residual
MSE of per segment, so this is why we will use an algorithm which does not rely on random
initialisation in the next step.

5.2 Hierarchical clustering

The hierarchical clustering algorithm is such an algorithm which does not rely on random
initialisation. We cluster according to Ward’s minimum variance algorithm (Ward 1963),
where the criterion for choosing a pair of clusters to merge is based on the within-cluster
variance after merging. In the initial step, all clusters consist of a single point. The following
distance criterion is used as the merging cost between clusters A and B:

Δ(A,B) = nAnB

nA + nB

‖mA − mB‖2 (9)

With mA the centre of the first cluster and nA the number of points in that cluster. This
will result in clusters with a small intra-cluster distance. When using Ward’s method, we
can use the inverse elbow method to determine the number of clusters. For this method,

Fig. 5 Elbow plot using K-means and indicated chosen value of K . The dashed line indicates the chosen
number of clusters
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Fig. 6 Spectra of the chosen number of clusters using K-means clustering. The number of points within the
cluster is indicated between brackets and the mean overall noise per cluster in dB is indicated. The noise is
centred around 0 dB because of the removal of speed dependence with GAM correction

when a new cluster is formed, the mean square error between the points and the cluster
centre is determined. The cost function increases when the number of clusters goes down.
If these is a big jump in merging cost, an elbow again appears in this inverse elbow plot. We
pick K = 7, as indicated by the elbow detection method. The inverse elbow plot, clustering
dendrogram, and spectrograms per cluster are indicated in Fig. 7.

5.3 Hierarchical clustering with a connectivity matrix

A third version of the clustering algorithm is proposed, using the indirect information that
the 20 m long road sections close to each other are usually of the same road type. We can
include this information using a connectivity matrix: road segments can only be merged
using the usual hierarchical clustering technique if they are connected to each other. The
clustering algorithm is constrained to cluster results which are connected to each other,
ending in a result on the map which is more agreeable. The inverse elbow plot, clustering
dendrogram with connectivity, and spectrograms per cluster for the clustering method with
connectivity matrix are indicated in Fig. 8.
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Fig. 7 From left to right: Inverse elbow plot, tree visualisation, spectrogram per cluster with mean and
variance with K = 6 for the hierarchical clustering method

5.4 Averaging per segment

Using the techniques described above, we will see in the next section that hierarchical clus-
tering results in the road clustering with the highest precision. We will extend on this method
in order to get good results with the larger dataset. Before applying the clustering algorithm,
we will assign the point to the nearest road segment, according to a map matching algorithm.
This will constrain the number of measurements per segment and also make sure that out-
lying values due to events on the road (such as road bumps) are not included in the dataset.
If we execute the hierarchical clustering algorithm again on this speed fitted dataset, we get
results which such as seen in Fig. 10. This averaging technique proves useful to remove out-
lying values caused by environmental circumstances and to shrink the dataset before using
in the clustering algorithm.

6 Validation

The techniques can also be used for larger portions of the road. Proposed hierarchical clus-
tering using a connectivity matrix gives clear results for partitioning the road into different

0       3       6       9     12     15    18    21
Number of clusters

70
60
50

40

30
20
10

Av
er

ag
e 

su
m

 
of

 sq
ua

re
d 

er
ro

rs

60 

40 

20 

0 

(3
0)

 la
be

l: 
1 

(7
6)

 la
be

l: 
2 

(4
0)

 la
be

l: 
3 

(2
10

) l
ab

el
: 4

 

(1
8)

 la
be

l: 
5 

(6
7)

 la
be

l: 
6 

Fig. 8 From left to right: Inverse elbow plot, tree visualisation, spectrogram per cluster with mean and
variance with K = 6 for the hierarchical clustering method with connectivity matrix
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sections with a different road surface. We will use a separate road section where we drove
around with a car, equipped with the GPS and sound sensor described in Section 3.

The 3 cars drove 6 times around this road section which has an approximate length of
5 km, and we separately constructed a dataset of this section by taking pictures of the road
and analysing the road structure. From the analysis, we concluded that there are at least four
different road types in this section, not taking into account that some road surface have aged
differently according to their circumstances. Figure 9 gives an overview of the different
road surface types on the test circuit. We cluster the measurements in the same number of
clusters using our dataset in an unsupervised way and then calculate the accuracy (Fig. 10).

We will compare the results on our testing track using the three different methods. The
methods run on the data and on the data corrected for speed dependence with SVR fitting
and GAM fitting. The following steps were executed in order:

– Per vehicle, the speed and acceleration dependency was calculated using the SVR
and GAM models and compensated for, so that only the road surface noise and other
variations in the data remain.

– The measurements were map-matched and assigned to the nearest road segment.
– In each collection with sufficient passages, the measurements were averaged.
– The measurements were clustered using the three clustering methods described above:

K-means clustering, hierarchical clustering without and with connectivity constraints.

We do 100 runs of each method to account for random fluctuations in the clustering
result. To check the robustness of the hierarchical clustering algorithm, we use a ran-
dom subsample consisting of 90% of our data. Finally, before calculating the accuracy, we
assign each separate cluster from the unsupervised clustering method (which has a random
number) to the supervised cluster that appears in most of the cases.

Fig. 9 An overview of the testing track with different colours indicating a different type of road. The total
length of the circuit is about 5 kilometres. The track was traversed by three cars, that all traversed the track
twice in 30 minutes. The numbered road types are respectively: (1) SMA type 1; (2) SMA type 2; (3) HMA;
(4) Concrete plates; (5) Worn DAC (6) Very worn DAC
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Results clustering
#1 (-2.47 dB)
#2 (0.34 dB)
#3 (0.66 dB)
#4 (0.79 dB)
#5 (2.44 dB)
#6 (4.04 dB)

Fig. 10 A result for hierarchical clustering with GAM correction and Connectivity-Constrained hierarchical
Clustering (CCC) with averaging per segment. The accuracy has been indicated in Fig. 11. The numbering
has been adapted to concur with the one in Fig. 9. The road types 1 and 2 are estimated in the result to be the
same type of road. The other types of road are well separated from each other and the speed and acceleration
effect seems to be compensated

We compare the Adjusted Rand Index (ARI), the accuracy, and the Balanced Accuracy
(BA) scores for these datasets, which can be seen in Table 2 and Fig. 11. The results with
GAM correction and SVR correction seem to be quite similar, while the result which has
not been compensated for speed has a much lower accuracy. Notably, the accuracy is much

Table 2 Table indicating the evaluation scores of the different algorithms and working methods, using their
mean and standard deviation (std) of 100 runs for each method and algorithm

ARI acc BA

mean std mean std mean std

No speed correction

KM 0.387 0.05 0.614 0.033 0.418 0.030
WHC 0.352 0.047 0.589 0.031 0.399 0.033
CCC 0.499 0.131 0.706 0.074 0.517 0.085

Speed correction: SVR

KM 0.756 0.028 0.832 0.019 0.63 0.011
WHC 0.753 0.038 0.830 0.017 0.628 0.012
CCC 0.867 0.066 0.900 0.045 0.752 0.069

Speed correction: GAM

KM 0.734 0.025 0.823 0.017 0.625 0.011
WHC 0.735 0.039 0.824 0.016 0.631 0.025
CCC 0.860 0.088 0.903 0.047 0.759 0.068

These are, in order, the ARI, the accuracy (acc), and the BA compensating for the imbalance in the number of
measurements within each cluster. The clustering algorithms used are K-means (KM) clustering, Ward’s hier-
archical clustering (WHC), and Connectivity-Constrained hierarchical Clustering (CCC). The bold entries
indicate the maximal value of the measure across one column (all possible combinations of techniques)
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Fig. 11 Comparison of the results using different clustering techniques and corrections. {1, 4, 7} K-means
clustering; {2, 5, 8} Hierarchical clustering; {3, 6, 9} Hierarchical clustering using connectivity matrix. The
black and the white dot indicates the maximum respectively the minimum accuracy evaluated over the 100
runs

lower when there is no speed correction (about 60%), then when SVR and GAM regres-
sion is used (about 85%). Both the GAM and the SVR method seem to give good results
when comparing them with the ground truth data. The hierarchical clustering which was
constrained with a connectivity matrix seems to give slightly better results on average.

7 Conclusion

We proposed an approach to road surface clustering where a car is monitoring the road
using a noise and GPS sensor. The features extracted from the noise file are the noise bands
and features related to the road roughness. As the car noise is related to different speeds
and accelerations as well as to the road types, we try to compensate for this using smooth
fitting functions such as GAM and SVR regression. After this compensation, we cluster
the features using different clustering techniques. The method that seems to be best in this
research is the composition of GAM regression and hierarchical clustering using a connec-
tivity matrix. The connectivity matrix ensures that first measurements will be merged that
are close together on the map, effectively resulting in a map of road segments with similar
noise features and less scattered clustering results. When comparing unsupervised cluster-
ing with results measured on the road, we can determine the road surface with an accuracy
of up to 88%. Possible future work is extending this technique to a larger road surface, and
using alternative clustering techniques to generate similar results.
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