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Abstract
Knowledge representation learning (KRL), exploited by various applications such as ques-
tion answering and information retrieval, aims to embed the entities and relations contained
by the knowledge graph into points of a vector space such that the semantic and structure
information of the graph is well preserved in the representing space. However, the previous
works mainly learned the embedding representations by treating each entity and relation
equally which tends to ignore the inherent imbalance and heterogeneous properties existing
in knowledge graph. By visualizing the representation results obtained from classic algo-
rithm TransE in detail, we reveal the disadvantages caused by this homogeneous learning
strategy and gain insight of designing policy for the homogeneous representation learning.
In this paper, we propose a novel margin-based pairwise representation learning framework
to be incorporated into many KRL approaches, with the method of introducing adaptivity
according to the degree of knowledge heterogeneity. More specially, an adaptive margin
appropriate to separate the real samples from fake samples in the embedding space is first
proposed based on the sample’s distribution density, and then an adaptive weight is sug-
gested to explicitly address the trade-off between the different contributions coming from
the real and fake samples respectively. The experiments show that our Adaptive Weighted
Margin Learning (AWML) framework can help the previous work achieve a better perfor-
mance on real-world Knowledge Graphs Freebase and WordNet in the tasks of both link
prediction and triplet classification.
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1 Introduction

A Knowledge Graph (KG), which organizes human knowledge into a structured knowledge
system, such as WordNet (Miller 1995) and Freebase (Bollacker et al. 2008), is a powerful
database applied in knowledge inference (Minervini et al. 2016; Zhang et al. 2017; Han
et al. 2018), information retrieval (Metzger et al. 2017), question answering (Ferrȧndez
et al. 2016), and many other fields, promoting the development of artificial intelligence. A
knowledge fact existing in KG is denoted as a discrete triple 〈h, r, t〉 where h, r, t indicate
a head entity, a relation, and a tail entity, respectively. For example, in Freebase, a triple 〈
Steve Jobs, PlaceOfBirth, San Francisco 〉 indicates a fact that the person Steve Jobs was
born in the place San Francisco, where Steve Jobs is the head h of a triple, San Francisco is
a tail t and PlaceOfBirth is a relation r .

As the size of KG increases and the computation complexity arises from the hetero-
geneity and sparsity of knowledge graph, Knowledge Representation Learning (KRL) has
been attracting massive research attention to project semantically similar points from the
data manifold in KG onto metrically close points in a low-dimensional embedding space.
Analogously, different points in KG should be projected onto metrically distant points in
the embedding space. Particularly, the three components in the triple 〈h, r, t〉 are encoded
as three embeddings h, r and t respectively. The rationality of the embedded h, r, t is
evaluated by a semantic score function f that measures point distances in the embed-
ding space. For example in TransE (Bordes et al. 2013), the score function is chosen as
f (h, r, t) = ‖h + r − t‖Ln , which indicates t should be close to h + r in the metric of Ln

distance. In other words, the smaller the distance between the relation r and the difference
of two entities t −h, the higher the confidence of a triple is held and therefore the better the
KG is preserved.

To facilitate the triples of KG to obtain the optimal scores during the preservation, in
addition to the explicit triples, the synthetic fake triples obtained by “negative sampling
(see (2))” from KG are also involved. Triplet loss then demands that the difference of the
distance scores between the reals and the fakes be larger than some pre-assigned margin
constant. So in contrast to the real triples, the score of the fake triples should be enlarged
to distinguish them from the real ones. This training strategy based on both real and fake
triples forms the training objective of the KRL model and is commonly called margin-based
pairwise learning algorithm (Jenatton et al. 2012; Bordes et al. 2014; Zhou et al. 2016),
where the constant margin is selected as the hyper-parameter of the model to separate the
real score and the fake score.

Fig. 1 Imbalance in FB15k KG. In the Left, Middle and Right, the length of each column represents the
existing frequency in KG for each relation, head entity or tail entity, respectively
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Fig. 2 Heterogeneity in FB15k KG. Left: The length of each column represents how many entities have
the corresponding out-degree nrh or in-degree nrt . Right: Each circle represents a relation. Its coordinate
depends on the in-degree nhr and out-degree ntr of the relation, and its color depends on the type of relation:
1-to-1, 1-to-MANY, MANY-to-1 and MANY-to-MANY

However, that simple constant strategy of margin selection indicates a fixed boundary
between the reals and the fakes, which is obviously inconsistent with the complex proper-
ties of KG — the imbalance and heterogeneity as shown in Figs. 1 and 2. The imbalance
property refers to the fact that each relation occurs in KG many times and the occurring
frequency differs from relation to relation, and so as the entity. The heterogeneity is consid-
ered as 6 kinds of difference: a) the difference of out-degree nrh among all entities; b) the
difference of in-degree nrt among all entities; c) the difference of out-degree nhr among all
relations; d) the difference of in-degree ntr among all relations; e) the difference between
out-degree nhr and in-degree ntr for a relation, f) the difference of hptr and tphr among
all relations,1 where these arguments are denoted in Table 1. The above properties of imbal-
ance and heterogeneity imply different knowledge categories — the triples 〈h, r, t〉 in KG
can be categorized into different types in terms of the imbalance and heterogeneity of either
entity h/t or the relation r . Through visualization of embeddings elaborated in Section 3, we
discover that the diversity among knowledge categories will bring about diversity among
the distribution density of embedding points during the KG preservation. Then, the fixed
separating margin is no longer in the same order of magnitude with each category-specific
density. The previous homogeneous learning strategy is no longer appropriate for the repre-
sentation of the imbalanced and heterogeneous KG. Therefore, the separating margin in the
original learning algorithm should be adjusted adaptively according to the category-specific
density to facilitate the preservation of KG.

Furthermore, the optimization of the real-triple score and the fake-triple score is of equal
importance in the previous margin-based pairwise learning algorithm. However, through
visualization, we find that for different knowledge categories, either the real-triple score
function f or the fake-triple one is under-restricted in different degree. Thus, the trade-off

1We compute hptr and tphr to classify the relations into 4 types: 1-to-1, 1-to-MANY, MANY-to-1 and
MANY-to-MANY, following Bordes et al. (2013). If the average number hptr or tphr is below 1.5 then the
argument is labeled as 1 and MANY otherwise.
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Table 1 Denotations
nrh The number of relations for a head

nrt The number of relations for a tail

nhr The number of heads for a relation

ntr The number of tails for a relation

hptr The averaged number of heads per tail for a relation

tphr The averaged number of tails per head for a relation

between the contributions coming from the real and fake triples should be controlled in
different degree depending on the category of knowledge.

Though many improvements have involved redesigning or modifying the basic frame-
work with regard to the semantic measurement of score function f such as KG2E (He
et al. 2015), ProjE (Shi and Weninger 2017), etc, the underlying training objective is rarely
concerned in literature. Therefore, in this work, we emphasize the high-level objective
independent of the concrete form of f . With the method of introducing the concept of
density-adaptive margin and density-adaptive weight into the previous margin-based pair-
wise framework, we propose an Adaptive Weighted Margin Learning AWML algorithm
which can be potentially incorporated into many existing KRL approaches regardless of
the complexity. Besides, we also disambiguate the relations to make the model perform
more precisely. In our visualization analysis and experiment, two typical real-world KGs,
Freebase and WordNet, are selected to build datasets and carry out evaluation on two
tasks, including link prediction and triplet classification. Experimental and visualized results
demonstrate that our general AWML algorithm can significantly improve the performance
of KRL models and result in a more expressive representation.

Contributions The main contributions of this work are concluded as follows:

– Through visualization analysis, we explore the category-specific distributed density
and discover the inconsistency between the original training objective and the complex
property of KG.

– We retrofit the original margin-based pairwise algorithm and propose a novel one by
adding the adaptive weight and the adaptive margin into the training objective. The
experiment and visualization of AWML both demonstrate its capability of equilibrat-
ing all the knowledge category and controlling the trade-off between the real and fake
triples.

– We evaluate our retrofitted algorithm, AWML, in the tasks of link prediction and triplet
classification. The results show empirically that our adaptive methods end up being
powerful on such applications.

Outline In this work, we propose an adaptive framework appropriate for the KRL models.
Two adaptive methods are utilized to solve the limits of KRL models. After exploring the
representation distribution and the spatial density, we propose a density-adaptive margin and
a density-adaptive weight in the training objective of KRL models. The evaluation results
on Freebase and WordNet KGs indicates that our proposed framework has the capability to
help the KRL model to achieve the better embeddings in the representation space.

The rest of the paper is organized as follows. In Section 2, we introduce the original
margin-based pairwise criterion and the existing KRL models. In Section 3 we visual-
ize the spatial distribution characteristics of embedding representations and discover two
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limitations of previous KRL models: a) the inflexibility over importance trade-off, b) the
inflexibility over separating margin. Then in Section 4, we introduce the density-adaptive
importance weight and the density-adaptive margin to propose a novel framework, AWML,
to be incorporated into the previous KRL models, while in Section 5 we empirically evaluate
the proposed learning framework. In Section 6, we discuss our proposed work and analysis
method. Finally, we summarize our work and outline future research directions.

2 Related work

In this section, we review the origin of margin-based training objective and how the existing
KRL models utilize it. Then, we summarize the triplet score function f over different clas-
sical KRL models. Note that our AWML framework is independent of the concrete form of
score function f , and so, can be potentially incorporated into all KRL models.

2.1 Margin-based pairwise learning criterion

The notion of margin is generalized by a commonly-used classifier SVM (Weston and
Watkins 1999; Boser et al. 1992), which maximizes the margin value between the train-
ing patterns and the decision boundary so that two classes can be separated in the feature
space as precise as possible. In order to suit for multi-classification, some researchers extend
SVM and introduce the margin-based pairwise learning criterion to take all the classes
into account simultaneously. Such form of margin-based pairwise objective has been also
applied in knowledge representation to separate the reals and the fakes in the embedding
space.

The training objective of a distance-based KRL model is typically to minimize the
following margin-based pairwise function:

L(S) =
∑

〈h,r,t〉∈S

∑

〈h′,r ′,t ′〉∈S′〈h,r,t〉

[γ + f (h, r, t) − f (h′, r ′, t ′)]+, (1)

where the real-triple score f (h, r, t) and the fake-triple score f (h′, r ′, t ′) are measured
simultaneously. The score function f represents the semantic similarity of a triple, i.e.
the probability of a triple to be true. For distance-based KRL models, the score function
f (h, r, t) is designed as some distance restriction among three components h, r, t in the
triple.

To minimize the training objective is not only to get a real triple score f (h, r, t) lower
than all the corresponding fake triple score f (h′, r ′, t ′), but also to make the difference
between such two kinds of triple scores at least higher than a positive constant, the margin
γ . The fake triple is sampled by randomly replacing the head, the tail, or the relation of a
real triple. The replacement rule as follows:

S′〈h,r,t〉 = {〈h′, r, t〉|h′ ∈ E} ∪ {〈h, r ′, t〉|r ′ ∈ R} ∪ {〈h, r, t ′〉|t ′ ∈ E}, (2)

where E and R refer to the entity set and the relation set in KG respectively.

2.2 Existing KRLmodels

Different KRL models formulate their score function f (h, r, t) based on different designs
of semantic similarity measurement, which further lead to various training objectives. In this
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subsection, we summarize some KRL models and their distinctive similarity measurement
of a triple.

Translation-based embedding methods Inspired by the translation-invariant phe-
nomenon of word embeddings in the work of word2vec (Mikolov et al. 2013), TransE
(Bordes et al. 2013) model regards a relation as an embedding vector r that indicates the
semantic translation from the head entity h to the tail entity t for each real triple 〈h, r, t〉. In
order to satisfy the approximation h + r ≈ t when the triple 〈h, r, t〉 holds, the score func-
tion of a triple is designed as ‖h+r − t‖Ln , measuring the Ln-distance between a translated
head entity h + r and some tail entity t .

Compared to traditional methods, TransE model can well balance the effectiveness and
computational cost, while the over-simplified translation assumption encounters a challenge
when dealing with complicated relations including 1-to-MANY, MANY-to-1, and MANY-
to-MANY relations (Bordes et al. 2013). In order to solve this problem, TransH (Wang et al.
2014), TransR (Lin et al. 2015b) and TransD (Ji et al. 2015) translate embeddings based
on relation-specific hyperplanes, relation-specific entity projection and relation-specific
dynamic mapping respectively. However, in TransR, simple relations may be overfitting or
complex relation may be underfitting because every relation (no matter complex or simple)
has the same number of parameters to learn. KG2E (He et al. 2015) and TransG (Xiao
et al. 2016) attempt to retrofit the model with the Gaussian probability distribution. KG2E
performs relatively well on 1-to-N and N-to-1 relations. Furthermore, some KRL model
enhance translation-based model with other information in addition to triple-based seman-
tic information inherent in the graph structure, and for instance, PTransE (Lin et al. 2015a)
utilizes path information between two entities and DKRL (Xie et al. 2016) utilizes entity
description.

Other embedding methods In addition to translation-based models, there are also many
other embedding methods following the margin-based pairwise learning criterion. We list
the seven typical models here and most of their score function are listed in Table 2 respec-
tively. Their parameters corresponding to the relation are also displayed in the last column
of Table 2. Note here that in Table 2, the Mr denotes a transformation matrix specific for
the relation r . The h, r and t indicate the embedding vector of the head h, the relation r and
the tail t .

SE model (Bordes et al. 2009) designs two independent relation-specific projections for
head and tail entities and then compute their distance. SME model (Bordes et al. 2014;
2012) encodes not only each entity but also each relation into a vector and utilizes linear
algebra operations in a neural network to capture correlations between entities and relations.

Table 2 Scoring functions on triplet 〈h, r, t〉 of different KRL models, and their relation-dependent
parameters

Model Score function f (h, r, t) Relation parameters

SE ‖Mrhh−Mrt t‖L1 Mrh,Mrt ∈R
d×d

SME(linear) (Mr1h+Mr2r+br )
	(Mr1t+Mr2r+br ) Mr1,W r2 ∈R

k×d , br ∈R
k×1

SME(bilinear) (Mr1h
⊗

Mr2r+br )
	(Mr1t

⊗
Mr2r+br ) Mr1,Mr2 ∈R

k×d , br ∈R
k×1

NTN r	tanh(hMr t+Mr,1h+Mr,2t+br ) Mr ∈R
d×d×k , Mr,1,Mr,2 ∈R

k×d , br ∈R
k×1

RESCAL h	Mr t Mr ∈R
d×d

Hole σ(r	(h ∗ t)) –
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NTN (Socher et al. 2013) considers the second-order correlations into nonlinear neural
networks. ProjE model (Shi and Weninger 2017) utilizes combination operation and non-
linear transformations based on neural networks, while Zhao et al. (2017) uses convolutional
neural network (CNN) to learn the sequential entity and relation representations. RESCAL
model (Nickel and Ring 2012; Nickel et al. 2011) utilizes matrix factorization with every
value of a three-dimensional tensor, where the value of 1 for real triples and 0 for fake triples
will be all factorized approximately into the form of h	Mr t . Hole model (Nickel et al.
2015) introduces an operation of circular correlation ∗ between head and tail to represent
this entity pair so that every dimension of the entity embedding is correlated with other

dimensions: [h ∗ t]k =
d−1∑
i=0

[hi t (i+k) mod d ].
All these KRL models modify or redesign the semantic measurement of f based on

the margin-based pairwise training objective (1). However, such form of training objective
neglects the complex property of KG and treats all the knowledge categories equally without
discrimination, which limits the performance of knowledge representation.

3 Objective analysis with visualization

To look deep into the limitation of the embedding properties of the previous works, in this
section we analyze the representations by visualizing the embedding space. We take the
TransE as an analysis example for simplicity and the results could be smoothly extended to
other models with the similar underlying principles with TransE. In particular, for a triple
〈h, r, t〉, the embedding vectors of the three elements are transformed by t-SNE (Maaten
and Hinton 2008) into the coordinates of three points in a 2D plane. By plotting a set of
triples coming from different relation categories, we observe the distribution patterns and
the densities of embedding points, based on which the shortcomings of distance-based KRL
models are revealed and then the insight of our algorithm improvement is gained.

In the following, we start by introducing our analysis approach to explore the distribu-
tion pattern of the representations. Please note that here, the representation we observe is the
implicit embedding vector of each triple. Take TransE model as an example, for the triple
〈h, r, t〉, we take t − h as the implicit embedding vector of the triple and visualize it in our
observation. And then, we display the phenomenon of relational semantic diversity. As for
this problem, we give out our solution to it to make the model perform more precisely and
take it as the prerequisite of our algorithm. Afterwards, through the exploration of distri-
bution density, we explain our idea of adaptivity on the basis of two kinds of inflexibility
over the previous distance-based KRL models: inflexibility over importance trade-off and
inflexibility over separating margin.

3.1 Representation distribution and semantic diversity

Representation distribution observation Structured in the form of a graph, entities, and
relations are projected into a continuous embedding space by some specific measurement
of semantic similarity, which makes the embedding space fitted into the semantic space.
With the goal of exploring such a structure of the embedding space and analyzing the
performance of KRL model further, we visualize the knowledge embeddings with the
help of a dimensionality reduction technique, t-SNE (Maaten and Hinton 2008). Such a
dimensionality reduction technique will highly match and display the graph position and
the structure of their local graph neighborhoods in the distributed embedding space.
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In this paper, we take TransE model as a proof of principle and take a typical real-world
dataset, FB15k (Bollacker et al. 2008) as a visualization dataset whose statistics and peculiar
characteristics are listed in Section 5. As for the triple-wise measurement of score function
f , TransE interprets the distance between vectors of t − h and r as the semantic similarity
of an triple 〈h, r, t〉. Once the training objective of TransE is optimized over the whole KG
for long enough, all the implicit vectors t − h of the real triples with the same relation will
eventually form a single cluster near the relation r in the embedding space, and they are not
required to collapse to a single point; they merely need to be closer to each other than to any
offset with a different relation.

Thus, we take training triples 〈h, r, t〉 with the same relation r as a category of knowl-
edge, i.e., an observed collection. Then, the training set S is divided into multiple triple

Fig. 3 Visualization results of TransE embedding vectors with t-SNE dimension reduction. Four relations
(a ∼ d) are chosen from FB15k. A black star denotes each relation embedding r , and a colorful dot denotes
the entity-pair offset t − h of each golden triple. Different colors or symbols represent different latent
semantics of a specific relation
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Fig. 4 Visualization results of CTransE embedding vectors with t-SNE dimension reduction. Four relations
(a ∼ d) are chosen from clustered relation set Rc that contains 2291 relations, and each clustered relation
is denoted in the form of RelationN . Each graph is visualized in the same size in the 2D plane. A black star
denotes each relation embedding r and a colorful dot denotes the entity-pair offset t − h of each triple as
shown in the legend: red dot represents golden triple and dark dot represents synthetic triple. Some concrete
synthetic triples are marked in each graphs, whose semantics are shown in Table 3

categories Sr : S = {Sr |r ∈ R}. In Figs. 3 and 4, we visualize the specific relation r and all
the entity-pair offsets t − h for each category Sr . To explore whether the common margin-
based learning criterion is capable of capturing the complex interactive patterns between
entities and relations, we observe the spatial distribution to analyze whether it matches the
triplet semantic. Furthermore, to analyze the pairwise objective, we visualize not only the
golden entity-pair offsets but also the synthetic ones in Fig. 4.

Please note that here, the golden entity-pair refers to the pair of head and tail entities in
the real triple, i.e. 〈h, t〉 in the real-life triple 〈h, r, t〉. The synthetic entity-pair refers to the
entity-pair in the fake triple, i.e. 〈h′, t〉 or 〈h, t ′〉 where the h′ and t ′ is randomly corrupted
by another entity in the golden triple 〈h, r, t〉.
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Relational semantic diversity First, we are interested in the restriction of TransE caused
by relation semantic diversity. To do so, we visualize the embedding results of the triples
on all the relations from FB15k, and randomly pick and display 4 of them in Fig. 3. As
shown in Fig. 3a, the embedded relation r = Award-Nominee is plotted in the center as
a black star. The Triples 〈h, r, t〉 containing r are also plotted. To clearly demonstrate the
embedding accuracy, rather than the individual embedding vectors of h and t , we only plot
the difference r̂ = t − h, i.e. the synthetic-triple implicit vector, as a point in the 2D plane
for each Triple. As commonly regarded, the closer the r̂ to r , the more appropriate is the
embedding of the Triple. However, as we can see, the embeddings of r̂ did not closely center
around that of r . In fact, they clearly present clustering characteristic, each of which we plot
with different color in Fig. 3a for emphasis.

To deeply understand the underlying cause of the multi-cluster phenomenon shown on
the r̂ ’s, we use Google Knowledge Graph Search API2 to collect the semantic of entity-
pair in each Triple to obtain the relation semantic. Then, we discover that different clusters
represent different latent semantics, which is shown in the legend of each visualization result
of Fig. 3.

As shown in Fig. 3a, the relation Award-Nominee has five latent semantics : Mus-
icComposing-related, MusicSinging-related, FilmActing-related, FilmDirecting-related and
Literature-related, and some Triples are exampled in Table 3. For instance, the FilmDi-
recting-related latent semantic of Triple 〈 Academy Award for Best Film Editing, Award-
Nominee, Robert Wise(a film director) 〉 is dependent on its entity pair 〈 Academy Award
for Best Film Editing, Robert Wise(a film director) 〉, while the Literature-related latent
semantic of Triple 〈 Nobel Prize in Literature, Award-Nominee, Thomas Mann (a novelist)
〉 is dependent on its entity pair 〈 Nobel Prize in Literature, Thomas Mann (a novelist) 〉.
Such property of relational semantic diversity in KG will lead to the distributed divergence
of r̂ with the embedding of TransE-like models.

Therefore, it is unsuitable for TransE-like models to learn a unique embedding r for a
multi-semantic relation, which may be under-representative to fit all entity-pairs under this
relation. In order to better model these relations, we segment each category of triples Sr

into several groups with the method of clustering following the idea of CTransR (Lin et al.
2015b). Afterwards, a separate embedding vector is obtained by the KRL model for each
latent semantic. Specifically, each relation r is multi-projected into the embedding space as
{r1, r2, · · · , rn}, each of which characterizes one latent semantic of the relation r , and the
number n is decided by the clustering result. In the following, we will denote each multi-
projected relation in the form of RelationN . For instance, in Fig. 3c, we will distinguish
the three clusters Contains1, Contains2, or Contains3, where the relational semantics are
automatically clustered to represent the meaning of associated entity pairs.

In the rest of this paper, we call the cluster-based TransE-like model as CTransX3 and
take CTransX as a proof of principle to conduct the following visualization and experiment.
As for the total number of relations after clustering, we list the statistics for some KRL
models in Section 5. Take CTransE as an example, we finally obtain 2291 relational embed-
dings over 1345 relations in FB15k. In other words, there are 2291 knowledge categories
after clustering: {Sr1 , Sr2 , · · · , Sr2291}.

2The Knowledge Graph API lets us search Google Knowledge Graph for entities that match the constraints.
This API is available at https://developers.google.com/knowledge-graph/.
3The X in CTransX can be replaced by E, R, etc., which refers to CTransE or CTransR respectively.

https://developers.google.com/knowledge-graph/
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3.2 Inflexibility over importance trade-off

In addition to the semantic diversity, we also explore in the training objective of KRL models
whether the golden triple or the synthetic triple is insufficient to be restricted. In other
words, the question we consider is whether the spatial distribution of learned embeddings
matches the triple restriction of TransE: t − h ≈ r . Furthermore, we also consider whether
the learning/restrictions of the goldens and the synthetics are out of balance or not.

To this end, when visualize the embeddings, we consider not only the golden Triples
〈h, r, t〉 but also the synthetic Triples 〈h′, r, t〉 or 〈h, r, t ′〉, each of which is plotted as a point
in the 2D plane. To display the distributed correlation of the goldens and the synthetics,
we pick 4 typical relations to show in Fig. 4. The position of each Triple depends on its
difference of tail and head: r̂ = t − h for the goldens (red dots), r̂ ′ = t − h′ (purple dots)
or t ′ − h (blue dots) for the synthetics. As commonly regarded, the closer the r̂ to r and the
further the r̂ ′ to r ,4 the more appropriate is the embedding of the Triple.

Nevertheless, as can be seen from Fig. 4, for some relations such as Job-Film2 and
Actor-Film3, there exist much deviation between the relation embedding r and the golden
entity-pair cluster, which is contrary to the golden triple restriction of TransE t − h ≈ r .
Consequently, we attempt to move the relation embedding r to the center of the golden
cluster by making the golden triple score function f (h, r, t) reach the minimum regardless
of the synthetic one f (h′, r ′, t ′). Surprisingly, we find that, over the total 1345 categories
of knowledge, there are 396 categories whose evaluation results are improved (the evaluate
metric of MeanRank, which will be elaborated in Section 5), even there are 230 categories
improved by 10% and 35 categories improved by 50%. This phenomenon indicates that for
some categories, the golden triple lack of restriction in the previous work and should be
paid more attention to in the training objective.

On the other hand, as shown in each graph, for some synthetic entity pairs 〈h′, t〉 or 〈h, t ′〉
that are semantically irrelevant with the relation r , their offset r̂ ′ are interwoven with the
golden entity-pair offset r̂ or in the neighborhood of the relation r . For instance in Fig. 4b,
the synthetic entity pair of T rip.3: 〈 FilmFlex(a company), Kung Fu Panda 2(a film) 〉 is
actually connected by the relation Distributor-Film3 in KG, as T rip.4 displayed in Table 4,
but its offset r̂ ′ positions in the neighborhood of the embedding of relation Actor-Film2 that
is semantically different with the relation Distributor-Film3. This phenomenon is also exist
for other synthetic triples in Table 4. The above problem reveals the under-restriction of the
synthetic triple for some knowledge categories.

Consequently, we can say that for any category, the under-restriction of either the golden
triples or the synthetic triples exists in the previous KRL models. Hence, for some categories
of triples, their importance in the training objective should be finetuned. So in the previ-
ous KRL models, it is inflexible for the trade-off between the goldens’ importance and the
synthetics’ importance. This is exactly the reason why we name this section as the “Inflexi-
bility over importance trade-off”. Based on this problem of inflexibility, we should control
the contributions of these two restrictions: f (h, r, t) and f (h′, r ′, t ′) flexibly.

In the work of Miyamoto and Cho (2016), a gate is utilized to combine word-level and
character-level representations. Moreover, another work Yang et al. (2016) improve the gat-
ing mechanism by using an adaptive gate to adaptively find the optimal mixture of those

4It is in a sense of average that the r̂ should be close to the r and that the r̂ ′ should be further away from r .
And for the synthetics r̂ ′, being further away from r is relative and is compared to the goldens r̂ .
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Table 4 Triple examples in Fig. 4

Golden/Synthetic Triples Head , Relation , Tail

Synthetic T ri p.1 Sony Pictures Classics(a company) , Job-Film2 , The Imaginarium of Doctor

Parnassus(a film)

Golden T ri p.2 Sony Pictures Classics(a company) , Distributor-Film1 , The Imaginarium of

Doctor Parnassus(a film)

Synthetic T ri p.3 FilmFlex(a company) , Actor-Film3 , Kung Fu Panda 2(a film)

Golden T ri p.4 FilmFlex(a company) , Distributor-Film2 , Kung Fu Panda 2(a film)

Synthetic T ri p.5 Om Puri(an actor) , Actor-Film3 , Filmfare Award for Best Supporting Actor

Golden T ri p.6 Om Puri(an actor) , Nominee-Award2 , Filmfare Award for Best Supporting

Actor

Synthetic T ri p.7 Academy Award for Best Director , Nominated for1 , Sydney Pollack(a

director)

Golden T ri p.8 Academy Award for Best Director , Award-Winner3 , Sydney Pollack(a

director)

Synthetic T ri p.9 Academy Award for Best Writing Adapted Screenplay, Nominated for1,

Robert Towne(a scriptwriter)

Golden T ri p.10 Academy Award for Best Writing Adapted Screenplay , Award-Nominee4 ,

Robert Towne(a scriptwriter)

Synthetic T ri p.11 Actor ,Work-Nominee2 , Madonna

Golden T ri p.12 Actor , Profession-People1 , Madonna

Synthetic T ri p.13 Skyfall(a film) , Work-Nominee2 , Academy Award for Best Sound Mixing

Golden T ri p.14 Skyfall(a film) , Work-Award3 , Academy Award for Best Sound Mixing

The synthetic head h is denoted as purple, and the synthetic tail t is denoted as blue

two inputs. Inspired by these two works, we adopt an adaptive weight to control the contri-
butions coming from the goldens and the synthetics in our proposed framework. The details
of our framework are elaborated in Section 4.

3.3 Inflexibility over separatingmargin

In the above subsection, we discover the inflexibility over importance trade-off between the
golden restriction and the synthetic restriction in the KRL training objective. With the same
visualizing method, in this subsection, we explore the spatial density of the embedding dis-
tribution through visualization. Note that, in our work, the spatial density indicates whether
the embedding dots distribute densely or sparsely in the representation space.

From Fig. 4, we can discover that for each relation, the spatial density of golden entity-
pair cluster (red dots) is various from one another. For instance, the golden cluster of relation
Job-Film2 has a higher density than that of relation Actor-Film3, even though they have the
similar number of golden triples: 992 and 1016 respectively. This phenomenon derives from
the property of heterogeneity and imbalance existing in KG.

Take TransE as an example, though every triple is restricted by the approximation t−h ≈
r , if there exist too many entity-pairs 〈h, t〉 connected with the identical relation r in KG,
the corresponding offsets r̂ = t − h may be projected into relatively discrete positions
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in the embedding space. This is because there is insufficient space in the neighborhood of
the relation embedding r to accommodate too many embedded entity-pair offsets r̂ . Take
1-to-MANY relation as another example, for triples 〈h, r, t〉 with the same relation r and
the same head entity h, if the semantics of their tail entity t are totally distinctive, these
tail entities will be projected into distinctive positions. Therefore, the spatial density of
clusters of entity-pair offsets r̂ will vary from relation to relation following the occurrence
frequency of the corresponding connected relations r as shown in Fig. 4, and so as the
density of head h or tail t clusters not shown in this paper.

How occurrence frequency affects spatial density? In order to explore the correlation
between occurrence frequency and spatial density, for each knowledge category Sr , we
calculate the distance dr as the opposite of spatial density and the hptr and tphr (see
Table 1) as occurrence frequency of head h and tail t , in which the dr is the average
mutual distance among the corresponding cluster of golden offsets. Then, we scatter each
knowledge category in Fig. 5, and discover that if chr and ctr for a specific relation r

are almost the same (the marked area), the dr is almost relatively small, while if the chr

and ctr differ greatly, the dr is relatively large. In other words, the former entity-pair off-
sets r̂ cluster compactly and have high spatial density, while the latter entity-pair offsets r̂

cluster discretely and have low spatial density. Generalizedly, because of the diversity of
occurrence frequency, i.e. imbalance and heterogeneity existing in KG, the cluster of r̂ for
different categories will distribute with different density after the projection of TransE-like
models.

Fig. 5 The correlation between frequency of knowledge and spatial density. Each circle indicates a knowl-
edge category. Its size depends on the average mutual distance dr among the corresponding cluster of golden
offsets r , and the coordinate of each circle is dependent on the cardinality of head and tail arguments: chr

and ctr . Note that there are only 200 categories scattered in the figure over 2291 categories totally, but these
categories contain 425464 triples in the total 483142 triples
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Fig. 6 The correlation between spatial density and evaluation result. Each dot indicates a category of
knowledge and there are still 200 categories scattered in the figure

How spatial density affects embedding performance? To further explore the connec-
tion between the category-specific density and the embedding properties of distance-based
models, we display the correlation between the spatial density and the evaluation result as
shown in Fig. 6. The evaluation result is from the task of link prediction (Bordes et al. 2013)
and there are two metrics: MeanRank and Hits@10, which will be elaborated in Section 5.
The lower MeanRank or the higher Hist@10 gets, the better the KRL model performs.

Surprisingly, we discover that most of those categories with large dr perform poor in
the evaluation result, while those with small dr perform well. The poor result is possibly
caused by the inflexible separating margin and the inflexible importance trade-off between
the golden Triple 〈h, r, t〉 and the synthetic Triple 〈h′, r, t〉 or 〈h, r, t ′〉, which are unsuitable
for the category-specific density. For those knowledge categories with large dr , the cluster
of golden offsets r̂ distributes so discretely that the synthetic offsets r̂ ′ need to be further
away from the golden cluster. Thus, the original fixed separating margin is too small to
separate the synthetics r̂ ′ from the golden cluster, and the synthetic triple score function
f (h′, r ′, t ′) need to be restricted more sufficiently.

Now that the spatial density for different knowledge categories differs a lot between
each other, it should also be in diversity for the distance of margin to separate the gold-
ens f (h, r, t) and the synthetics f (h′, r ′, t ′) more appropriately. Motivated by the work
of Wang et al. (2017) using an adaptive margin-based hinge loss function, we also adopt
the margin adaptation and make the margin in our loss function adaptive to the spatial
density of the representation. In this way, we can adaptively control the degree of sepa-
ration between the goldens and the synthetics. The elaboration of this part is detailed in
Section 4.

4 Our adaptive learningmethods

In Section 3, we display the category-specific density and explain theoretically why we
should adaptively choose the optimal margin and the optimal weight for each knowledge
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category to obtain better performance of embedding. In this section, we dive into the
mathematical and algorithmic details of our adaptive learning methods and give a general
framework that can be incorporated into any distance-based KRL model. Note that we take
the clustering as the prerequisite of our proposed AWML framework.

4.1 Density-adaptivemargin

When projecting the entities and relations into the embedding space, the distributed density
of embedding points will differ from category to category, which derives from the imbalance
and heterogeneity of KG. Consequently, an identical margin cannot be in the same order of
magnitude with all the category-specific density, which will lead to a poor performance of
embedding. It should also be in diversity for the distance of margin to separate the goldens
f (h, r, t) and the synthetics f (h′, r ′, t ′) more appropriately.

To overcome this shortcoming of previous KRL models, we also adopt a method of
margin adaptation motivated by the work of Wang et al. (2017). In their work, an adaptive
margin-based hinge loss function is used to improve the stability and performance of GANs.
Similarly, an adaptive margin in the KRL training objective can also separate the goldens
and the synthetics more appropriately to improve the embedding performance.

Furthermore, in that the spatial density is closely associated with the embedding perfor-
mance (see Table 6) and is in the same spatial sense with the separating margin, we can
make the separating margin adaptive to the spatial density of the representation. In this way,
we can adaptively control the degree of separation between the goldens and the synthetics.

Therefore, in this work, we propose an Adaptive Margin Learning (AML) method,
and the training objective is as follows and all loss-terms are divided by the number of
summands in a batch:

L(S) =
∑

〈h,r,t〉∈S

∑

〈h′,r ′,t ′〉∈S′〈h,r,t〉

[γr + f (h, r, t) − f (h′, r ′, t ′)]+, (3)

The whole formation of training objective is the same as (1) except the separating margin
γr that is adaptive to the category-specific density:

γr = γm · σ(wm × dens−1
r + bm), (4)

where the hyperparameter γm controls the whole range of the adaptive margin and put γr

into the range from 0 to γm, σ(·) is a sigmoid function, and wm, bm ∈ R are the weight and
bias parameters learned in the traning process.

The distributed density is inversely proportional to the average mutual distance of all the
golden entity-pair offsets:

dens−1
r = 1

|Sr |2
∑

〈h1,r,t1〉∈Sr

∑

〈h2,r,t2〉∈Sr

‖r̃〈h1,t1〉 − r̃〈h2,t2〉‖Ln, (5)

where Sr is the set of golden triples with the specific relation r , and r̃〈h,t〉 is the approx-
imation of r with regard to h and t , where the embedding vectors h and t are obtained
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with the pre-trained KRL model. Every KRL model has its distinctive approximation of r

according to the distance-based score function. For instance, r̃〈h,t〉 = t − h in TransE, and
r̃〈h,t〉 = tMr − hMr in TransR. Remark that the above calculation of density only suit for
translation-based KRL models, and the calculation method for other distance-based KRL
models will be discussed in Section 6.

In the training process of KRL model, when the average mutual distance is relatively
large for some category, the separating margin will accordingly get larger to move the syn-
thetic entity-pair offsets r̂ ′ further away from the relation embedding r , and otherwise, the
margin will get small.

4.2 Density-adaptive importance weight

In addition to adaptively controlling the separation between the goldens and the synthetics,
we also consider the trade-off between the different contributions coming from the golden
and synthetic triple among all the knowledge categories.

In that the under-restriction of either the golden triples or the synthetic triples exists in the
previous KRL models, it is inflexible for the trade-off between the goldens’ importance and
the synthetics’ importance, and their respective importance in the training objective should
be finetuned. Based on this problem of inflexibility, we should control the contributions of
these two restrictions: f (h, r, t) and f (h′, r ′, t ′) flexibly.

Inspired by the work of Miyamoto and Cho (2016) and the work of Yang et al. (2016),
we adopt an adaptive weight to control the contributions coming from the goldens and the
synthetics in our proposed framework. In this way, the KRL training objective has ability to
learn the goldens and the synthetics with adaptive importance.

Hence, in this work, the importance weights of golden-triple and synthetic-triple score
function are introduced into the margin-based pairwise training objective. To adaptively
select the optimal trade-off for every category and make it suitable for the category-specific
density, we eventually propose another adaptive learning method, Adaptive Weighted
Learning (AWL) to provide a framework to be incorporated into the KRL models. The
training objective takes the form as:

L(S) =
∑

〈h,r,t〉∈S

∑

〈h′,r ′,t ′〉∈S′〈h,r,t〉

[γu + (1 − μr)f (h, r, t) − μrf (h′, r ′, t ′)]+, (6)

where the hyper-parameter γu are the weight and bias parameters. The two score func-
tion f (h, r, t), f (h′, r ′, t ′) is mixed by a category-specific weight μr that depends on the
density:

μr = β + σ(wu × dens−1
r + bu)

2β + 1
, (7)

where wu, bu ∈ R is a bias scalar. The form of β+σ(·)
2β+1 is to control the range of μr and let it

around 0.5. The calculation of the density is the same as (5).
For some knowledge category with low density (i.e. large average mutual distance), the

importance weight of synthetic triple score μr will get larger and the distance measurement
of the synthetics will be more restricted, which lead to the result that the synthetic offset
points will be further away from the golden cluster. If the weight μr get larger than the value
of 0.5, the score function of synthetic triples will contribute more to the training objective
than that of golden triples in the subsequent training process.
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Table 5 Complexity of AWML framework

Model #Parameters #Time complexity

�G O(Np) O(No)

�G + AWL O(Np + 2Nr) O(αNo + ∑Nr

i=1

(
ni

2

)
)

�G + AML O(Np + 2Nr) O(αNo + ∑Nr

i=1

(
ni

2

)
)

Nr represents the number of relations. Np and No represent the number of parameters and the time
complexity of the baseline model �G, respectively

4.3 Training objective of AWML framework

In our AWML framework, the training objective is as follows:
∑

(〈h′,r ′,t ′〉,〈h′,r ′,t ′〉)∈Tbatch

[γr + (1 − μr)f (h, r, t) + μrf (h′, r ′, t ′)]+ (8)

Among (8), γr denotes a density-adaptive margin if we choose the margin in adaption (AML
framework), otherwise it denotes a fixed constant (a hyper-parameter). One category of
knowledge has a specific margin, so it is relation-specific for the γr . It means that separating
the goldens and the synthetics is adaptive to the knowledge category. Similarly, μr indicates
a density-adaptive weight if we choose the AWL framework, otherwise it is a constant of
0.5.

As for the synthetic triples, they are constructed following (2), which differs from some
other KRL models. In our synthetic-triple construction rule, the relation is considered
additionally to corrupt the triple. It can make the KRL model appropriate also for triplet
classification task,5 not only for the link prediction.

The objective favors lower scores for golden triples as compared with synthetic triples,
and it restricts the golden-triplet score function with the importance weight 1 − μr and the
synthetic-triplet one with the weight μr . If the category-specific weight μr gets larger than
0.5, then the model will try hard to maximize the synthetic triple score function, and the
minimization of the golden triple score function will be pretty much ignored.

Algorithm implementation Algorithm 1 summarizes the whole AWML training process,
and the margin or the weight can be chosen to be adaptive respectively.6 The AWML
framework initializes the entity and relation embeddings randomly (Bordes et al. 2013) or
pretrainedly. We take the symbol of �G to denote any explicit KRL model, such as TransE.
The learning method is decided by the �G. For instance, in the work of TransE, the widely-
used stochastic gradient descent (SGD) method is used to learn the embeddings, while in
the work of Minervini et al. (2016), an adaptive learning approach, AdaGrad (Duchi et al.
2011), is utilized.

5We discover in our reproducing experiment that the original construction rule will make the KRL model
perform poor in the classification task.
6Source code and datasets for reproducing the experiments presented in this paper are available online:
https://github.com/orangegcc/AWML/

https://github.com/orangegcc/AWML/
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Before we begin to train the model, there are two things that should be conducted. Firstly,
we should do the multi-projection on each relation. Particularly, we cluster all the entity-
pair offsets t − h for each knowledge category to construct clustered relation set Rc. In this
way, one original relation has one or more than one sub-relations. Therefore, incorporated
by our AWML framework, the number of relation embeddings will increase compared with
the original KG (see Table 6). The second operation we should conduct is to calculate each
category-specific density according to (5).

Afterwards, we can loop the training process following our training objective (see (8)).
Among the objective, the triplet score function f is also decided by the specific KRL model,
such as f (h, r, t) = ‖h + r − t‖Ln in TransE. In each epoch of training, we first normalize
the entity embeddings.7 Then we initialize the set of triple pairs – the goldens and the

7We only normalize the relation embedding in the first epoch. This is the same as the work of Bordes et al.
(2013).
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Table 6 Statistics of dataset and the results of clustering

Dataset #Train #Valid #Test #Ent #Rel #Rel after clustering

TransE TransE(AG) TransR

WN18 141442 5000 5000 40943 18 48 149 75

FB15k 483142 50000 59071 14951 1345 2291 2430 2467

synthetics following the synthetic-triple construction rule (see (2)). Last but not least, we
calculate the loss based on the training objective (8) and update all the relation embeddings
r and the entity embeddings e. Additionally, for AML framework, the wm and the bm in (4)
should be also updated so that the adaptive margin γr can change adaptively according to the
precalculated density. As for AWL framework, wu and the bu in (7) should be also updated.

Comparisons of complexity Table 5 lists the complexities of the original KRL model �G

and �G+AWL/AML model. Compared with the baseline model CTransE, if it is incor-
porated by our adaptive framework, the number of parameters will be added by O(2Nr)

because of the weight or the margin adaptive to the relation r . In that there are weight and
bias parameters to be learned, Nr is multiplied by 2. The time complexity is similar between
the �G and the �G+AWL/AML except for 1) time concuming on weight or margin learn-
ing (so there is a factor α > 1 before No) and 2) time consuming on density calculation
O(

∑Nr

i=1

(
ni

2

)
) before training, where the ni denotes the number of triplets containing the

same sub-relation. Hence, incorporated by our framework, the KRL model is still effective
in time complexity.

5 Experiments

To evaluate our proposed framework AWML, we respectively incorporate AML and AWL
into 3 cluster-based KRL models: CTransE, CTransE(AG) and CTransR, each of which
is taken as the baseline in this work. Among the three cluster-based KRL models, their
original approaches8 before clustering are available respectively from TransE (Bordes et al.
2013), TransE(AdaGrad) (Minervini et al. 2016), which uses adaptive learning rate during
representation learning, and TransR (Lin et al. 2015b), which adopts relational projection
on entities. In the comparison experiments, we test the performances of CTrans{E, E(AG),
R} + AML and CTrans{E, E(AG), R} + AWL for link prediction and triplet classification,
and conduct visualization analysis on the embeddings.

Please note here that, it is CTransX model, not TransX model, that we compare
CTransX+AWL/AML model with. So in the following table, we put the evaluating result of
TransX in the brackets.

8Note that our evaluation results of TransE, TransE(AdaGrad), TransR and CTransR, may be different from
the original works. This is because the synthetic-triple replacement rule in the loss function (see (2)) differs
a lot from each other. In our framework, the relation is considered additionally in the rule to make the KRL
model appropriate also for triplet classification task not merely for the link prediction. What’s more, there
exist some differences in the hyper-parameter settings between our framework and other works. We choose
the best configuration of hyper-parameters in our experiments.
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5.1 Experimental settings

Dataset The datasets we adopt are publicly available from two widely used knowledge
graphs, WordNet (Miller 1995) and Freebase (Bollacker et al. 2008). WordNet is a lexi-
cal ontology for English language. In WordNet, each entity represents a synset consisting
of several words, and a word can also belong to different synsets. Relationships between
synsets include hypernym, hyponym, meronym, holonym, troponym and other lexical rela-
tions. As for Freebase, this large collaborative KG consists of a huge number of real-life
facts and contains various entities such as people, places, events and so on. The WordNet
and Freebase are so typical and popular that hundreds of Knowledge Representation Learn-
ing (KRL) models adopting this KG to evaluate the performance of models. Among all the
subsets of WordNet and Freebase, we employ WN18 and FB15k used in Bordes et al. (2013)
respectively, and their statistics are listed in Table 6.

In Section 3, we propose the relation multi-projection to disambiguate the relation with
the method of clustering. After multi-projection, we can obtain more relational embeddings
than that obtained from the original model �G. Here we list the number of relations #Rel
after clustering in Table 6.

Implementation details We train each evaluation model until it converges by using
SGD(in mini-batch mode) for CTransE/CTransR and AdaGrad (Duchi et al. 2011) for
CTransE(AG) with learning rate λ = 0.01. As for parameter regularization, we adopt the
L2 regularizer to all parameters for CTransE and CTransR on FB15k dataset, and for other
evaluations we adopt the L1 regularizer. Training time was limited to at most 2000 epochs
over the training set. For three baseline models CTrans{E, E(AG), R}, we attempt several
settings (Bordes et al. 2013; Minervini et al. 2016; Lin et al. 2015b) on the validation dataset
to get the best configurations that are: dimension of embeddings k = 20, distance measure-
ment d = L1, the fixed margin γ = 2 for CTransE and CTransE(AG) on WN18; k = 50,
d = L1, γ = 2 for CTransR on WN18; k = 50, d = L2, γ = 0.5 for CTransE and CTransR
on FB15k; k = 50, d = L1, γ = 1.0 for CTransE(AG) on FB15k.

For models incorporated by AWML framework, CTransX + AML and CTransX +
AWL, we fix k and d that are the same as the settings of CTransE. Other hyper-parameters
in our framework are: γm in AML, γu, β in AWL, and learning rate λ. We select λ from
{0.01, 0.02}, γm from {1, 2, 4}, γu from {0.05, 0.25, 0.5}, β from {12, 24.5, 49.5} to let μr

and 1 − μr not in a great disparity. We use the metric of MeanRank that is described in
the following Evaluation protocal to select parameters on the validation set for both frame-
works: AML and AWL, and for both initialization methods: randomly and pretrainedly. For
CTransX + AWL the selected parameters are: λ = 0.01, γu = 0.25, β = 24.5 either ran-
domly or pretrainedly initialized. Note that β = 24.5 will make the adaptive weight μr

range from 4.9 to 5.1. For CTransX + AML the selected parameters are: λ = 0.02 when
randomly initialized and λ = 0.01 when pretrainedly initialized, γm = 2 on WN18 dataset
and γm = 1 on FB15k dataset.

5.2 Link prediction

Link prediction is a classical evaluation task that concentrates on the quality of knowledge
representation (Bordes et al. 2013). This task aims to complete a triple when one of head
or tail is missing, which can be viewed as a simple question answering task. Similar to the
setting in Minervini et al. (2016) and Bordes et al. (2013), etc, the task returns a list of
candidate entities from KG instead of one best answer.
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Evaluation protocol We use two evaluating metrics by following Bordes et al. (2009):
MeanRank and Hist@n. For each test triplet, we corrupt the head or tail by using other
entities in the entity set E in turn and calculate the f scores for the test triplet and all the
corrupted triplets. After that we rank these triplets with their scores by descending order.
Finally, we get the ranking of correct entity. If the ranking of the correct entity is smaller
than or equal to n, Hit@n for the test triplet will be equal to 1, otherwise it will be 0. For
all the triplets in the testing data, we repeat the same procedure and get the MeanRank and
mean value HITS@n for each kind of n ∈ {1, 3, 10}.9 We report the average scores on head
prediction and tail prediction as final evaluation results. It is clear that a good predictor has
lower MeanRank and higher Hist@n c.

When constructing corrupted triplets, some of them may hold in training or validation
set, which indicates that they are also real triples. So we filter out these triples before the
ranking of candidate entities. This evaluation setting is denoted as Filt. and Raw otherwise.

In the specific evaluation, we adopt our novel ranking approach appropriate for cluster-
based models including CTransX, CTransX + AWL and CTransX + AML in this work.
Because of multi-projection in cluster-based models, we do not know which sub-relation
embedding should be used when calculating the triplet score f . To solve this problem, we
firstly classify every corrupted entity pairs 〈h, t〉 into the sub-relation clusters by means of
calculating which sub-relation embedding is the nearest neighbor of the entity-pair offset.
Then we can use the corresponding sub-relation embedding to accomplish the link predic-
tion task. Finally, the candidate entities can be ranked as the order in the former method. In
the following, we call the two cluster-based metrics as MeanRank c and Hist@n c.

For CTransR, in that our framework with pretraining almost performs better than ran-
domly initializing, we only do the experiments with pretraining. But we believe this is
enough to demonstrate the generalization of our framework on the CTransR model.

Experimental results The overall results10 of our frameworks as well as the baseline are
shown in Table 7. On the dataset of FB15k, all settings of adaptive training bring a pro-
nounced improvement to the original KRL model, no matter which triplet score function
f we adopt (TransE or TransR), and no matter which learning method we use (SGD for
CTransE or AdaGrad for CTransE(AG)). For the CTransE model, among all the incorpo-
rated approaches, AML with pre-trained initialization achieves the best MeanRank c both
in Raw11 and Filt and also achieves the best HITS@n c in 1, 3 and 10 settings. With AML,
MeanRank c(Filt.) of CTransE decreases by 10.2 and Hist@10 c increases by 6.0%. For the
learning method of AdaGrad in CTransE(AG), we find that it is our AML framework that
helps the CTransE(AG) achieve the best. Furthermore, we can discover that the result of
HITS@n c is robust to the value of n, which indicates that the performance of our proposed
framework is insensitive to the evaluating metrics.

9Different from the formal evaluation metric HITS@10, we add the other two HITS@n to investigate the
sensitivity of the performance to the HITS size.
10Note that, the models we compare contain CTransX(the baseline) and CTransX+AWL/AML, regardless
of the original model TransX, including TransE, TransE(AG) and TransR. So all the evaluating results of
TransX are not marked with bold font. Besides, to differentiate numerical values, we keep three decimal
places for MeanRank c of WN18 in the evaluation of Triplet Classification.
11Please note here that, the results of Raw setting differ greatly from other papers, this is derived from our
modified ranking approach mentioned in the Evaluation protocol. When obtaining the f score for the test
triplet with each candidate entity, we use more than one sub-relations to calculate the neighborhood score
and choose the best one as the final sub-relation. So the correct head/tail will rank higher than that in the
former evaluate method.
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Table 8 Link prediction on FB15k with respect to different types of relations(%)

Tasks Predicting head (Hist@10 c) Predicting tail (HITS@10 c)

Relation type 1-1 1-M. M.-1 M.-M. 1-1 1-M. M.-1 M.-M.

CTransE 64.3 84.4 15.4 53.4 65 18.3 86.9 58.6

+AWL(random) 66.9 86.7 16.7 55.5 67.3 19.6 89.2 60.8

+AWL(pre-trained) 69.3 86.9 16.9 55.6 67.4 20.4 89.2 60.7

+AML(random) 65.5 88.4 16.0 57.2 64.5 20.8 89.8 62.4

+AML(pre-trained) 70.7 90.6 18.2 59.9 68.7 23.9 92.1 64.9

As for the WN18 KG, our framework also maintains comparative performance. Although
the performance of the model with randomly initializing is somewhat poor, in all the
compared models, the best MeanRank c is consistently the model incorporated with our
framework AWL or AML. In CTransE+AWL with pretrained setting, the MeanRank c of
Raw and Filt. settings are both decreases nearly 30%. Similarly, the CTransE(AG)+AWL
also decreases a lot. This also indicates that our density-adaptive methods are consistently
effective.

Additionally, as defined in Bordes et al. (2013), relations in KBs can be divided into
four types according to hptr and tphr (see Table 1): 1-to-1, 1-to-MANY, MANY-to-1 and
MANY-to-MANY. Here we demonstrate the performance of AML and AWL incorporated
into the baseline model on different types of relations in Table 8. We can observe that on all
the 4 types of relations, both AML and AWL consistently achieve significant improvement
as compared with the baseline, CTransE.

5.3 Triplet classification

We also test our model on triplet classification, which is used to evaluate the knowledge
representation. This task aims to predict the missing relation given two entities and is equal
to a classification task that classifies the testing triple into one of the knowledge categories.
Similar to the evaluation protocol in link prediction, this task also returns a list of candidate
relations from KG.

Evaluation protocol In this task, we corrupt the relation of each testing triple by using
other relations in the set R in turn and calculate the f scores. After that we rank these
triples in descending order. Similar to the link prediction task, we also use MeanRank c
and Hist@n c for n ∈ {1, 3, 10} to evaluate the triplet classification results. Particularly, the
HITS@1 metric indicates the classification accuracy and only check if the first relation in
the sorted list is the correct one.

In the triplet classification task, we will not face the same problem that the multi-
projection brings about. We only need to use all the sub-relation embeddings to replace
the relation for each triplet. Besides, we use the Filt. setting in this task to compare all our
frameworks with the baseline model.

Experimental results Evaluation results are shown in Table 9. We can see that on
FB15k dataset, both AWL and AML models outperform CTransE on Hist@1 metric.
On MeanRank c metric, our AML model is slightly worse than CTransE, but our AWL



Journal of Intelligent Information Systems (2019) 53:167–197 191

Ta
bl
e
9

T
ri

pl
et

C
la

ss
if

ic
at

io
n

R
es

ul
ts

:T
es

tp
er

fo
rm

an
ce

of
C

T
ra

ns
X

(t
he

ba
se

lin
e)

an
d

C
T

ra
ns

X
+

A
W

L
/A

M
L

on
th

e
W

or
dN

et
(W

N
18

)
an

d
Fr

ee
ba

se
(F

B
15

k)
K

G
s

K
no

w
le

dg
e

gr
ap

h
Fr

ee
ba

se
(

FB
15

k
)

W
or

dN
et

(
W

N
18

)

M
E

T
R

IC
M

ea
nR

an
k

c
H

IS
T

@
n

c(
%

)
M

ea
nR

an
k

c
H

IS
T

@
n

c(
%

)

E
va
l.s
et
ti
ng

R
aw

F
il
t.

1
3

10
R
aw

F
il
t.

1
3

10

(
T

ra
ns

E
(o

ur
s)

)
(

3.
05

)
(

2.
75

)
75

.5
90

.5
96

.4
(

1.
21

9
)

(
1.

21
5

)
(

90
.9

)
(

97
.6

)
(

99
.9

)

C
T

ra
ns

E
3.

32
3.

05
75

.5
92

.9
97

.0
1.

22
7

1.
22

4
91

.6
97
.8

99
.5

C
T

ra
ns

E
+

A
W

L
ra
nd
om

3.
31

3.
02

76
.1

93
.1

97
.0

2.
14

0
2.

13
6

21
.5

94
.0

99
.2

pr
et
ra
in

3.
26

2.
97

76
.3

93
.1

97
.2

1.
69

3
1.

68
9

72
.8

87
.2

99
.5

C
T

ra
ns

E
+

A
M

L
ra
nd
om

4.
59

4.
28

75
.7

91
.0

96
.7

1.
32

4
1.

32
0

91
.7

96
.6

99
.2

pr
et
ra
in

3.
91

3.
60

76
.2

92
.4

96
.9

1.
21
6

1.
21
2

92
.5

97
.8

99
.7

(
T

ra
ns

E
(A

G
)

(o
ur

s)
)

(
3.

54
)

(
3.

18
)

(
80

.5
)

(
91

.8
)

(
97

.0
)

(
1.

24
9

)
(

1.
24

5
)

(
92

.5
)

(
97

.8
)

(
99

.7
)

C
T

ra
ns

E
(A

G
)

4.
54

4.
25

73
.8

90
.0

96
.2

1.
29

7
1.

29
4

88
.3

97
.0

99
.6

C
T

ra
ns

E
(A

G
)+

A
W

L
ra
nd
om

3.
37

3.
08

77
.4

91
.3

97
.2

1.
57

1
1.

56
7

83
.2

91
.6

99
.6

pr
et
ra
in

3.
20

2.
91

77
.3

91
.3

97
.3

1.
60

0
1.

59
7

82
.1

91
.3

99
.6

C
T

ra
ns

E
(A

G
)+

A
M

L
ra
nd
om

4.
09

3.
77

75
.3

91
.4

96
.9

1.
22
6

1.
22
3

92
.4

97
.9

99
.5

pr
et
ra
in

3.
52

3.
20

75
.7

92
.0

97
.4

1.
23

6
1.

23
2

91
.8

98
.1

99
.5

(
T

ra
ns

R
(o

ur
s)

)
(

5.
24

)
(

4.
86

)
(

81
.6

)
(

93
.1

)
(

97
.2

)
(

1.
23

2
)

(
1.

22
8

)
(

94
.0

)
(

97
.3

)
(

99
.4

)

C
T

ra
ns

R
4.

73
4.

41
75

.3
92

.2
97

.6
1.

89
3

1.
88

9
92

.2
96

.9
98
.0

C
T

ra
ns

R
+

A
W

L
pr
et
ra
in

4.
26

3.
93

77
.0

93
.1

97
.8

2.
03

1
1.

99
3

91
.5

96
.4

97
.6

C
T

ra
ns

R
+

A
M

L
pr
et
ra
in

4.
57

4.
26

76
.5

92
.9

97
.8

1.
76
2

1.
73
8

92
.3

97
.1

98
.0



192 Journal of Intelligent Information Systems (2019) 53:167–197

Table 10 Time consumption in the KRL training on WN18 and FB15k datasets

Model Training time of 100 epochs (second)

WN18 FB15k

CTransE(AG) 1633.9 6640.7

CTransE(AG)+AWL 1916.4 8281.2

CTransE(AG)+AML 2050.0 7685.7

model achieves the best MeanRank c 2.97 and the best Hist@1 c 76.3%. The improved
Hist@1 c and the comparative MeanRank indicate that there are more testing triples clas-
sified into the correct knowledge category even though the relation of several triples
are predicted extremely poorly. What’s more, for any KRL model, our framework has
the capability to help the KRL model achieve both the best MeanRank c and the best
Hist@n c.

From the experimental results over both two tasks,12 we can conclude that our AWML
framework is capable of helping the KRL model to learn better entity and relation
embeddings to accomplish the link prediction and the triplet classification.

5.4 Time efficiency analysis

In addition to the performance on two tasks, we also analyze the performance of our
framework along the time efficiency. We list the time cost in the process of training for
CTransE(AG) and CTransE(AG)+AWL/AML both on the datasets of WN18 and FB15k.
As the time complexity in Section 4 analyzes, We can discover from Table 10 that the KRL
model incorporated by our framework is similarly effective with the original model. The
former is slightly more time consuming than the latter because of a factor α > 1 shown in
Table 5.

Note that, what we compare in Table 10 is the training time of the first 100 epochs not
the training time of convergence epochs. Besides, the models of CTransE(AG)+AWL and
CTransE(AG)+AL listed in Table 10 are all initialized randomly.

5.5 Visualization analysis

Our AWML framework makes the KRL model adaptive to the knowledge category to learn
the embeddings. After we learn the embedding, we compare the representation distributions
of CTransE and CTransE+AML through visualization. Similarly, we use t-SNE method
(Maaten and Hinton 2008) to reduce the representations to 2-dim space. Then, we visualize
all the Triples 〈h, r, t〉 for each knowledge category Sr and randomly pick 3 categories to

12We can discover from our evaluating results that “for CTransE model, AML is better than AWL for link
prediction and AWL is better than AML for classification, but for some other models, it is contrary.” This
is because Link Prediction tends to be performed well by those embeddings that satisfy the condition that
the head h is close to the vector of t − r , but Triplet Classification tends to be performed well by those
embeddings that satisfy the condition that the relation r is being close to the vector of t −h. The thing worth
mentioning is that in the sense of average, the above two conditions are not the sufficient and necessary
between each other. Therefore, the performances on these two tasks are not absolutely the same. So for some
KRL models, it can perform comparatively in one task but perform not so wonderfully in another.
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Fig. 7 Visualization results of CTransE embedding vectors with and without AML framework. Three rela-
tions (a ∼ c) are randomly chosen from clustered relation set Rc that contains 2291 relations, and each
clustered relation is denoted in the form of RelationN . For each relation, two graphs are displayed to com-
pare the CTransE+AML model and its baseline CTransE, and their link prediction results: MeanRank and
HITS@10 are listed in the graph respectively. Each graph is visualized in the same size in the 2D plane. A
black star denotes each relation embedding r and a colorful dot denotes the entity-pair offset t − h of each
triple as shown in the legend: red dot represents golden triple and dark dot represents synthetic triple

display in Fig. 7. Not only the goldens but also the synthetics we consider, and their positions
are dependent on their entity-pair offset: the r̂ and the r̂ ′ respectively.

As shown in Fig. 7, for each category, the golden entity-pair offsets r̂ distribute similarly
over CTransE+AML and CTransE.13 But for CTransE+AML, the relation embedding r is
much closer to the golden cluster, and at the same time, the evaluation result is also better
than CTransE. This indicates that the embedding is obtained more appropriately to match
the triple restriction of TransE: t − h ≈ r . In other words, in the distribution space, our
adaptive framework is capable of building better representations to improve the performance
of original KRL models.

13In Fig. 7, some synthetic triplets indeed spread around the relation embedding r after the CTransE model
incorporated with our AWL framework. However, this phenomenon does not violate our expectation of the
representation distribution, because it is in a sense of average and in a relative sense that the implicit vector
of synthetic triplet should be further away from the relation embedding vector compared with the implicit
vector of golden triplet. In the process of KRL training, in order to guarantee the total loss is low enough, the
model tends to make a little of synthetic triples contrary to the above statement.
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6 Discussion

In this section, we first analyze the necessity of multi-projection for KRL models. Then we
provide the visualization analysis methods and discuss the approximation of r in (5) for
other distance-based KRL models except for TransE-like models.

Multi-projection of relation and entity In Section 3.1, we propose the relation multi-
projection to disambiguate the relation with the help of clustering. As a matter of fact, some
other KRL models also imply the idea of multi-projection for entities, such as SE (Bordes
et al. 2009), SLM (Socher et al. 2013), SME (Bordes et al. 2014), LFM (Jenatton et al. 2012;
Sutskever 2009), NTN (Socher et al. 2013), RESCAL (Nickel et al. 2011; Nickel and Ring
2012), TransH (Wang et al. 2014), TransR/CTransR (Lin et al. 2015b), TransD (Ji et al.
2015). They all project head and tail entities into a relation-specific space when calculating
the triple score function.

Why is the above entity multi-projection effective in building embeddings and improving
the performance of KRL models? This is because the entity in KG also has the semantic
ambiguity and the multi-projection will disambiguate the entity. Take SME as an example,
for every triple 〈h, r, t〉, the model utilizes an relation-specific matrix Wr to transform the
head embedding h into a relation-specific head embedding hr , and thus, when measuring
different semantics associated with relations, an entity will be projected into distinctive
embedding spaces to represent different contextual situations.

Therefore, no matter which concrete method we use, it is of great significance for KRL
models to conduct the multi-projection.

Visualization analysis methods When we explore the training objective to analyze the
performance of TransE in Section 3, we visualize the representation distributions using
t-SNE. As for other KRL models, we can also utilize the similar visualization analysis
methods to explore the distribution characteristics of embeddings. Here we provide concrete
analysis methods for TransE-like models and other distance-based KRL models.

For TransE-like models that do not use the relation-specific matrix to multi-project the
entity, such as TransA (Xiao et al. 2015), TransG (Xiao et al. 2016) and KG2E (He et al.
2015), we can visualize the embeddings with the same method as TransE — conduct the
dimensionality reduction over all the relation and entity embeddings, take the same knowl-
edge category as an observed collection, and analyze whether the entity-pair offset t − h is
in the neighborhood of the relation r .

For TransE-like models with entity multi-projection, such as TransH (Wang et al. 2014),
TransR/CTransR (Lin et al. 2015b), TransD (Ji et al. 2015), the entity embedding we visual-
ize should be projected into the relation-specific space, otherwise the head, tail, and relation
will not satisfy the translation property. Thus, we should conduct the multi-projection of
entity embeddings before the dimensionality reduction so that we can then observe whether
they satisfy the translation approximation tMrt − hMrh ≈ r .

For distance-based KRL models that project the nonlinear transformation of head and tail
onto the relation embedding, such as NTN (Socher et al. 2013) and Hole (Nickel et al. 2015):
f (h, r, t) = g(r	nl(h, r, t)), we can observe the distribution feature between the nonlinear
transformation vector nl(h, r, t) and the relation embedding vector r for each triple. The
projection vector of nl(h, r, t) on the r can be observed whether is small enough for the
golden triples and large enough for the synthetics. For other models that utilize the bilinear
transformation, such as LFM (Jenatton et al. 2012; Sutskever 2009) and RESCAL (Nickel
et al. 2011; Nickel and Ring 2012), we can visualize the entity embeddings belonging to the
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same category of entity-pairs and analyze the distribution characteristics of the head and the
tail in the bilinear transformation h	Mr t .

Approximation of relation r̃〈h ,t〉 In Section 4.1, we display the approximation of r to cal-
culate the distributed density densr for TransE-like models. While for other distance-based
KRL models, we can approximate the relation embedding r inspired by the score function
f . For example in NTN model (Socher et al. 2013), the nonlinear transformation tanh(h, t)

can be regarded as r̃〈h,t〉, because NTN consider the projection of tanh(h, t) on the r as the
triple score function.

7 Conclusion and future work

In this paper, we tackle the knowledge embedding problem and propose an adaptive
weighted margin learning framework, called AWML, to facilitate the KRL models to
adaptively learn the representations of entities and relations in KG. We first analyze the
visualization results of previous KRL model and discover the inconsistency between the
original training objective and the complex property of KG. Then we explore the relation-
specific density and explain the necessity of choosing an appropriate margin and importance
weight for every knowledge category. Finally, we define the density-adaptive margin and the
density-adaptive weight, and integrate them into the previous training objective respectively
for knowledge embedding. Experimental and visualized results validate the effectiveness of
our proposed framework.

From the performances on the evaluation tasks, we can conclude that our proposed
framework is indeed capable of helping the KRL models to obtain better representations
in the embedding space. The good performance is derived from the ability of adaptation.
With our framework, the KRL model can adaptively control the contributions of golden and
synthetic triples in the training process, and also can adaptively control the degree of sep-
arating the two kinds of restrictions. But there still exist challenges for our proposed KRL
framework. For the 1-to-N and N-to-1 relations, it is still very difficult to learn a perfect
representation and the improvement is small. For another, with our framework, some cate-
gory of triples distribute worse in the embedding space. As the visualization shows in Fig. 7,
we can see that there are still some synthetic implicit vectors distribute near the relation
embedding. These two challenges are still what we should explore in the future work. Addi-
tionally, we will incorporate our framework, AWML, into more KRL models and apply it
in more tasks to evaluate the generalization of our framework. It is possible to focus on the
entity rather than the relation to analyze the distribution characteristics of the embeddings
and explore the capability of knowledge embedding models.

Acknowledgements This research is supported by the National Natural Science Foundation of China under
Grant No.61602048, No.61601046 and No.61520106007.

References

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J. (2008). Freebase: a collaboratively created graph
database for structuring human knowledge. In SIGMOD 08 Proceedings of the 2008 ACM SIGMOD
international conference on management of data (pp. 1247–1250).

Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2012). Joint learning of words and meaning representations for
open-text semantic parsing. International Conference on Artificial Intelligence & Statistics, 22, 127–135.



196 Journal of Intelligent Information Systems (2019) 53:167–197

Bordes, A., Glorot, X., Weston, J., Bengio, Y. (2014). A semantic matching energy function for learning with
multi-relational data: application to word-sense disambiguation. Machine Learning, 94(2), 233–259.

Bordes, A., Usunier, N., Weston, J., Yakhnenko, O. (2013). Translating embeddings for modeling multi-
relational data. Advances in NIPS, 26, 2787–2795.

Bordes, A., Weston, J., Collobert, R., Bengio, Y. (2009). Learning structured embeddings of knowledge
bases. Aaai Conference on Artificial Intelligence, (Bengio), 301–306.

Boser, B.E., Guyon, I.M., Vapnik, V.N. (1992). A training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on computational learning theory - COLT ’92 (pp. 144–152).

Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12(1532-4435), 2121–2159.
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