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Abstract
Recommender systems are frequently evaluated using performance indexes based on vari-
ants and extensions of precision-like measures. As these measures are biased toward popular
items, a list of recommendations simply must include a few popular items to perform well.
To address the popularity bias challenge, new approaches for novelty and diversity evalua-
tion have been proposed. On the one hand, novelty-based approaches model the quality of
being new as apposed to that which is already known. Novelty approaches are commonly
based on item views or user rates. On the other hand, diversity approaches model the quality
of an item that is composed of different content elements. Diversity measures are com-
monly rooted in content-based features that characterize the diversity of the content of an
item in terms of the presence/absence of a number of predefined nuggets of information. As
item contents are also biased to popular contents (e.g., drama in movies or pop in music),
diversity-based measures are also popularity biased. To alleviate the effect of popularity bias
on diversity measures, we used an evaluation approach based on the degree of novelty of the
elements that make up each item. We named this approach content novelty, as it mixes con-
tent and diversity approaches in a single and coherent evaluation framework. Experimental
results show that our proposal is feasible and useful. Our findings demonstrate that the pro-
posed measures yield consistent and interpretable results, producing insights that reduce the
impact of popularity bias in the evaluation of recommender systems.
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1 Introduction

Recommender systems are important tools for the discovery of unseen items on many e-
commerce sites, such as Amazon, Netflix, or Spotify. The recommended items grasp a
variety of different products, such as movies (Wang et al. 2014), books (Alharthi et al. 2017),
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and songs (Chen and Chen 2005). With millions of users around the world, the development
of new services for content consumption is one of the most successful business areas on the
Internet. As recommender systems are key building blocks of these services to help users
find novel content, they can aid in increasing service success.

Recommender systems elaborate recommendations using two kinds of methods:
memory-based and model-based methods (Breese et al. 1998). Memory-based methods
identify similar users or similar items to produce recommendations. User-based recommen-
dations (Resnick et al. 1994) identify a group of similar users to a target user, retrieving
the whole set of recommendations of the group and recommending advisable items from
the reviewed items of these users. Analogously, item-based recommendations (Sarwar et al.
2001) identify a group of similar items to a target item, retrieving their reviews to come up
with new recommendations. Model-based methods work over the whole dataset (the rating
matrix of users across items) and fit a model to the data to predict the value of unobserved
user-item pairs. Typical methods for model fitting employed for this purpose are proba-
bilistic latent semantic analysis (pLSA) (Hofmann 2004), non-negative matrix factorization
(MF) (Koren et al. 2009) and singular value decomposition (SVD) (Takács et al. 2007).

Another valuable approach in the design of recommender systems is the use of the con-
tent of the items to give recommendations (Lops et al. 2011). Typical approaches in this
direction emanate from the detection of similar items to a given target using proximity func-
tions based on content descriptors (Pazzani and Billsus 2007). These kinds of algorithms are
known as content-based algorithms. Their main ability is to detect recommendable items
when the system does not have feedback from users, favoring the recommendation of new
unrated items. However, these algorithms lead to the creation of very specific user profiles,
discouraging the detection of out-of-the-box items, a problem known as over-specialization.
This issue has been recognized as a key challenge in recommender systems (Abbassi et al.
2009)

Hybrid approaches combine collaborative and content-based methods (Sarnè 2015).
Hybrid approaches are based on the combination of different recommendations with vot-
ing schemes (Pazzani 1999), including collaborative filtering features in content-based
approaches (Soboroff and Nicholas 2000), or including content-based features to develop
recommendations with collaborative filtering (Popescul et al. 2001). A key aspect in the
design of recommender systems is the ability to properly evaluate the quality of their rec-
ommendations. User feedback is utilized as the main evidence of item relevance for this
purpose (Gomez and Hunt 2015). This type of evaluation is known as a single-user rec-
ommender system evaluation. When the evaluation considers groups of users, we need
to segment the profiles according to specific features. Then, the performance of the rec-
ommender system is assessed in each group. This type of evaluation is known as group
recommender system evaluation (Trattner et al. 2018). This article is focused on single-user
evaluations.

Two information sources are commonly used in single-user recommender systems.
Implicit feedback can be employed as proof of relevance because it indicates the level of
interaction of the user with a given item. Common sources of implicit feedback are clicks or
dwell time (Mendoza and Baeza-Yates 2008; Baeza-Yates et al. 2005). Click-through data
can be used as a source of feedback, and the item is considered as relevant to a user if the
item was selected (bought, reproduced, or viewed); otherwise, it is regarded as irrelevant.
Dwell time can be employed as a graded source of feedback. The greater the time spent
using the item (e.g., watching a movie, listening to a song), the more evidence there is about
the relevance of the item to a given user. Explicit feedback is provided by users to recom-
mender systems when they give reviews. It is common to provide a graded relevance scale
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to rate items. Then, recommender systems collect these ratings to improve their services.
Through using either implicit or explicit feedback, it is possible to create a rating matrix of
users across items where entries of the matrix are binary or graded relevance ratings. Note
that the rating matrix is sparse, as it will have many unobserved user-item pairs that corre-
spond to the unrated items of each user. The task of a recommender system is to provide a
reliable rate estimation for these unobserved pairs.

Two main approaches can be employed to evaluate the quality of rating estimations. Rat-
ing prediction measures the precision of the estimation of the rating value. Thereafter, the
evaluation is measured at the user-item level in terms of the error between the estimate and
actual rating. Frequent measures for the assessment of rating prediction are the aggregation
of absolute or squared errors. Ranking prediction measures the degree of accuracy of the
order of the items in a list of recommendations. This approach, widely employed in infor-
mation retrieval, can model more phenomena than those considered in rating prediction;
among them browsing models. In this scenario, the evaluation is conducted at top-N ranked
lists. Common measures used for this purpose are precision and recall.

Either rating or ranking prediction approaches are variants of precision-based mea-
sures, which are sensitive to the presence of popular items. As popular interests are
unbalanced in terms of preferences, it is typical that a few items funnel user preferences
producing a long-tail effect (Zhao et al. 2013). The long-tail effect is explained by the
presence of a least-effort behavior on preferences. User preferences are ruled by the Zipf
law (Dupret et al. 2006); a few items record the majority of the preferences, and a long-
tail of unseen/undiscovered items appears. As user preferences are employed as a source
of relevance feedback in precision-based evaluation, the existence of popular items in rec-
ommendations raises the performance of any recommender method in terms of rating or
ranking prediction.

The limitation of precision-like evaluation measures is one of the key challenges in rec-
ommender systems evaluation (Bellogin et al. 2011). However, precision-like measures are
still dominant in this field. This is because precision-like measures are based on relevance
criteria —many times binary relevance criteria. This type of data is easy to detect (for
instance, via explicit or implicit feedback) and interpret. In addition, precision-like measures
are easy to compute. Saracevic (1995) stated that the challenge for evaluation is broaden-
ing of approaches and ”getting out of the isolation and blind spots of single-level, narrow
evaluations”. Saracevic identified this limitation with respect to how difficult it is to inte-
grate output levels (evaluation from the machine-side viewpoint) and user-level questions
(how the user interacts with model outputs). We propose new measures to highlight different
aspects of a recommender system, creating an evaluation of system outputs, going forward
in content-based evaluations and bridging the gap between diversity and novelty.

Novelty and diversity are complementary concepts (Castells et al. 2015). Novelty is the
quality of being new or different from what is already known. Thus, novelty is a perceived
quality of an item from a user perspective. Accordingly, it is common to use views or rates
as proxies for novelty estimation. Diversity is a quality of a list of items that are composed
of different content elements. Thus, diversity is a perceived quality of an item from a content
viewpoint.

It is typical to employ content-based features to characterize the content of an item in
terms of the presence/absence of a number of predefined nuggets of information. Nuggets
grasp a variety of content dimensions among them genres of music or movies.

We propose a new strategy for recommender systems evaluation by posing the con-
cept “content novelty”. We define content novelty as the level of novelty of a list of items
with respect to the contents. Content novelty combines the best of novelty and diversity
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approaches in a single and coherent evaluation framework, bridging the gap between both.
Our goal is to measure the degree of novelty of the contents of the items in a list to infer the
gain in terms of content novelty. We intend to show that content novelty approaches point
to different aspects of a recommender system that diversify recommendations across users
and affect the ability of the recommender system to personalize those recommendations.

The specific subject of recommender systems evaluation regarding novelty and diversity
has garnered interest in the past several years. Recently, in a survey of this subject (Kunaver
and Požrl 2017), the relevance of diversity for recommender systems was underscored as a
key challenge. In that survey, the authors claimed that novelty and diversity are fundamen-
tal aspects of recommendation effectiveness. We believe that our proposal is relevant and
timely for this subject. In particular, the introduction of our new concept, content novelty,
will assist the community in advancing the discussion of this subject.

Recommender systems tend to overspecialize their recommendations by exploiting what
we already know about the user. These kinds of recommendations can be predictable and to
some extent useless. The notion of novelty and diversity indicates identifying unexpected
items, giving more value to out-of-the-box recommendations. Our concern is determining
how to measure unexpectedness from a wide variety of methods that over exploit similarity
notions. This is a major point for recommender systems design. Content novelty will help
uncover this element during the evaluation stage.

The contribution of our work can be outlined as follows. We provide new evaluation
measures that can highlight differences between popularity biased methods and methods
based on diversification and/or personalization. Our results will show that a new kind of
measure is needed to provide a fair evaluation in terms of novelty and diversity. We define
these performance measures here.

This article is organized as follows. In Section 2 we discuss related work. Our proposal
is introduced in Section 3. We present and discuss our experiments in Section 4 and give
our conclusions in Section 5.

2 Preliminaries

2.1 Popularity bias

Popularity bias describes the phenomenon by which a number of popular items enhance the
performance of a given recommender system. Popularity bias is a well-known phenomenon
in recommender systems that limits the novelty and, therefore, the quality of recommenda-
tions (Bellogin et al. 2011). In fact, many researchers use item popularity as a proxy for the
inverse of novelty (Channamsetty and Ekstrand 2017).

Popularity bias arises when user ratings are concentrated in a few popular items. As user
ratings are employed as a relevance feedback source, the recommendations produced using
ratings are biased on popularity. We illustrate this in Movie Lens 100K (ML100K), explor-
ing how user ratings bias user-KNN recommendations, a standard collaborative filtering
method. ML100K recorded 100000 ratings by 943 users over a collection of 1664 movies.
Table 1 lists some of the top movies in terms of recommendations and their presence pro-
vided by user-KNN. The full list of movies and the number of times each one was included
in top-5 lists by user-KNN is shown in Fig. 1.

As Table 1 and Fig. 1 portray, popular movies are included in many lists. This is
addressed by novelty measures, as novelty is expected to be optimized when novel items
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Table 1 Top movies and their
presence in lists produced by
user-KNN

Movie # lists coverage on test set

Star Wars (1977) 725 76%

The Godfather (1972) 373 39%

Titanic (1997) 372 39%

Fargo (1996) 357 37&

are recommended to users. In this case, a novel item corresponds to an item that is difficult
to find in a system.

The study of the effect of popularity bias in user profiles has attracted the attention of
researchers in recent years. The conclusion of these studies is that many common recom-
mender algorithms are missing a component of personalization (Channamsetty and Ekstrand
2017). Recently, Ekstrand et al. (2018) demonstrated that these limitations have effects in
terms of demographic bias. However, the relation between demographic bias and popularity
bias is still unclear. Algorithms to explicitly measure and respond to user profile characteris-
tics appear as a key design feature in recommender systems. Another line of research relies
on the need to focus recommender system evaluation on the diversity and novelty of the
recommendations. This last challenge is the specific aspect of the problem that we address
in this article.

2.2 Novelty measures

Castells et al. (2015) proposed a probabilistic framework dubbed RankSys for novelty
evaluation in recommender systems. The proposed framework develops an item novelty-
based approach. Basically, an item will be novel if it is difficult to find in a given dataset.
The degree of difficulty in discovering a new item will depend on the ratings that an
item receives. Novelty measures are calculated at the level of the list of recommendations
provided to a target user u, denoted with Ru.

Browsing models are incorporated into RankSys by considering cumulative gain func-
tions. A browser discount factor is aggregated into the gain function modeling the cost to
reach a valuable item after r − 1 recommendations. The cumulative gain function over Ru

is defined by m(Ru) = Cu

∑
i∈Ru

disc(ki) · p(rel|i, u), where p(rel|i, u) is the relevance
rating of an item i provided by a user u, disc(ki) is a discount function and Cu is a normal-
ization factor. Note that m(Ru) allows NDCG (Järvelin and Kekäläinen 2000) to be defined

Fig. 1 Number of times each movie was recommended by userKNN
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by replacing disc(ki) with 1
log(r)

. Note that p(rel|i, u) = 1 if (u, i) ∈ Rtest. As R includes
graded relevance ratings we need to include a relevance threshold ρ. The parameter ρ per-
mits definition of the level of flexibility of the evaluation. For instance, if the relevance scale
ranges in {1, 5}, ρ = 4 indicates that p(rel|i, u) = 1 if i was rated by u in the test set with
a rating equal to or greater than 4.

Typical estimators for novelty are complements of |Ui ||U | or |Ui ||R| , i.e. the fraction of users
that saw i (|Ui |) over the total number of users of the system (|U |) or over the total number of
ratings provided to a system (|R|). By combining novelty estimators with browsing models
RankSys obtains a number of novelty measures. Salient measures of RankSys are “Expected
Popularity Complement” (EPC) and “Expected Free Discovery” (EFD) and are defined in
the following equations:

EPC(Ru) = Cu

∑

i∈Ru

disc(ki) · p(rel|i, u) ·
(

1 − |Ui |
|U |

)

EFD(Ru) = −Cu

∑

i∈Ru

disc(ki) · p(rel|i, u) · log

( |Ui |
|R|

)

Vargas (2015) used a distance function between items to enrich RankSys extending the
original definition of Intra-List Similarity (ILS) of Ziegler et al. (2005). The distance func-
tion dist(i, j) provided in RankSys is measured as the distance between the rating vectors of
a pair of items. Next, a pair of items is close if they share ratings from the same users. This
notion of distance is based on the assumption that similar items are preferred by the same
users. Then, novelty estimators can be replaced with distances between items. Two salient
measures based on these assumptions, “Expected Profile Distance” (EPD) and “Expected
Intra-List Distance” (EILD), are defined as follows:

EPD(Ru) = Cu

∑

i∈Ru

∑

j∈Iu

disc(ki) · p(rel|i, u) · p(rel|j, u) · dist(i, j).

EILD(Ru) =
∑

i,j∈Ru

Ci · disc(ki) · disc(kj |ki) · p(rel|i, u) · p(rel|j, u) · dist(i, j).

In the definition of EPD, the novelty of a given item i in Ru is measured from its distance
to the rest of items in the profile of u, denoted by Iu. In the definition of EILD, novelty
is measured in Ru, inferring the novelty of i from its distance to the rest of recommended
items.

Note that all these measures are pure novelty-based measures as they are content agnos-
tic. We will consider these measures in our experiments to illustrate differences between
pure novelty approaches and our content novelty measures.

2.3 Diversity measures

As mentioned earlier, Ziegler et al. (2005) proposed ILS, a measure of the level of similarity
between the items that belong to Ru. As such, ILS can be used as a proxy for the inverse of
diversity. ILS can be computed from textual descriptions but suffers from the problem of the
curse of dimensionality. To alleviate the effect of text sparseness, Vig et al. (2012) utilized
social tags to describe movies. The approach, dubbed tag genome, infers a number of tags
using a system to collect movie reviews (Movie Tuner). ILS can be computed using the
tag genome (Channamsetty and Ekstrand 2017) and exhibits robust properties in terms of
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diversity measurement. However, movies that are not considered in the tag genome project
mustbe ignored in the evaluation.

The comparison of a given list of recommended items, Ru, with an ideal list is a success-
ful idea in evaluation that comes from the information retrieval community. Järvelin and
Kekäläinen (2002) proposed the normalized discounted cumulative gain (NDCG) measure
that incorporates a browsing model into the traditional precision/recall evaluation approach.
The method accounted for the relative position of the documents in the ranking to discount
from the gain function a factor proportional to its position in the list. Relevant documents in
top positions of the list produce higher gains than those at the bottom of the list. The use of
NDCG as a measure of performance in recommender systems has attracted research interest
in recent times (Ekstrand et al. 2018)

Following this idea, Clarke et al. (2008) proposed a variant of NDCG for diversity eval-
uation, namely α-NDCG. In that approach, each item contributes to Ru with nuggets (i.e.,
a set of informational containers that contributes to enriching the diversity of Ru). Nuggets
may correspond to music/movie/book genres or user intents in the case of web queries.

Let {n1, . . . , nm} be a set of nuggets in a dataset. Clarke et al. defined the function
N(i, nj ) = 1 if the item i contains the nj nugget, 0 otherwise. Then, the number of nuggets
in i corresponds to

∑m
j=1 N(i, nj ). To penalize the redundancy of nuggets in Ru, they

defined rj,K−1 = ∑K−1
k=1 N(ik, nj ), which corresponds to the number of items in Ru that

contains the nugget nj , until the position K − 1 in the list. For convenience, rj,0 = 0. As
such, the gain function at position K is defined by

G[K] =
m∑

j=1

N(iK, nj ) · αrj ,K−1, 0 ≤ α ≤ 1.

where iK is the item in the K-th position of Ru. If we want to increase the relative weight
of nugget redundancy for gain discount, we need to take small values for α. By applying a
discount function, we can obtain a α-DCG curve for Ru. Finally, a normalized version α-
NDCG is obtained by comparing α-DCG with an ideal list in terms of diversity. The ideal
list is greedy with regard to the number of nuggets, maximizing the cumulative gain at each
level of Ru.

We may note that α-NDCG is an extension of NDCG, but it incorporates content as a
key element for evaluation. Thus, the point behind α-NDCG is to provide a measure that
takes into account the content of the item, a disruptive approach in information retrieval
where for decades the dominant measures were based on relevance criteria (for instance,
binary relevance) and not explicitly on content. We highlight the contribution of α-NDCG
as a pure diversity-oriented measure, in the sense that the primary guideline of the measure
is content. We will build our proposal extending α-NDCG to consider novelty aspects, a
necessary effort to bridge the gap between novelty and diversity measures.

3 Content novelty measures for recommender systems

We propose a number of content novelty measures for recommender systems. Our proposal
seeks to bridge the gap between diversity measures (e.g. α-NDCG) and novelty measures
(e.g., EPC, EFC). The concept is to apply the novelty approach in the context of diversity
analysis, an approach that we call content novelty. We do this by taking advantage of content
nuggets, reducing the effect of the bias that comes from user ratings. However, we will need
to deal with genre-bias to produce unbiased estimators of content novelty.
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Fig. 2 Number of movies per genre in ML100K

Genre-bias We will use Movie Lens 100K (ML100K) as a running example to illustrate
the effect of genre-bias on recommendations. On ML100K, movies are tagged across genres
by experts, and many movies feature more than one tag, demonstrating that the content
correlates with more than one genre. Movie Lens considers 19 genres. We depict in Fig. 2
the number of movies per genres in ML100K. Note that ML100K is a multi-label dataset.

As Fig. 2 shows, many movies are tagged into the three majority genres (Drama, Com-
edy or Action) and just a few movies are tagged into Fantasy, Film Noir or Western, the
minority genres on ML100K. Using genres as content nuggets, it is expected that many of
the recommended lists include common genres, such as Drama, and only a few lists include
Western or Fantasy. Note that genre bias is produced by experts when they recognize a genre
in an item. Then, tags are biased toward specific genres because the production of items in
those genres is high. Determining how to consider this bias during the evaluation process is
a crucial issue for our proposal.

The multi-label nature of the process is illustrated in Table 2, where the distribution of
number of genres in ML100K is shown.

When user-based collaborative filtering (user-KNN 1) was applied to ML100K, most of
the top-5 recommendation lists were concentrated into two genres, as seen in Table 3.

Table 3 shows that most of the lists include Drama or Action movies into its rec-
ommendations. Conversely, only five lists include Documentaries and only four include
Fantasy movies, evidencing the presence of genre bias on user-KNN recommendations.
Surprisingly, when we applied α-NDCG using genres as content nuggets, we achieved a
measurement of 0.95 on top-5 lists, an almost perfect achievement. As α-NDCG is defined
in terms of the number of nuggets in the lists of recommendations, it yields high values even
when certain genres are underrepresented in the lists. We will show that the inclusion of
novelty measures during nugget occurrences will alleviate the effect of genre-bias for eval-
uation purposes. A recommendation will be useful in terms of content novelty depending
on the degree of difficulty in discovering a new nugget in a given system.

Genre bias and popularity bias are related. Popular movies are concentrated into a few
genres (Drama and Action, or both). Therefore, user ratings reinforce the effect of genre-
bias on recommendations. As user ratings are concentrated in a few movies and these
movies belong to several genres, a measure like α-NDCG is biased by the combined effect
of both factors. By measuring novelty at the nugget level, we separate both factors in the
evaluation.

1User-KNN was implemented with 50 nearest neighbors using cosine similarity as proximity function.
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Table 2 Distribution of genres in
ML100K. Many movies are
tagged into two or more genres
by experts

# genres 1 2 3 4 5 6

# movies 824 563 212 51 11 3

Now, it is necessary that we discuss some concerns about popularity and genre bias. More
popularity does not necessarily mean better quality. A number of factors can explain why
popularity exists, and quality is just one among many factors that can help to explain the
popularity phenomena. Among the relevant factors that aid in describing movie popularity,
we highlight promotion, presence/absence of distracting factors (competitive events during
critical opening weekends), competition during the film’s release period, and popularity of
the film’s stars, among others (Elberse 2007). Along these lines, another point arises and it is
even more crucial. If a recommender system does not take into account genre and popularity
bias, these sorts of recommendations will be limited to following trends. We will show that
content novelty evaluation is crucial to uncovering these aspects in recommender systems.

Personalization A first performance measure that we will discuss intends to measure per-
sonalization across lists. We will model this as a factor of α-NDCG, rewarding lists with
items recommended to only one person. Let V (ui) be a function that is equal to 1 if at
least one item recommended to ui was only recommended to ui , 0 otherwise. We define
total diversity (TOT DIV) as a global measure of diversity in a testing set, calculated as the
product of α-NDCG and the fraction of lists that have at least one unique recommended
item:

TOT DIV = α-NDCG ·
∑n

i=1 V (ui)

n
, (1)

where n is the number of lists included in the testing set. Total diversity penalizes α-NDCG
when the lists tend to include only popular items. TOT DIV will be equal to α-NDCG if
and only if all the lists in the testing set includes at least one unique item. Otherwise, TOT

DIV will be a fraction of α-NDCG, which corresponds to the proportion of lists with unique
items over the total number of lists in the testing set. TOT DIV is a measure able to detect if
a recommender system produces diversification across users. However, note that the cross
effect between users is not evaluated, just the effort of a recommender system to spread dif-
ferent items across users. The degree of success that a recommender system has in spreading
items with meaningful recommendations to users is a novel aspect in recommender systems
evaluation.

Content novelty on I A second performance measure we propose includes a discount for
frequent nuggets regarding the whole set of items, I . The idea is to include a discount
factor with α-NDCG to penalize the inclusion of frequent nuggets, a kind of nugget novelty

Table 3 Distribution of genres in lists recommended by user-KNN in ML100K. Most of the lists are
concentrated into two major genres

Genres Drama Action · · · Documentary Fantasy Western

# lists 932 (97.6%) 849 (88.9%) · · · 5 (0.5%) 4 (0.4%) 2 (0.2%)
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approach applied to diversity measures. As a context for novelty we use I , the set of items in
the system. We employ the nugget counting function N(di, nj ) used in α-NDCG to define
this factor. The reciprocal of a nuggets count for a given nugget, nj , is N

∑N
i=1 N(di ,nj )

, where

N is the number of items in I . An infrequent nugget, for instance a nugget contained in only
one item, achieves a maximum value in this factor (N ). On the other hand, the minimum
value for this factor is achieved when the nugget is included in all the items of I (1). We use
the logarithm of this factor, which resembles the IDF factor used in information retrieval.
Then, we define an exponential discount factor, expj

1 for a given nugget nj :

expj

1 = logN

[
N

∑N
i=1 N(di, nj )

]

− 1. (2)

A novel nugget, nj (e.g., a nugget included in only one item of I ), reaches expj

1 = 0.
Frequent nuggets nj will reach negative values, with a minimum achieved for a nugget, nj ,

included in all the items of I , that corresponds to expj

1 = −1. As expj

1 ranges in [−1, 0], we
use it as an exponential discount factor for β ≥ 1, defining the αβ-NDCG diversity measure
as follows:

αβ-NDCG =
m∑

j=1

N(dk, nj ) · αrj ,k−1 · β expj
1 , 0 ≤ α ≤ 1, 1 ≤ β. (3)

As for novel nuggets, expj

1 = 0, αβ-NDCG = α-NDCG. However, as for frequent

nuggets, expj

1 < 0, αβ-NDCG = α-NDCG · 1

β
|ej1 |

, a fraction of α-NDCG defined by the

inverse frequency of the nugget on I .

Content novelty in Iu A third performance measure we propose includes a discount for
frequent nuggets on Iu (the set of items seen/rated by u). The concept behind this measure
is to change the context for nugget novelty to the user profile, Iu (items seen/rated by u),
measuring nugget novelty at the user level. In this way, frequent nuggets on Iu will be penal-
ized by a discount factor, and infrequent nuggets on Iu will produce rewards in terms of
α-NDCG. Infrequent nuggets on Iu represent novel contents for the user (e.g., novel genres
for u). A highly recommended item with infrequent nuggets represents an unexpected rec-
ommended item in terms of user profile. To measure this effect, we define an exponential
discount factor, expj

2 for a given nugget nj :

expj

2 = log1+Nu

[
1 + Nu

1 + ∑Nu

i=1 N(di, nj )

]

− 1. (4)

where Nu is the number of items seen/rated by u (items in Iu). As in Iu, N(di, nj ) could
be zero, so we shifted the function by one unit to avoid a division by zero in the logarithm.
Note that the documents considered in expj

2 ranges Iu, a significant difference with expj

1,
where the documents range I . Then, we define αγ -NDCG:

αγ -NDCG =
m∑

j=1

N(dk, nj ) · αrj ,k−1 · γ expj
2 , 0 ≤ α ≤ 1, 1 ≤ γ . (5)

Novel nuggets in Iu will produce high values in αγ -NDCG, reaching a maximum
value when the list of recommended items includes only novel nuggets for u. In this case,
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αγ -NDCG = α-NDCG. Yet, frequent nuggets will introduce discounts on this measure, and
αγ -NDCG will only reach a fraction of α-NDCG defined by the inverse frequency of the
frequent nuggets on Iu.

Finally, a fourth measure that can be used for evaluation contains a combination of the
previous measures. We consider αβγ -NDCG which combines content novelty at the I and
Iu levels in a single measure:

αβγ -NDCG =
m∑

j=1

N(dk, nj ) ·αrj ,k−1 ·β expj
1 · γ expj

2 , 0 ≤ α ≤ 1, 1 ≤ β, 1 ≤ γ (6)

and αβγ - TOT DIV, which combines personalization and content novelty at I and Iu:

αβγ − TOT DIV =
m∑

j=1

N(dk, nj ) · αrj ,k−1 · β expj
1 · γ expj

2 ·
∑n

i=1 V (ui)

n
, (7)

with 0 ≤ α ≤ 1, 1 ≤ β, 1 ≤ γ .
Note that αβ-NDCG (3), αγ -NDCG (5), and αβγ -NDCG (6) are single-user perfor-

mance measures. By averaging these measures over users we achieve a global performance
measure for the recommender system. Note that TOT-DIV and αβγ - TOT DIV are global
performance measures by definition, as TOT-DIV is defined at the level of the whole system.

4 Examples and experiments

We start this section showing illustrative examples of how our performance measures work.
We then present our test of the proposed measures, employing three different datasets with
six different recommendation methods.

4.1 Illustrative examples

Let us consider the following set of movies with their respective genres:

v1: The Silence of the Lambs(1991)::Crime|Horror|Thriller
v2: Titanic(1997)::Drama|Romance
v3: It’s a Wonderful Life(1946)::Drama|Fantasy|Romance
v4: Unforgiven(1992)::Drama|Western
v5: Pulp Fiction(1994)::Comedy|Crime|Drama
v6: The Godfather(1972)::Crime|Drama
v7: Forrest Gump(1994)::Comedy|Drama|Romance|War
v8: Goodfellas(1990)::Crime|Drama
v9: The Shawshank Redemption(1994)::Drama
v10: Schindler’s List(1993)::Drama|War

High content novelty, low total diversity Let us assume that we have three top-1 lists (L1,
L2 and L3) that show high novelty in terms of genres, including Crime, Horror and Thriller
movies (none of these genres have been seen by these users) and low total diversity (the
three lists recommend the same movie).
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User Recommendations Iu

u1 L1: {v1}, 〈CRIME, HORROR, THRILLER〉 {v2, v3}
u2 L2: {v1}, 〈CRIME, HORROR, THRILLER〉 {v4, v7}
u3 L3: {v1}, 〈CRIME, HORROR, THRILLER〉 {v9, v10}

Note that the three genres tagged in v1 are new for users u1, u2 and u3 (high nov-
elty recommendations in terms of genres). As the recommendation is novel, the variants
of α-NDCG achieve high values in spite of the fact that the lists have low total diversity
(the three lists recommend the same movie). Specifically, αγ -NDCG reaches the maxi-
mum value as these genres are novel in Iu. However, the low total diversity is penalized by
TOT DIV and αβγ −TOT DIV. Content novelty measures (averaged) for this case are shown
below.

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ − TOT DIV

1 0.886 1 0.886 0 0

Low content novelty, high total diversity Let us assume that we have three top-1 lists (L1,
L2 and L3) that show low content novelty (the three users have seen a drama movie) and
high total diversity (the three lists include a different movie).

User Recommendations Iu

u1 L1: {v9}, 〈DRAMA〉 {v1, v2}
u2 L2: {v6}, 〈CRIME, DRAMA〉 {v1, v2}
u3 L3: {v8}, 〈CRIME, DRAMA〉 {v1, v2}

Content novelty measures (averaged and at the user level) for this case are shown below.

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV

u1 1 0.516 0.649 0.335 − −
u2 1 0.587 0.649 0.380 − −
u3 1 0.587 0.649 0.380 − −
avg 1 0.564 0.649 0.365 1 0.365

As the recommendation is diverse in terms of personalization, TOT DIV achieves its max-
imum value. However, the content novelty measures reach low values because in terms of
genres, the three lists are not novel and include Drama in three lists and Crime in two. Note
that αβ-NDCG reaches lower values than αγ -NDCG as Crime is less frequent in I than in
Iu.

Recommending to experts (low novelty) Now suppose that we have three users with
many movies seen/rated. Recommendations in this situation will achieve low content nov-
elty. Let us assume that the three lists (L1, L2 and L3) have high total diversity (the three
lists include a different movie).

User Recommendations Iu

u1 L1: {v9}, 〈DRAMA〉 {v1, v2, v3, v4, v5, v6, v7, v8, v10}
u2 L2: {v6}, 〈CRIME, DRAMA〉 {v1, v2, v3, v4, v5, v7, v8, v9, v10}
u3 L3: {v8}, 〈CRIME, DRAMA〉 {v1, v2, v3, v4, v5, v6, v7, v9.v10}
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Table 4 Statistics of the data sets

ML100K ML1M MovieTweetings

Users (N ) 943 6040 49,572

Items (M) 1664 3706 28,377

Ratings (nnzs of R) 99,392 1,000,208 618,051

min |Ru|a 20 20 15

Densityb 6.33% 4.47% 0.04%

aMinimum number of ratings per user
bNon-zero entries (nnzs of R) over M × N

Note that the three lists are different and each user has seen/rated all the movies in I

except the recommended movie. Content novelty measures (averaged and at the user level)
for this case are shown below.

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV

u1 1 0.516 0.519 0.268 − −
u2 1 0.587 0.613 0.367 − −
u3 1 0.587 0.613 0.367 − −
avg 1 0.564 0.582 0.334 1 0.334

As the three lists are different, TOT DIV reaches its maximum value. However, as the
recommended movie is not novel for the users, content novelty measures penalize this sit-
uation and result in low values. The lowest value is achieved by αβγ -NDCG showing that
this measure is the more strict measure in terms of content novelty.

In summary, low novelty recommendations will be penalized by αβ-NDCG and
αγ -NDCG measures while low total diversity measures will be penalized by TOT DIV.
Combined measures as αβγ -NDCG or αβγ -TOT DIV will evaluate all these factors in a
single measure.

4.2 Experimental results

In this section, we compare the results obtained by the proposed measures in three different
datasets. In Table 4, we show statistics for each dataset used in our experiments.

Table 4 shows that MovieTweetings is the largest dataset considered in our experiments,
with the lowest density and the highest number of users and items. Conversely, ML100K is
the smallest dataset with the highest density and the least number of users and items.

We will compare our measures employing six different methods of recommendations.
We evaluate recommendations provided by random lists (Rnd), popularity-sorted lists (Pop),
Non-Negative Matrix Factorization (MF) (Koren et al. 2009), Probabilistic Latent Semantic
Analysis (PLSA) (Hofmann 2004), User-based Collaborative Filtering (UB) (Resnick et al.
1994) and Item-based Collaborative Filtering (IB) (Sarwar et al. 2001). We used Recom-
menderLab (Hahsler 2016) to conduct the experiments, a library of recommender systems
provided in R. Results for ML100K, ML1M and MovieTweetings are found in Tables 5, 6,
and 7, respectively. Bold fonts indicate best results for each measure.

Tables 5, 6, and 7 show that α-NDCG is the most permissive measure used, achieving the
best results for all the methods across the three datasets. In fact, both random and popularity-
based methods produce values that are very close to those accomplished with other methods.
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Table 5 Results of content novelty measures for ML100K

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV

Rnd 0.8221 0.6030 0.7240 0.4408 0.2461 0.1084

Pop 0.7393 0.6012 0.7441 0.4576 0.0038 0.0017

MF 0.8483 0.6098 0.7157 0.4406 0.5962 0.2625

pLSA 0.8604 0.6107 0.7077 0.4357 0.1892 0.0824

UB 0.8399 0.6106 0.7153 0.4407 0.5849 0.2577

IB 0.8314 0.6037 0.7221 0.4408 0.5607 0.2472

In particular, random lists have nearly the same performance in terms of α-NDCG as UB
or IB, with only one point of difference in ML100K, and almost identical performance as
IB with respect to MovieTweetings. Popularity had the worst results for α-NDCG across
the three datasets. Content novelty measures are more strict. Specifically, the most strict
measure of performance is αβγ -NCDG and the most permissive measure is αγ -NDCG.
Meanwhile, TOT DIV is the measure that exhibits the greatest performance variance across
the different methods evaluated. According to TOT DIV, the worst method is popularity, and
this was as expected. Note that popularity can be seen as a proxy of the inverse of novelty.
Two methods achieve the best results in this evaluation, MF and UB. While MF is better
with both MovieLens datasets, UB performs better with MovieTweetings. This fact suggests
that the density of the dataset affects the performance of the methods in terms of TOT DIV.
According to TOT DIV, MF can diversify results in dense datasets. However, in a sparse
dataset, such as MovieTweetings, UB diversifies better than MF.

When αβγ −TOT DIV is employed, both UB and MF are penalized, indicating that strong
performance in terms of TOT DIV does not imply robust performance regarding content
novelty. Indeed, for this last measure, the difference between UB, MF and IB diminishes to
only one point in Ml100K and ML1M. The difference in favor of MF and UB increases in
MovieTweetings. In general, these results show that αβγ − TOT DIV allows the evaluation,
with a single measure, of both aspects of a recommender system method (i.e., determines
the degree of novelty of the items of a given list and the extent to which the recommended
lists are different).

In Table 8, the results achieved with RankSys, the framework proposed by Vargas for
novelty evaluation (Vargas 2015), are presented. In these experiments, we used the four
measures discussed in Section 2. Table 8 shows that the four measures achieved differential
results. EPC exhibited high novelty for recommendations produced for MovieTweetings,
with almost all the methods achieving the maximum value in this measure. Surprisingly,

Table 6 Results of content novelty measures for ML1M

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV

Rnd 0.8008 0.5951 0.7181 0.4316 0.0749 0.03234

Pop 0.7894 0.5779 0.7031 0.4138 0.0012 0.0005

MF 0.8343 0.5999 0.6845 0.4143 0.3002 0.1244

pLSA 0.8577 0.6038 0.6863 0.4178 0.0462 0.0193

UB 0.8365 0.6001 0.6841 0.4141 0.2996 0.1241

IB 0.8379 0.5969 0.7052 0.4254 0.2513 0.1069

Journal of Intelligent Information Systems (2020) 54:297–316310



Table 7 Results of content novelty measures for MovieTweetings

α-NDCG αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV

Rnd 0.8718 0.5840 0.8110 0.4788 0.2714 0.1299

Pop 0.8012 0.5742 0.7680 0.4448 0.0006 0.0002

MF 0.9047 0.5791 0.7368 0.4299 0.6125 0.2633

pLSA 0.9169 0.5697 0.7288 0.4250 0.1982 0.0843

UB 0.9048 0.5791 0.7368 0.4299 0.6128 0.2635

IB 0.8742 0.5812 0.7783 0.4573 0.3723 0.1702

MF achieved poor results in terms of EPC for MovieTweetings, with worse results than
those obtained by random lists or even popularity. EPC produced less novelty on recom-
mendations with ML100K and ML1M, providing the best and worst results achieved by
random lists and popularity, respectively. EFD had very similar results to EPC, introducing
a scaling factor that helps to increase the separation between the results obtained by the dif-
ferent methods. When EPD is used, the best results are achieved by popularity, indicating
exactly the opposite of EPC and EFD with ML100K and ML1M. A more strict evaluation is
achieved when EILD is used, accomplishing similar results as EPC and EFD but with lower
performance values. For both EILD and EPD measures, the best methods are random lists
and popularity-based recommendations. In particular, for MovieTweetings the best result in
terms of EPD is achieved by popularity, suggesting an almost perfect performance of pop-
ularity in terms of novelty. Thus, for these datasets, the use of distance functions with EPD

Table 8 Results of the unified framework RankSys for ML100K, ML1M and MovieTweetings. Whilst EPD
is biased by popularity, randomization is able to maximize EPC and EILD across almost all datasets

EPC EFD EPD EILD

ML100K Rnd 0.9556 6.8384 0.8325 0.7400

Pop 0.7660 2.5209 0.8436 0.6968

MF 0.7765 2.2391 0.7634 0.6545

pLSA 0.8633 3.1743 0.7584 0.6486

UB 0.7999 2.4903 0.7743 0.6734

IB 0.8382 2.9080 0.7519 0.6295

ML1M Rnd 0.9797 7.3859 0.8305 0.7379

Pop 0.7074 1.7839 0.8415 0.6948

MF 0.7961 2.4184 0.7615 0.6527

pLSA 0.8420 2.9390 0.7603 0.6486

UB 0.7802 2.3057 0.7762 0.6753

IB 0.9076 4.1094 0.7361 0.6061

MovieTweetings Rnd 0.9999 13.0805 0.9448 0.8995

Pop 0.9977 8.7958 0.9883 0.9000

MF 0.9869 10.8246 0.8852 0.8653

pLSA 0.9997 12.5692 0.8964 0.8953

UB 0.9999 13.2147 0.9871 0.8960

IB 0.9998 13.0070 0.9625 0.8966
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Table 9 Wilcoxon signed-rank test results (p-values) for ML100K

αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV EPC EFD EPD EILD

α-NDCG 0.03 0.06 0.03 0.03 0.03 0.84 0.03 0.56 0.03

αβ-NDCG − 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

αγ -NDCG − − 0.03 0.03 0.03 0.03 0.03 0.03 0.06

αβγ -NDCG − − − 0.43 0.03 0.03 0.03 0.03 0.03

TOT DIV − − − − 0.03 0.03 0.03 0.03 0.03

αβγ -TOT DIV − − − − − 0.03 0.03 0.03 0.03

EPC − − − − − − 0.03 0.03 0.03

EFD − − − − − − − 0.03 0.03

EPD − − − − − − − − 0.03

or EILD does not permit the detection of differences with EPC and EFD. In the following,
bold fonts indicate best results for each measure.

4.3 Analysis of results

The measures analyzed in the previous section yield information about different aspects of
the recommendation methods for each dataset. To verify the level of dependency between
them, we conducted a Wilcoxon signed-rank test for every pair of measures in each dataset.
Tables 9, 10, and 11 show the results of these tests.

Small p-values indicate that the null hypothesis is rejected. Tables 9–11 also indicate
that most of the comparisons rejected the null hypothesis, and denoted with bold fonts
are the cases where the evidence does not allow rejection of the null hypothesis. Accord-
ingly, the test indicates that both results come from the same population. In Table 9, where
the results for ML100K are shown, the test indicates a strong dependency between the
results of α-NDCG and αγ -NDCG as well as EPC and EPD. A strong dependency is also
observed between αγ -NDCG and EILD, along with between αβγ and TOT − Div. Both
αβγ − TOT DIV and EFD are the only measures that reject the null hypothesis across all
comparisons, as is depicted in Table 9.

Table 10 Wilcoxon signed-rank test results (p-values) for ML1M

αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV EPC EFD EPD EILD

α-NDCG 0.03 0.03 0.03 0.03 0.03 1 0.03 0.15 0.03

αβ-NDCG − 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

αγ -NDCG − − 0.03 0.03 0.03 0.03 0.03 0.03 0.15

αβγ -NDCG − − − 0.03 0.03 0.03 0.03 0.03 0.03

TOT DIV − − − − 0.03 0.03 0.03 0.03 0.03

αβγ -TOT DIV − − − − − 0.03 0.03 0.03 0.03

EPC − − − − − − 0.03 0.21 0.03

EFD − − − − − − − 0.03 0.03

EPD − − − − − − − − 0.03
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Table 11 Wilcoxon signed-rank test results (p-values) for MovieTweetings

αβ-NDCG αγ -NDCG αβγ -NDCG TOT DIV αβγ -TOT DIV EPC EFD EPD EILD

α-NDCG 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.15 0.68

αβ-NDCG − 0.03 0.03 0.15 0.03 0.03 0.03 0.03 0.03

αγ -NDCG − − 0.03 0.03 0.03 0.03 0.03 0.03 0.03

αβγ -NDCG − − − 0.03 0.03 0.03 0.03 0.03 0.03

TOT DIV − − − − 0.03 0.03 0.03 0.03 0.03

αβγ -TOT DIV − − − − − 0.03 0.03 0.03 0.03

EPC − − − − − − 0.03 0.03 0.03

EFD − − − − − − − 0.03 0.03

EPD − − − − − − − − 0.03

For ML1M, Table 10 depicts a strong dependency between α-NDCG, EPC and EPD.
A strong dependence is also observed between αγ -NDCG and EILD as well as between
EPC and EPD. For this evaluation, our measures αβγ -NCDG, TOT DIV, and αβγ -TOT DIV

rejected all the null hypotheses. From RankSys, EFD rejected the null hypothesis for all
comparisons.

For MovieTweetings, almost all the compared measures yielded different results. As
Table 11 shows, the only paired dependencies are seen between α-NDCG and EPD, EILD
and between αβ-NCDG, and TOT DIV. αγ -NDCG, αβγ -NDCG and αβγ -TOTDiv rejected
the null hypothesis across all comparisons. From RankSys, both EPC and EFD rejected the
null hypothesis for all comparisons, as well.

The results for Tables 9, 10 and 11 show that the number of dependencies between
performance measures decreases when dataset complexity increases. On the one hand,
for ML100K, which is the smallest dataset considered in our experiments that exhibits
the highest data density, only two measures rejected the hypothesis test in all compar-
isons, indicating that the variability between the measures is small. Conversely, for Movie
Tweetings, which is the largest dataset considered in our experiments with the lowest data
density, five measures rejected the test for all comparisons, suggesting high variability.
When the results across the three datasets were compared, αβγ -TOT DIV and EFD are
the only ones that rejected the null hypothesis for all comparisons, showing that consis-
tently, these measures yield results that are different than the results obtained by the other
measures.

4.4 Amap of methods

Figure 3 compares the overall performance of the methods in terms of our analysis (per-
formance averaging over the datasets). In particular, portrayed is a comparison between
αβγ -TOTDIV and EFD, showing that MF and UB are able to maximize αβγ -TOTDIV.
While RND maximizes EFD, IB reaches the best balance between both factors. On the other
hand, POP offers the poorest results when both factors are considered. These results indi-
cate that a fair analysis needs to combine many elements. The isolation of a factor may lead
to the wrong conclusions about performance.

Our results show that αβγ -TotDiv is especially suited for measuring a different dimen-
sion of novelty —compared to the measures of Vargas (2015)— by combining nugget-aware
diversity with the effect of personalization.
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Fig. 3 Map of methods according to EFD and αβγ -nDCG TOT DIV

5 Conclusions

We proposed a set of new measures for recommender system performance evaluation. Our
measures are based on a new approach for evaluation, which we dubbed content novelty.
This approach measures the degree of novelty of the contents proposed in a list. To mea-
sure content novelty, we used information nuggets, an approach previously explored in
information retrieval (Clarke et al. 2008). We put forth three variants of the well-known α-
NDCG measure. In addition, we proposed an intra-list measure referred to as Total Diversity
(TOT DIV), which accounts for personalization with a set of lists. We compared our mea-
sures with α-NDCG and four measures posited in RankSys (Vargas 2015), a framework for
the evaluation of novelty in recommender systems. Experiments with three different datasets
employing six different recommendation methods show that our measures yield consistent
and interpretable results. Considering RankSys, while EPD is biased by popularity, ran-
domization is able to maximize EPC and EILD across almost all the datasets. When our
measures were employed in the experiment, the effect of popularity bias was only observed
with the smallest dataset (ML100K), while randomization was able to maximize our vari-
ants of α-nDCG in ML1M and MovieTweetings. The inclusion of TOT DIV is a key factor
for the success of our approach. According to TOT DIV, the worst method is popularity, and
this was as expected. Note that popularity can be seen as a proxy of the inverse of novelty.
The two methods that achieved the best results using TOT DIV were MF and UB. While MF
was best for both MovieLens datasets, UB was superior for MovieTweetings. This result
suggests that the density of the dataset affects the performance of the methods in terms of
TOT DIV, whereby MF can diversify results in dense datasets. However, in a sparse dataset,
such as MovieTweetings, UB diversifies better than MF. When αβγ − TOT DIV is used,
both UB and MF are penalized, showing that robust performance in terms of TOT DIV does
not imply the same in terms of content novelty. Indeed, for this last measure, the difference
between UB, MF, and IB diminishes to only one point in Ml100K and ML1M. The differ-
ence in favor of MF and UB increases with MovieTweetings. In general, these results reflect
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that αβγ − TOT DIV allows the evaluation with a single measure of both aspects of a rec-
ommender system method (i.e., shows the degree of novelty of the items in a given list and
the extent to which the recommended lists are different).

When the dependency between the measures was tested, our hybrid measure
αβγ -TOT DIV shows that the results are consistently different from those obtained by
the other measures. In addition, our results show that EFD, a measure provided in
RankSys, is also independent from the other measures. Conclusions derived using EFD and
αβγ -TOT DIV are quite different. EFD indicates that the best method in terms of novelty is
randomization, a conclusion that shows that randomization helps in novelty maximization,
just as expected. When αβγ -TOT DIV is used, the best methods are MF and UB, suggesting
that these methods assist in genre diversification and in the reduction of the popularity-bias
effect. Accordingly, insights derived from αβγ -TOT DIV are not only different from EFD
insights, but complementary.

In this article, we show that novelty in terms of item occurrence is only a partial view of
the novelty concept. We believe that addressing a different feature of novelty, such as the
proposed content novelty, will help to improve the way in which recommender systems are
evaluated and, accordingly, reveal which methods are suitable for each purpose.
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