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Abstract Context-aware recommender systems (CARS) exploit multiple contexts to
improve user experience in embracing new information and services. Tensor factorization
(TF), a type of latent factor model, has achieved remarkable performance in CARS. TF
learns latent representations of contexts by decomposing an observed rating tensor and com-
bines the latent representations as a vector form to represent contextual influence on users
and items. However, due to the limitation of the contextual expression power, they have
difficulties in effectively capturing complex correlations among multiple contexts, and also
the meaning of each context is diluted. To address the issue, we propose a reliable TF-based
recommender system based on a proposed context tensor (CT-CARS), which incorporates
a variety of correlations among contexts. CT-CARS contains a novel recommendation rat-
ing function and a learning algorithm. Specifically, the proposed context tensor elaborately
captures the influences of both individual contexts and context combinations. Moreover, we
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introduce a novel parameter initialization based on past-learned results to improve the relia-
bility of recommendations. The overall time complexity of our parameter learning algorithm
grows linearly as dataset size increases. Experiments on six real-world datasets includ-
ing two large-scaled datasets show that CT-CARS outperforms the existing state-of-the-art
models in terms of both accuracy and reliability.

Keywords Context-aware · Recommender system · Collaborative filtering · Latent factor
model · Matrix factorization · Optimization

1 Introduction

Nowadays, with the increasing volume and variety of information and services, users have
difficulties in selecting what they truly desire. To effectively offer what users really want,
context-aware recommender systems (CARS) are proposed in various domains such as
movie (Harper and Konstan 2015; Bennett and Lanning 2007), place (Zheng and Xie 2011),
shopping (Banerjee et al. 2016), tourism (Christensen et al. 2016), and food (Tran et al.
2017). CARS analyzes contextual influences on a user’s past activities to accurately predict
his or her future activities. The contextual influences are different depending on individual
contexts and even on the combinations among multiple contexts, users, and items. There-
fore, in order to improve the performance of recommendations, it is crucial to capture
complex correlations among contexts and analyze their influences on a user activity.

Matrix factorization (MF) which is a fundamental type of latent factor model has been
spotlighted in recommender systems in that it ensures high accuracy and scalability even
with a sparse user-item rating matrix. Relationships among users, items, and multiple con-
texts can be represented as a user-item-contexts rating tensor which has several context
dimensions in the user-item rating matrix. Tensor factorization (TF), an extension of MF,
decomposes the rating tensor into two latent matrices of users and items and several latent
matrices of contexts (i.e., as many as the number of context types). An unknown relation-
ship (i.e., rating by a user on an item under contexts) is predicted by combining the latent
representations. Each context type has several context instances, e.g., weather context type
has context instances {snow, sunny, rain}.

The conventional TF-based models decompose a tensor into several latent matrices
simultaneously in a learning stage and combine them all together in an inference stage.
Thus, the models cannot grasp the contextual influences on users and items, respectively.
Recently, stepwise approaches integrate multiple contexts, and then combine the integrated
context with users and items, respectively. The approach can model both user-contexts
relations (contextual influence on users) and item-contexts relations (contextual influence
on items). However, since they represent the contextual influence as a single vector, the
meaning of individual context instance may be diluted. Furthermore, the single vector is
generated by a weighted sum which utilizes a fixed weight value per context type. Thus, the
fixed weights limit the complex correlations among contexts. For example, in the process
of integrating contexts, two fixed weights are applied to the {sunny, rain, snow} for weather
type and {friends, spouse} for companion type, respectively. A user preference is mainly
determined by the weather type, but may also be determined by the companion type depend-
ing on the user. Moreover, the importance of {spouse} may differ depending on {sunny, rain,
snow}.
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Table 1 Example of training dataset with Top-1

No. User ID Item ID (Top-1) Context type (weather) Context type (companion)

Snow Sunny Rain Friends Spouse

1 Jones Hot dog 1 – – 1 –

2 Jones Steak – 1 – – 1

3 Davis Hot dog 1 – – – 1

4 Davis Steak – 1 – – 1

5 Davis Steak – – 1 1 –

6 Davis Sandwich – – 1 1 –

7 Smith Hot dog 1 – – – 1

8 Smith Hot dog – – 1 – 1

9 Brown Sandwich – – 1 1 –

10 Brown Hot dog 1 – – 1 –

11 Brown Steak – 1 – – 1

. . . . . . . . . . . . . . . . . . . . . . . .

Dominant context instances or combinations play an important role in determining a
user activity. This means that multiple contexts have various correlations. For example,
Table 1 shows an example of a training dataset with top-1 items for users under weather and
companion context types. Previous models assign two fixed weight values to the context
types to integrate the contexts using a weighted sum. However, as shown in Table 2, snow
and sunny context instances are dominant, because they properly identify top-1 items better
than {rain}. Thus, the fixed value for weather type cannot reflect that the influences of
the snow and sunny instances are higher than the influence of rain. Moreover, as shown
in Table 3, the influence of a context instance varies depending on context combinations.
The sunny instance in {sunny, spouse} is more dominant than the snow instance in {snow,
friends} and {snow, spouse}. As described in the example, it is clear that the fixed weighted
sum cannot elaborately captures various correlations among multiple contexts.

One of the previous models learns a context-dependent matrix per context combination
in order to capture all correlations. Since numerous contexts cause the exponential number
of context-dependent matrices, this results in a high computational overhead. In a typical
learning algorithm, another problem is that learned parameters absolutely depend on ini-
tial parameters. Optimal parameters may not be learned from randomly generated initial
parameters. Since the performance of recommender systems varies according to the initial
parameters, the random initialization leads to the low reliability of recommendations.

Table 2 Count of weather type
for Top-1 item (effects of
dominant context instances in
weather type from Table 1)

Context type (weather) Item ID (Top-1) Count (#)

Sunny Steak 3

Snow Hot dog 4

Rain Steak 1

Rain Sandwich 2

Rain Hot dog 1
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Table 3 Count of {weather,
companion} for Top-1 item
(effects of dominant context
instance or combinations in
{weather, companion}
combinations from Table 1)

Context type Context type Item ID Count

(weather) (companion) (Top-1) (#)

Sunny Spouse Steak 3

Snow Friends Hot dog 2

Snow Spouse Hot dog 2

Rain Friends Steak 1

Rain Friends Sandwich 2

Rain Spouse Hot dog 1

To cope with the problems, this article presents a novel recommender system named
CT-CARS, which is based on a proposed tensor factorization. The proposed CT-CARS
factorizes a user-item-contexts rating tensor into several latent matrices and the proposed
context tensor. In order to grasp the contextual influences of users and items separately, we
adopt a stepwise approach. The context tensor is used in the step of integrating contexts. The
contributions of CT-CARS are summarized as follows: (i) we formulate a novel recommen-
dation rating function and propose learning algorithm for the rating function by using the
context tensor. Also, (ii) we propose a method of initializing parameters from past-learned
results for the learning algorithm, and (iii) we manage the past-learned results for parameter
initialization. Finally, (iv) we present the overall architecture of CT-CARS. Hereafter, we
use the terms LVC and LVE to indicate the latent vectors of context instances and entities,
respectively. In addition, PLVC indicates the LVC in the past-learned results.

In the first step of the proposed approach, in order to elaborately integrate LVCs in accor-
dance with a context combination, LVCs are combined with the proposed context tensor.
Unlike a fixed weight value which is used in a simple weighted sum, the context tensor
is able to capture correlations among multiple contexts for various context combinations.
Moreover, the context tensor generates the influence of a context combination in a matrix
form, unlike a single vector form in previous works. In order to model a user-contexts rela-
tion and an item-contexts relation, at the next step, the contextual influence is combined
with a user and an item. Since the contextual influence is represented as a matrix, which
contains more information than a single vector, we preserve the meaning of each context as
much as possible. The context tensor is fixed as a three-dimensional matrix, irrespective of
the number of context types. Therefore, the number of context types has little effect on the
overall computational overhead.

The same context instances in different datasets have similar contextual influences on the
same recommendation domain. Thus, all LVCs of context instances show similar patterns
across multiple datasets. Whenever parameters are learned, the CT-CARS system configures
initial parameters based on the PLVCs that showed the best performance. The configuration
ensures the initial parameters with the patterns of PLVCs, improving the reliability of rec-
ommendations. Hereafter, we define the degree of reflecting PLVCs on a new learning as the
term RW (reusing weight). A user’s preference commonly decreases as time goes on. RW
depends on the elapsed time. Thus, The older PLVC, the lower the RW on a new learning.

The rest of this article is organized as follows: Section 2 reviews related work. Section 3
introduces some preliminaries for CARS. In Section 4, we describe the overall architecture
of CT-CARS. Section 5.1 presents a novel recommendation rating function based on the
proposed context tensor. Section 5.2 presents a learning algorithm and explains our param-
eter initialization with PLVCs, and Section 6 shows experimental results to evaluate the
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performance of the proposed recommender system. Finally, we conclude our work and
discuss a few interesting future works in Section 7.

2 Related work

The goal of context-aware recommender systems (CARS) is to identify unobserved inter-
actions between entities (e.g., users and items) under multiple contexts. The interaction is
commonly rated as a n star scale, and the set of interactions is represented as a user-item-
contexts rating tensor. Collaborative filtering (CF) is a typical CARS method to capture
the unobserved interactions between entities under contexts. The existing CF for rec-
ommendations can be categorized into neighborhood-based CF, which is also known as
memory-based CF (Deshpande and Karypis 2004), model-based CF (Koren et al. 2009),
and hybrid CF (Pennock et al. 2000). The model-based CF is generally realized by latent
factor models based on MF, which uses machine learning techniques to identify user-item
relationships. MF factorizes a rating matrix into two low dimensional latent matrices, which
represent potential properties of users and items, respectively. MF is used in various research
fields such as recommendation, semantic web, social network, and classification (Liu et al.
2015c).

As a previous work based on MF, collective matrix factorization (CMF) utilizes relations
between entities as contexts, and decomposes the relation into two latent matrices (Singh
and Gordon 2008). However, CMF has a problem that some context types may be ignored
in multiple contexts, and shows low accuracy. To solve the problem, Heterogeneous matrix
factorization (HeteroMF) learns a context-dependent matrix per context combination, and
computes context-specific latent vectors of entities from the context-specific latent matrix
with latent vectors of entities (Jamali and Lakshmanan 2013). All the context types are
considered in the learning process without being disregarded, but as the number of con-
text types increases, the number of context combinations increases exponentially. Thus,
the high computational complexity is incurred. Probabilistic matrix factorization (PMF)
analyzes Gaussian noise while learning latent factors, and reflects the Gaussian noise on
regularization (Ma et al. 2008; Salakhutdinov and Mnih 2008). Each domain contains both
domain-specific and domain-independent information for entities and context. Man et al.
and Zhang et al. utilize the information to alleviate the data sparsity (Man et al. 2015; Zhang
et al. 2016).

Factorization machine (FM) (Rendle et al. 2011; Nguyen et al. 2014) and Multiverse
Recommendation (Karatzoglou et al. 2010) decompose a user-item-contexts rating tensor
into several latent matrices at once. These approaches cannot capture the user-contexts rela-
tion and the item-contexts relation separately. In order to capture the respective relations,
recent approaches adopt a stepwise approach based on tensor multiplication and represent
a context instance as a LVC. Contextual operating tensor (COT) (Liu et al. 2015a) and
CARS2 (Shi et al. 2014) learn two tensors, which represent the contextual influence on
users and items. Liu et al. use a sigmoid function to learn LVCs, and combines the LVCs
with users’ and items’ LVEs, respectively (Liu and Wu 2015). Chen et al. analyze tags and
ratings among entities to mine a user’s implicit preference based on topic modeling (Chen
et al. 2016). Hierarchical interaction representation model (HIR) analyzes the interaction
between two entities and combines the interactions of multiple entities repeatedly (Liu et al.
2015b). However, the conventional models disregard the sophisticated influence of context
instances due to a simple summation with fixed weight values. Thus, they cannot elaborately
capture complex correlations among multiple contexts.
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Bayesian probabilistic tensor factorization (BPTF) factorizes a rating tensor via Bayesian
interpretation (Xiong et al. 2010). BPTF analyzes the frequency and tendency of users’
activities in terms of the probability concept. BPTF effectively learns the LVCs and LVEs
with a Markov chain Monte Carlo method, and shows high scalability and low computa-
tional overhead. Some works apply TF to semantic data such as linked open data (Nickel
et al. 2011, 2012; Drumond et al. 2012). Linked data is represented in the form of subject-
property-object (SPO) triples. Thus, the data is converted into a third-order tensor, which
has a subject, a property, and an object axes. Unknown link is learned and predicted by
decomposing the tensor. As discussed above, latent factor models mostly show better per-
formance than the others of CARS. However, it is not easy to explain the recommendation
process and to interpret each latent factor by using real-world examples. Contextual sparse
linear model (CSLIM) easily explains the recommendation process in view of the real world
(Zheng et al. 2014). The approach mines the contextual influence from the deviations of a
user’s ratings in different context combinations.

In general, multiple contexts improve the performance of recommendations in CARS.
However, the excessive number of contexts often causes poor performance. Thus, several
models are proposed to exploit contextual information among multiple contexts efficiently.
If the context combinations are similar, the recommended lists are also similar. Similarity-
learning model (SLM) learns the context similarity along with optimizing the parameters
of a recommendation rating function (Zheng et al. 2015a). Differential context relaxation
(DCR) model utilizes additional contextual information, which is generated from analyz-
ing common features among multiple users (Zheng et al. 2012a). Moreover, the influence
of a specific context on recommendations may be different depending on context types.
Zheng et al. propose differential context weighting (DCW) model based on DCR to analyze
the weights of contextual features (Zheng et al. 2013). Time-dependent contextual informa-
tion may have a limitation that a user’s tendency changes over time. In order to reflect the
changes, some approaches apply different weights over time in the same context based on
the forgetting pattern of human beings (Niederee et al. 2015; Chen et al. 2010). However,
the above models do not offer a universal framework available in various domains.

3 Preliminaries

To begin, Table 4 summarizes the definition of main symbols used in the recommendation
rating function and learning algorithm of CT-CARS. We also explain some background of
typical TF-based recommender systems. Boldface upper-case letters V,M,C,T represent
matrices or tensors, and its lower-case italic letters v, c represent vectors. We also define
several mathematical expressions. Let X be a 2D matrix, X[:,:] denotes the matrix X. X[a,:]
and X[:,b] denote a-th row and b-th column of the matrix X, respectively. X[a,b] denotes an
element. This expression can also be applied to a tensor as shown in Fig. 1. In addition,
vertCat (

⋃m
i=1 xi) vertically concatenates a sequence of vectors or elements {x1, . . . , xm}.

Likewise, horzCat (
⋃m

i=1 xi) denotes a horizontal concatenation. For example, m×n matrix
X can be represented as vertCat (

⋃m
i=1 x[i,:]), where x[i,:] indicates i-th row vector of X.

horzCat (
⋃n

i=1 x[:,i]) also represents the matrix X.
A set of relationships among nu users, nv item, and nc contexts is represented as a user-

item-contexts rating tensor R ∈ R
nu×nv×(1×...×nc). In TF, the latent representation of user

i and item j are represented as vectors V[:,i]
u ∈ R

duv and V[:,j ]
v ∈ R

duv , which are selected
from latent matrices of users Vu ∈ R

duv×nu and items Vv ∈ R
duv×nv . The context instances

are also represented as dc-dimensional vectors. A specific combination of context instances
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Table 4 Definition of main symbols

Symbols Definition

LVC Latent vector of a context instance

LVE Latent vector of a user or an item

PLVC LVC in past-learned results

RW Degree of reflecting PLVC on a new learning

k Context combination

dc The number of latent factors of LVC

duv The number of latent factors of LVE

nc The number of context types

nu The number of users

nv The number of items

Vu,Vv Matrix representation of V[:,i]
u ,V[:,j ]

v

V[:,i]
u ,V[:,j ]

v Latent vector of user i and item j

V[:,i]
u,k ,V[:,j ]

v,k Latent vector of user i and item j under k (context-specific LVE of user i and item j )

Ck Matrix representation of k

Tc Correlations among contexts

Mu,Mv Common characteristics of users and items

Mc,k Contextual influence of k

Mu,k,Mv,k Contextual influences of k on users and items

is named context combination k, which is constructed by nc context instances (one for each
context type). The relationship of a rating tensor R indicates an observed rating of user i

for item j under context combination k, denoted as ri,j,k . R consists of real-valued ratings
ri,j,k , where the value 0 indicates an unobserved rating. Since most ratings are left empty,
R is mostly a sparse tensor.

3.1 Tensor factorization

We briefly review a traditional TF approach for collaborative filtering. To factorize a rat-
ing tensor R having cnc context types, the approach assigns a d-dimensional latent vector
to every user, item, and context instance, denoted as ui, vj , and c1, . . . , cnc , on a shared

Fig. 1 Mathematical expressions in this article
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latent vector space. The tensor product of the latent vectors of user i, item j and context
combination k should be approximated to ri,j,k in R as follows:

R =
⋃

i,j,k

(ri,j,k ≈ r̂i,j,k = ui ⊗ vj ⊗ c1 ⊗ · · · cnc ), (1)

where r̂i,j,k denotes a recommendation rating, and ⊗ denotes a tensor product. ui and vj

(i.e., LVEs) and c1, . . . , cnc (i.e., LVCs) are simultaneously combined all together (i.e.,
ui ⊗ vj ⊗ c1 ⊗ · · · cnc ). Thus, the approach cannot capture the user-contexts and item-
contexts relationships, respectively. Recently, a stepwise TF approach requires the different
dimensions of LVC and LVE. The approach integrates nc context instances for a context
combination k. Then, the integrated context information is combined with a user and an
item, separately:

ri,j,k ≈ r̂i,j,k = (
ui ⊗ (c1 ⊗ · · · cnc )

) ⊗ (
vj ⊗ (c1 ⊗ · · · cnc )

)
, (2)

where ui ⊗ (c1 ⊗ · · · cnc ) and vj ⊗ (c1 ⊗ · · · cnc ) indicate a user-contexts and item-contexts
relationships, respectively. The user-contexts relationship is represented as a latent vector
of a user i under a context combination k, which is called a context-specific latent vector
of s user i (i.e., context-specific LVE of a user i). The item-contexts relationship is also
represented as a context-specific latent vector of an item j (i.e., context-specific LVE of an
item j ). Then, the rating r̂i,j,k can be calculated by an inner product of the two context-
specific latent vectors.

3.2 Recommendation rating

A recommendation rating r̂i,j,k is a prediction score which is calculated by combining the
factorized latent vectors of a user, an item, and contexts. Collaborative filtering automati-
cally provides items based on a user preference determined by collecting preferences from
many other users’ ratings. However, each user preference has a tendency which is biased
to certain items. Since the tendency varies from individual to individual, some users give
higher ratings than the others. In order to predict a rating without the tendency, bias terms
for each user, item, and context instance adjust the rating. Thus, the typical recommendation
rating with bias terms is written as follows:

r̂i,j,k = bg + bi + bj + bk + �qi,k · �pj,k, (3)

where �qi,k and �pj,k are context-specific LVEs of a user i and an item j , respectively. Here,
bg indicates a global bias, bi and bj correspond to entity biases of a user i and an item j ,
and bk denotes a bias of a context combination k.

4 Proposed methodology

Figure 2 shows the overall architecture of CT-CARS, which consists of data storage and the
three main models of initialization, context, and learning. The data storage collects history
data from a variety of user activities, such as application usage and point of interest (POI)
visits. When a user performs an activity, contextual information such as location and time is
recorded. The frequency of the same activity is converted into a rating value. The user, user
activity, contexts, and user’s rating are used as a training data. The context model manages
two datasets to be utilized in the initialization model. One dataset, past-learned results (�),
is used to check the reusability of PLVCs and to initialize parameters with PLVCs. Each
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Fig. 2 Overall architecture of CT-CARS

tuple in � is generated at every learning, which is performed in the learning model. The
tuple has PLVCs, a timestamp of learning, a recommendation domain, the number of latent
factors of PLVC, and lists of context types and instances. The other dataset, not covered in
this article, filters out uninfluential context types.

The proposed recommendation rating function predicts a user’s rating. Our learning algo-
rithm finds the optimal parameters of the recommendation rating function. The learning
model conducts the learning processes repetitively, which include performance measure-
ment, optimization, and parameter update. The amount of parameter update is determined
with the performance. To configure a training dataset, the initialization model selects
data from the data storage according to the current recommendation domain. In this
model, PLVCs in the context model are used to initialize parameters under several reusable
conditions. This improves the reliability of the learning. Specifically, to apply a user’s ten-
dency over time, the initialization model reduces the utilization of PLVCs over time. The
initialization model will be described in detail in Section 5.2.1.

5 CT-CARS: a detail view

5.1 Recommendation rating function

Figure 3 illustrates the overall process of calculating a recommendation rating in the learn-
ing model. The proposed recommendation rating function consists of two major steps:
pre-processing and post-processing steps.

– Pre-processing step captures a multi-context relationship based on the proposed con-
text tensor Tc which can effectively integrate LVCs with complex correlations among
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Fig. 3 Recommendation rating process for CT-CARS

LVCs and preserve the meaning of each context instance. Then, the contextual influence
of a context combination k is generaated as a matrix Mc,k .

– Post-processing step aims to capture user-contexts and item-contexts relationships.
This step applies the contextual influence Mc,k to the LVEs of a user and an item,
and generates the context-specific LVEs of a user and an item. As a result, the recom-
mendation rating is calculated by an inner product between the two context-specific
LVEs.

5.1.1 Pre-processing step

This step captures a multi-context relationship. In order to effectively integrate contexts, we
use the proposed context tensor. The result is a contextual influence for both users and items.
Each context type consists of multiple context instances. A specific combination of con-
text instances is named context combination k, which is constructed by nc context instances
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(one for each context type). The set-builder notation of k can be explicitly described
as:

k = {(x1, . . . , xnc )| xi ∈ ithcontext type for i = 1, . . . , nc}. (4)

All context instances in k are replaced by LVCs which are column vectors. Then, the LVCs
are vertically concatenated. Each LVC is a dc-dimensional vector with dc latent factors. The
context combination k can be represented by a matrix representation Ck as follows:

Ck = vertCat

(
nc⋃

i=1

LV Ci ∈ k

)

, (5)

where Ck consists of LVCs and forms a dc × nc matrix.
The initial LVCs in the conventional method are only randomly generated. In CT-CARS,

if several reusable conditions are satisfied, the LVCs are replaced with PLVCs as described
in Section 5.2.1. Since the LVCs in Ck are simply concatenated together, there is no rela-
tionship among LVCs. To capture the relationship, previous works set a fixed value (i.e.,
weight) for each context type and do a weighted sum to integrate Ck . However, the simple
weighted sum cannot capture various correlations among the LVCs. Instead of the weighted
sum, CT-CARS elaborately integrate Ck with the correlations among the LVCs based on the
proposed context tensor. The context tensor is combined with Ck as follows:

Mc,k =
⎡

⎢
⎣

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,1]

c

...

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,duv]

c

⎤

⎥
⎦ , (6)

which can be rewritten as follows:

Mc,k = vertCat

(
duv⋃

n=1

horzCat

(
dc⋃

m=1

C[m,:]
k T[:,m,n]

c

))

, (7)

where Mc,k forms a duv × dc matrix called a context-influential matrix, denoting the con-
textual influence of context combination k. The context tensor Tc forms a nc × duv × dc

matrix and contains various correlations among LVCs. As discussed above, previous works
model a contextual influence as a single vector. Thus, each context may not be reflected
well in a single vector. As shown in (6) and (7), CT-CARS models the context influence as
the matrix Mc,k rather than a vector. This effectively preserves the meaning of each context
instance and can increase the contextual expression power by using a matrix.

5.1.2 Post-processing step

This step captures user-contexts and item-contexts relationships and combines them. Finally
a predicted user rating of an item under a specific context combination (i.e., a recommen-
dation rating) is calculated. LVEs of a user and an item should be changed under a context
combination k. To do that, the contextual influence of k obtained from the pre-processing
step is combined with the LVEs. However, since users and items have different character-
istics, the contextual influences of k on users and items must be identified, respectively.
Thus, we do not directly combine the contextual influence of k with LVEs. Note that the
contextual influence of k is different with the contextual influences of k on users and items.

In order to model the contextual influences of k on users and items from the context-
influential matrix Mc,k (i.e., contextual influence of k), we utilize two additional matrices
Mu and Mv which indicate common characteristics of users and items, respectively. Then,
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we compute matrix multiplications between the contextual influence of k and the two
additional matrices as follows:

Mu,k = Mc,kMu, Mv,k = Mc,kMv, (8)

where Mu and Mv form dc ×duv matrices, called a contextual matrix for users and a contex-
tual matrix for items. Mu and Mv indicate the common characteristics of users and items,
respectively. Mu,k and Mv,k form duv × duv matrices, called context-influential matrices
for users and items. Mu,k and Mv,k indicate the contextual influences of k on users and
items. As discussed above, Mu,k and Mv,k are combined with LVEs of a user and an item,
respectively, and generate LVEs of a user and an item under k as follows:

qi,k = V[:,i]
u,k = Mu,kV[:,i]

u , pj,k = V[:,j ]
v,k = Mv,kV[:,j ]

v , (9)

where V[:,i]
u ∈ R

d×1 and V[:,j ]
v ∈ R

d×1 indicate LVEs of a user and an item, which
are selected from latent matrices of users Vu ∈ R

d×nu and items Vv ∈ R
d×nv .

Note that {Ck,Tc,Mu,Mv,Vu,Vv} are parameters which we need to learn, while
{Mc,k,Mc,k,Mv,k} are intermediate variables. The above equations can be rewritten by
replacing with the parameters without the intermediate variables as follows:

qi,k = V[:,i]
u,k =

⎡

⎢
⎣

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,1]

c )MuV
[:,i]
u

...

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,duv]

c MuV
[:,i]
u

⎤

⎥
⎦ , (10)

pj,k = V[:,j ]
v,k =

⎡

⎢
⎢
⎣

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,1]

c )MvV
[:,j ]
v

...

horzCat (
⋃dc

m=1C
[m,:]
k T[:,m,duv]

c MvV
[:,j ]
v

⎤

⎥
⎥
⎦ , (11)

where V[:,i]
u,k and V[:,j ]

v,k form duv-dimensional vectors, called context-specific LVEs of a user

i and an item j . V[:,i]
u indicates a LVE of a user i, and V[:,j ]

v indicates a LVE of an item
j . Finally, the recommendation rating r̂i,j,k is calculated by an inner product between V[:,i]

u,k

and V[:,j ]
v,k . The typical recommendation rating function with biases in (3) is rewritten by

replacing with (4)–(11) in the pre-processing and post-processing steps as follows:

r̂i,j,k = bg + bi + bj + bk +
qi,k=V[:,i]

u,k
︷ ︸︸ ︷
Mc,kMu
︸ ︷︷ ︸

Mu,k

V[:,i]
u ·

pj,k=V[:,j ]
v,k

︷ ︸︸ ︷
Mc,kMv
︸ ︷︷ ︸

Mv,k

V[:,j ]
v , (12)

5.1.3 Analysis of two steps

The LVC in Ck has latent factors {fc,1, . . . , fc,dc }, and the LVE in Vu and Vv have
latent factors {fu,1, . . . , fu,duv } and {fv,1, . . . , fv,duv }, respectively. As shown in Fig. 4,
{Tc,Mu,Mv} also have latent segments according to their matrix slices that combine with
the latent factors of LVC or LVE. Each step has an internal action which one latent segment
or factor does not combine with the others in different position. In the pre-processing step,
each latent factor (i.e., fc,1, fc,2, fc,3, fc,4) of Ck combines with the same latent segment
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Fig. 4 Latent factors and segments for user i in two steps

of Tc, and generates the same latent segment of Mc,k . Likewise, Vu in the post-processing
step undergoes the same process. This reflects the semantically independent combination
among the latent factors of LVC and LVE in real world. For example, the latent factors
(e.g., action, horror, romance) are independent of each other. In other words, the meaning
of each latent factor does not interfere with each other. The whole process, including both
the pre-processing and post-processing steps, has an external action. all latent factors (i.e.,
fc,1, fc,2, fc,3, fc,4) of Ck in the pre-processing step are combined with one latent fac-
tor and segment in the post-processing step. This means that all contextual information is
properly reflected in each latent factor of a user and an item.

5.2 Learning algorithm

In this section, we present our learning algorithm. We first introduce a parameter initial-
ization under several reusable conditions by using past-learned LVCs (i.e., PLVCs). Then,
we present derivatives for each parameter to find the optimized parameters. To do effec-
tively that, we employ optimization method. We also discuss the complexity of updating
parameters in our learning algorithm.

5.2.1 Parameter initialization

Optimized parameters are dependent on the initial parameters. In order to improve the
reliability of recommender systems, an appropriate parameter initialization for a training
dataset is necessary. To cope with the issue, a transfer learning has been spotlighted in many
research fields including natural language processing. For example, the pre-trained vectors
from a word2vec model (Mikolov et al. 2013) can be used as input in a new learning, and
in some cases, may yield better performance.

Generally, each LVE and LVC in learned parameters tend to have a certain pattern (i.e.,
direction, magnitude) depending on a training dataset. Among LVE and LVC, the influ-
ences of LVC are similar despite the different datasets. Thus, LVCs in learned parameters
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have a similar pattern, and are possible to reuse across real-world datasets in same recom-
mendation domain. However, several conditions must be met in order to reuse the learned
parameters (i.e., transfer learning) to a recommendation system. We check whether several
reusable conditions are the same between the current training dataset and the past-learned
result which we will reuse, such as: (1) context instance lists of all context types, (2) recom-
mendation domain, and (3) dc and duv . The recommendation domain means the same types
of items, such as movie, place, or shopping, as described in Section 1. If all reusable con-
ditions are satisfied, the parameters are initialized based on PLVCs, which showed the best
performance. Then, a new learning process is conducted. �τ is multiple past-learned results
in �, which satisfies all reusable conditions depending on the current training dataset τ .
Each past-learned result has 6 elements as shown in Fig. 2. PLVCs have a time-dependent
property. In a new learning, the influence (i.e., RW) of old PLVCs should be diminished.
Also, the influence of frequently learned data should be increased. We calculate the PLVC
to be reused as PLVCreuse,τ = RWτ × PLVClast,τ , where PLVClast,τ is latest PLVC in �τ .
RW is determined by two factors. One is the elapsed time between the present and the latest
past learning. The other is the frequency of learnings in �τ . RWτ is calculated as follows:

RWτ = 1

1 + e
laplast,τ −4α

α

, (13)

laplast,τ = laplast,τ +
√∑

i∈�τ
(
√

lapi,τ − √
laplast,τ )2

|�τ | , (14)

where the elapsed time laplast,τ determines RWτ based on a sigmoid function. α controls
the shape of (13) and indicates the degree of reduction for RWτ over time. lapi,τ denotes
the elapsed time between the present and i-th past learning in �τ . laplast,τ corresponds to
the latest past learning among lapi,τ . In order to apply the frequency of learnings to RWτ ,
(14) adjusts laplast,τ with standard deviation among square root of the elapsed times. As
shown in Fig. 5, RWτ converges to 0 at that the elapsed time is 8α or more. Especially, even
though the latest past learnings of �τ1 and �τ2 are the same, RWτ2 for �τ2 (frequently
learned) is bigger than RWτ1.

5.2.2 Derivatives for parameters

As discussed in Fig. 2, the learning model receives a set of initial parameters, � =
{Ck,Tc,Mu,Mv,Vu,Vv}, which are randomly generated or reused. Then, the initial
parameters are learned with our learning algorithm to accurately predict user’s ratings. In

Fig. 5 RW for parameter initialization
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order to obtain the optimal parameters, (i) the learning model first predicts the recommen-
dation ratings with the initial parameters by (12), and (ii) finds the differences between
observed ratings in a training dataset and predicted ratings. The difference is called an error.
(iii) The performance of the parameters is measured with a loss function. In our learning
algorithm, we formulate the loss function as the sum of the squared errors for all tuples in a
training dataset. (iv) Then, the parameters are updated, in the direction of reducing the cost
of a loss function.

The above performance measurement and parameter update processes (i–iv) are repeated
until the cost of the loss function is converged. As a result, the set of parameters is learned
as an optimal solution where the loss function reaches its minimum. To avoid the excessive
learning causing the generality problem (i.e., overfitting), we adopt the L2 regularization.
The loss function L (�) with regularization is as follows:

arg min
(Ck,Tc,Mu,Mv,Vu,Vv)∈�

L (�) = 1

2

∑

(i,j,k)∈τ

Iijk(ri,j,k − r̂i,j,k)
2 + λR(�), (15)

R(�) = ‖Ck‖2 + ‖Tc‖2 + ‖Mu‖2 + ‖Mv‖2 + ‖Vu‖2 + ‖Vv‖2, (16)

where Iijk is an indicator function such that it is 1 if user i rated item j under contexts k and
0 otherwise. ri,j,k is an observed rating in training dataset τ , and r̂i,j,k is a recommendation
rating which is a predicted rating calculated by (12). λ denotes an influence of regular-
ization, and arg min denotes a finding optimal parameters for L (�). To find the optimal
parameters, initial parameters are updated through derivatives of L (�) for each parameter
as follows:

θi := θi − γ
∂

∂θi

L (�) (17)

where θi is a parameter in �, γ denotes a learning rate, and all parameters are simulta-
neously updated. The amount of parameter update, called a gradient, is calculated with
their derivatives for all tuples in a training dataset. In this gradient descent method, (17)
is repeated until the optimal parameters are found. The derivatives for each parameter
θ ∈ {Ck,Tc,Mu,Mv,Vu,Vv} in our learning algorithm are as follows:

∂L

∂θ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑

(i,j,k)∈τ

Ei,j,k

(
Mu,k

)T V[:,j ]
v,k + λV[:,i]

u (θ = V[:,i]
u ),

−
∑

(i,j,k)∈τ

Ei,j,k

(
Mv,k

)T V[:,i]
u,k + λV[:,j ]

v (θ = V[:,j ]
v ),

−
∑

(i,j,k)∈τ

Ei,j,k

(
Mc,k

)T V[:,j ]
v,k

(
V[:,i]

u

)T + λMu (θ = Mu),

−
∑

(i,j,k)∈τ

Ei,j,k

(
Mc,k

)T V[:,i]
u,k

(
V[:,j ]

v

)T + λMv (θ = Mv),

−
∑

(i,j,k)∈τ

Ei,j,k

(
C[m,:]

k

)T

αi,j,k + λT[:,m,n]
c (θ = T[:,m,n]

c ),

−
∑

(i,j,k)∈τ

Ei,j,kβi,j,k

(
T[:,m,:]

c

)T + λC[m,:]
k (θ = C[m,:]

k ),

(18)

where Ei,j,k = ri,j,k − r̂i,j,k is an error in the loss function (15). αi,j,k and βi,j,k are
intermediate variables for (18) as follows:

αi,j,k = M[m,:]
u V[:,i]

u V[n,j ]
v,k + M[m,:]

v V[:,j ]
v V[n,i]

u,k , (19)
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βi,j,k = M[m,:]
u V[:,i]

u

(
V[:,j ]

v,k

)T + M[m,:]
v V[:,j ]

v

(
V[:,i]

u,k

)T

. (20)

5.2.3 Optimization method for learning algorithm

Second-order optimization methods for a constrained multivariate loss function effectively
explore the non-linear loss function with a large number of parameters like (15). Unlike
the fixed learning rate γ in (17), they calculate an optimal learning rate that changes
as parameters are updated in a learning. This effectively finds the minimum cost of a
loss function and learns the optimal solution for parameters. Thus, as shown in Algo-
rithm 1, we adopt the limited-memory BFGS (L-BFGS) method which are widely used in
deep learning. Note that we do not need to configure the learning rate in (17). L-BFGS
exploits a loss function and its gradient calculated by (18) according to each training
data.

However, L-BFGS commonly needs batch learning which calculates all of the gradients
on entire training dataset. Thus, L-BFGS do not have a scalability with the large-scaled
datasets. In order to address the weakness for scalability, we also apply the mini-batch
learning for large-scaled datasets as shown in Algorithm 1. At every learning iteration i, the
mini-batch learning shuffles training dataset τ , and the shuffled dataset is divided into small
chunks B called mini-batches. Then, each iteration i calculates gradients for all the batches
and updates parameters. This is applicable to large-scaled datasets because it calculates the
gradient and updates the parameters for each batch ∈ B, not for each tuple in a dataset.
Thus, mini-batch L-BFGS shows a fast optimization when a training dataset is even large
such as the MovieLens (Harper and Konstan 2015) and the Netflix (Bennett and Lanning
2007) datasets.
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5.2.4 Time complexity analysis

Time complexity analysis plays an important role in assessing the performance of recom-
mender systems. The step of updating parameters (17) in our learning algorithm has the
highest complexity among the other steps. Table 5 shows the time complexity of updating
each parameter. Since all the parameters are simultaneously updated, the parameters share
the overall complexity O(d2

uv × nc × dc × |τ |). nc, dc, and duv are fixed values according
to a training dataset. This means that the complexity grows linearly as the dataset is larger.
Note that the number of context instances and the number of context combinations do not
affect the complexity. The reason is that each context instance is learned as a latent vec-
tor and combined according to the context combination of a training data. Thus, only the
number of context types is related to the complexity.

In typical recommender systems, a parameter learning with dc = 4 and duv = 5 shows
high enough performance of recommendations (see Section 6.4.5). Furthermore, the num-
ber of context types, nc, is typically less than 10 in various real-world datasets. As you
can see in Table 6, the training datasets have less than nc = 6. For example, Movie-
Lens dataset, which are widely used as a large-scaled dataset, also has nc = 3. Thus
d2
uv × nc × dc is much small than |τ |. As a result, in most training datasets, our learning

algorithm has the linear complexity as |τ |. Our CT-CARS has a scalability for large-scaled
datasets.

6 Experiments and results

In this section, We first describe the settings in our experiments, including the real-
world datasets, comparisons, and evaluation metrics. Next, we discuss several experimental
results. We train the parameters � using stochastic gradient descent with shuffled mini-
batches and L-BFGS update rule. We configure the batch size to 200. All experiments ARE
performed on Intel Core i7-4790K CPU @ 4.00GHz and NVIDIA GeForce GTX 1080
GPU, and implemented in Python.

6.1 Real-world datasets

As shown in Table 6, we conduct the experiments on the six real-world datasets including
the two large-sized datasets in various domains. Note that we tried to use Netflix dataset
(Bennett and Lanning 2007), but it was not the proper dataset for CARS because of the
small amount of context. The ratings of all datasets are ranging from 1 to 5. We process
the datasets to convert the tuples in the form of text into a numerical ID. Then, we treat the

Table 5 Time complexity of
learning parameters for
CT-CARS

Parameter Time complexity

Vu O(duv × (duv + nc) × dc × |τ |)
Vv O(duv × (duv + nc) × dc × |τ |)
Mu O(duv × (duv + nc) × dc × |τ |)
Mv O(duv × (duv + nc) × dc × |τ |)
Tc O(d2

uv × nc × dc × |τ |)
Ck O(duv × (duv + nc) × dc × |τ |)
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empty context instance by replacing with context instance {general}, which means general
characteristic of its context type. We use the following datasets:

– Food (Ono et al. 2009) is a dataset with uniform distribution of users, items, and context
instances. There are 2 context types which are hunger and virtuality. There is no empty
context instance for all context types.

– Hotel (Zheng et al. 2012b) also has no empty context instance. However, some context
types have a large set of context instances. The dataset has fewer ratings compared to
the number of users and items.

– Movie (Zheng et al. 2015b) has 3 context types which are time, location, and
companion. Since some tuples have no contextual information, the dataset is not
completeness.

– Restaurant (Ramirez-Garcia and Garcı́a-Valdez 2014) has 3 context types which are
time, location, and occupation. Some tuples have empty context instances in time,
location. Thus, we add a context instance {general}.

– MovieLens 1M1 (Harper and Konstan 2015) is used as ML domain in our experiments.
The dataset consists of 1 million ratings by 6040 users who rated 20 and more items,
and has 4 context types which are gender, age, occupation, and genre (the first of genre
list).

– Ex-MovieLens 1M is the extended MovieLens dataset. We convert the timestamp of
each rating into the local time based on the user’s zip-code. Thus, two context types are
added: daytime to indicate the part of the day, and isweekend to indicate whether the
weekend or weekday. This dataset is used as Ex-ML domain.

Each dataset has entity information and contextual information. The contextual infor-
mation consists of the number of context types (#Types), the number of context instances
per context type (#Instances), the number of observed context combinations (#Cases), and
Completeness. Completeness indicates that context instances of a tuple are all recorded (�)
or partially recorded (�) or not recorded (×). In order to analyze the experimental results
in detail, we analyze characteristics of each dataset such as the context density (C. den-
sity), the rating density (R. density), and the standard deviation (Std. Error). R. density is
calculated as #Ratings/(#Users × #I tems × ∏

(#Instances)). C. density is calculated
as #Cases/

∏
(#Instances). Std. Error indicates distribution degree of the number of each

user’s ratings. The low ratio of #Ratings to #Users causes the wide distribution and Std.
Error decreases. On the other hand, if the numbers of user’s ratings are not evenly dis-
tributed, Std. Error will increase. For example, even though the ratio of #Ratings to #Users
is similar, Std. Error of Restaurant is higher than Movie. The reason is that the numbers of
ratings for all users in Movie are distributed evenly than Restaurant. Therefore, it is easy
to analyze Movie which is rich in data for each user than Restaurant. Specifically, since
only context types of Ex-ML are extended from ML, Std. Errors of ML and Ex-ML are
same.

6.2 Comparisons

We mainly compare CT-CARS with the following three previous works. Specifically, we
will focus on COT which is a state-of-the-art recommender system.

1http://www.grouplens.org/datasets/movielens/.

http://www.grouplens.org/datasets/movielens/
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– FM (Rendle et al. 2011) is the recommender system which shows applicability on
various contexts and domains. We employ libFM2 (Rendle 2012) to evaluate FM.

– HeteroMF (Jamali and Lakshmanan 2013) learns a context-dependent matrix for each
context combination. The complexity and the computational overhead are very high,
and accuracy of recommendations is also low.

– COT (Liu et al. 2015a) is one of the state-of-the-art recommender systems with a
stepwise approach. COT uses contextual operating tensors to capture the user-contexts
and item-contexts relationships. However, they cannot elaborately integrate context
instances.

6.3 Evaluation metrics

To properly evaluate the recommendation system, both learning accuracy and ranking qual-
ity should be evaluated. The learning accuracy indicates how close the predicted ratings are
to the observed ratings in datasets. A list of item rankings for a specific user is sorted by
user’s ratings. The ranking quality indicates how similar the predicted item rankings is to
the observed item rankings in datasets.

– Learning Accuracy can be estimated by the differences an observed rating in training
dataset and a predicted rating. We adopt the Root Mean Square Error (RMSE) and the
Mean Absolute Error (MAE) which have been widely used to measure the performance
of recommendations. The two metrics are as follows:

RMSE =
√
√
√
√

1

|τtest |
∑

(i,j,k)∈τtest

(ri,j,k − r̂i,j,k)2, (21)

MAE = 1

|τtest |
∑

(i,j,k)∈τtest

|ri,j,k − r̂i,j,k|, (22)

where τtest denotes the test dataset, and |τtest | d enotes the number of ratings in τtest .
– Ranking Quality is commonly used in information retrieval, recommender systems,

and so on. To evaluate the ranking quality, we used the Normalized Discounted Cumu-
lative Gain (nDCG). We first select 500 tuples in each dataset, and get the items of
top-M rankings from 500 tuples. Then, nDCG@M is calculated by comparing the rank-
ings of the items before learning (ideal) and the same items after learning. nDCG is as
follows:

DCG@M =
M∑

i=1

R(itemi)

log
(i+1)
2

, nDCG@M = DCG@M

IDCG@M
, (23)

where itemi denotes i-th selecting item of top-M, and R(itemi) gets the observed
user’s rating of itemi . Ideal nDCG, IDCG@M, indicates that the rankings of the top-M
items after learning are ideal. We select the items of top-10 rankings for nDCG@10.
nDCG varies from 0.0 to 1.0 that 1.0 indicates the ideal rankings of predicted
items.

2http://www.libfm.org/.

http://www.libfm.org/
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6.4 Results and discussions

Our experiments are intended to demonstrate that CT-CARS using the proposed context
tensor can improve contextual expression power and fully take advantage of correlations
among multiple contexts. To this end, we conduct several experiments to compare the per-
formance of CT-CARS with several state-of-the-art works in terms of learning accuracy and
ranking quality. Also, the results contain the utilizing parameter initialization with PLVCs,
the scalability analysis. and the impact of dc and duv . Note that we adopt a 5-fold cross val-
idation to evaluate the performance of recommender systems. Each experimental result is
the average value of the five 5-fold cross validations.

6.4.1 Learning accuracy and ranking quality

Table 7 shows the average values of learning accuracy as RMSE, MAE and the ranking
quality as nDCG@10 on six datasets including two large-scaled datasets. We also indi-
cate “± 2 standard deviations” below the average RMSE, MAE, and nDCG values, which
means that a new value has about 95% probability of being within 2 standard deviations
of the average. Lower RMSE and MAE and higher nDCG indicate better performance. We
configure duv = 5 and dc = 4 because the performances stay nearly stable after the con-
figuration. The percentage values indicate the improved performance ratio of CT-CARS in
RMSE, MAE, and nDCG compared with the conventional recommender systems. Note that
we mainly compare our CT-CARS with COT which is a state-of-the-art work. CT-CARS
outperforms others in learning accuracy and ranking quality, which utilize the context ten-
sor to effectively combine multiple LVCs. Generally, the experimental results show that
datasets with lower Std. Error and higher C. density and R. density lead to the high learning
accuracy and ranking quality. Among all datasets, Food has highest C. density, R. density
and the even distribution degree of the number of each user’s ratings (low Std. Error). Thus,
Food can easily analyze users, items, and contexts to capture the user-contexts and item-
contexts relations, and shows the best performance among six datasets. On the other hand,
Hotel has low C. density, R. density, and ratio of #Ratings to #Users. Thus, Hotel shows the
low performance among six datasets even in low Std. Error. As discussed in Section 6.1,
since Movie is easy to analyze than Restaurant, Movie shows slightly better performance
than Restaurant. We could also see the recommendation performance of Ex-ML is higher
than ML, even in the same dataset MovieLens. The reason is that Ex-ML has more context
types (daytime and isweekend), which are extended from ML. Thus, we can find that rich
contextual information helps to improve the performance of recommendations.

CT-CARS achieve the best among the previous works. FM cannot capture the contextual
influence on users and items, respectively, and HeteroMF must learn tremendous context-
dependent matrices for all context combinations. Due to the problems, FM and HeteroMF
show low accuracy and ranking quality than the others. CT-CARS and COT learn context
instances as latent vectors and combine them according to a context combination. They
also capture the contextual influence on users and items, respectively. Thus, CT-CARS and
COT achieve higher performance than FM and HeteroMF. Moreover, we can observe that
CT-CARS outperforms COT on all datasets. This proves that our proposed context tensor
which captures various correlations among contexts is helpful. Specifically, the improve-
ment of CT-CARS on the Hotel is the highest. Thus, the context tensor particularly helps to
identify the contextual influence of numerous contexts. In the case of large-scaled datasets,
the performance improvement from ML to Ex-ML with CT-CARS is higher than previous
methods.
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6.4.2 Utilizing past-learned parameters

CT-CARS and COT basically initialize the parameters at random. This initialization causes
different learning performance for each learning, and the low reliability of the recommender
systems is reduced. To cope with the problem, we initialize the parameters with the past-
learned LVC which showed high performance. In order to analyze the impact of PLVC on
each recommender system, we compare CT-CARS with COT depending on whether PLVC
is used or not. As shown in Fig. 6a, both CT-CARS and COT using PLVC outperform
random parameter initialization. Moreover, RMSE of CT-CARS with PLVC is higher than
COT. This result proves that PLVCs are effectively reflected in new learning of CT-CARS
which has a context tensor. Note that the context tensor is elaborately combined with LVCs.
Thus, this lead to high performance and the reliability of the recommender system.

The learning algorithm takes PLVCs or random parameters as input, and outputs learned
parameters. Figure 6b shows vector similarities between the inputs and the outputs by using
a cosine similarity equation. The vector similarity between the PLVCs and the learned
parameters of using them is higher than random parameters. This indicate that PLVCs are
helpful for the parameter initialization. The similarity of CT-CARS with PLVCs is higher
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Fig. 6 Impact of past-learned parameters
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than COT with PLVCs. This indicates that the context tensor of CT-CARS preserves the
meaning of each PLVC more effectively than COT. Figure 6c shows that both CT-CARS
and COT with PLVC performed less iterations than the random initialization. Moreover,
CT-CARS was faster than COT. This indicates that PLVCs also help to learn faster. As a
result, the parameter learning with PLVCs improves the reliability.

6.4.3 RMSE and MAE with iterations

As shown in Figs. 7 and 8, RMSE and MAE show the convergence curves, which decrease
according to the learning iterations. In general, RMSE and MAE show similar patterns.
Since Food has highest C. density, R. density and low Std. Error among all datasets, the
RMSE and MAE are the lowest. We observe that FM and HeteroMF show increasing pat-
terns of RMSE and MAE on some datasets. The reason is that HeteroMF had a higher
complexity than others because of too many context-dependent matrices and FM could
not capture the context influence on entities, respectively. CT-CARS and COT show high
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Fig. 8 RMSE and MAE on Movie, ML, and Ex-ML datasets

performance and decreasing patterns, except on the Hotel. As discussed above, Hotel is not
easy to analyze because Hotel has the lowest C. density and R. density. CT-CARS and COT
integrate LVCs according to a context combination. They do not need to learn all context
combinations like HeteroMF which has the highest complexity. Thus, the low complexities
of CT-CARS and COT help to learn faster than HeteroMF. Among CT-CARS and COT,
CT-CARS shows a faster and lower convergence than COT. Since the proposed context ten-
sor of CT-CARS can elaborately capture the contextual influences than COT, CT-CARS
can more accurately predict a user’s perference. Specifically, we find patterns which ini-
tially decrease, and gradually increase over time. This results from the over-fitting problem
which the generality of a learning decreased as learning iterated. Thus, high iterations do
not always lead to the high performance.

6.4.4 Scalability analysis

We conduct an experiment for the complexity of our algorithm. As discussed in Section 6.4,
the overall complexity of our parameter learning algorithm is O(d2

uv × nc × dc × |τ |).
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This means that the complexity is nearly linear depends on the size of the datasets. Thus,
our CT-CARS has the scalability on large-scaled datasets. In order to demonstrate the
scalability of our CT-CARS, we first construct 10 subsets from the large-scaled dataset,
Ex-ML, according to the number of training data. The subsets consist of ranging from
100K to 1M in 100K units. Then, we measure the average runtime of iterations in the
learning on each subset. Moreover, we evaluate RMSE of the learnings. Note that we con-
figure dui = 5 and dc = 4, and use mini-batch L-BFGS with both 100 batches and 200
batches.

As shown in Fig. 9, the runtime increases linearly as the dataset is larger in L-BFGS
with 100 batches and 200 batches. This shows that CT-CARS has scalability even on large-
scaled datasets. The learning with 200 batches is faster than 100 batches. Since parameters
are updated per batch, the learning with 200 batches shows fast convergence. This is more
prominent in large-scaled datasets. However, the increasin‘g number of batches does not
mean that the runtime will decrease linearly. The learning with 200 batches do not show 2×
faster learning than 100 batches. The reason is that each batch does not contain all entities
and contexts. Thus, the parameter learning for each batch is limited. We can also see that
the larger the training data size, the higher the learning accuracy. Moreover, the learning
accuracy with 200 batches is slightly higher than 100 batches.

6.4.5 The number of latent factors

Lastly, we discuss the number of latent factors, duv and dc, which are one of the determinants
of learning accuracy. Since our recommendation rating function is a stepwise approach, the
number of the latent factors can be configured separately. The latent factors of LVE and LVC
indicate characteristics of entities and contexts. Thus, increasing duv and dc can represent a
user, an item, and a context in detail. This improve the performance of recommendations.
However, all values more than a certain value no longer improve the learning accuracy and
only increase the complexity of the learning.

Fig. 9 Runtime of learning based on the number of training data
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Fig. 10 RMSE of CT-CARS with a variety of duv and dc

As shown in Fig. 10, we conduct learnings and evaluate RMSE on the Food dataset while
changing duv and dc from 1 to 10. The configuration duv = 5 and dc = 4 is enough to
get the high performance. All datasets in Table 6 have the much larger number of entity
combinations than the number of context combinations. This means that LVEs should be
more detailed than LVCs. Especially, the learnings with the configuration beyond duv = 5
and dc = 4 show rather low performances. Too many latent factors have high coverage for
a training dataset. on the other hand, coverage for data not participating in learning is low.
For this reason, we configure duv = 5 and dc = 4 in all the previous experiments.

7 Conclusion and future work

One of the most challenges in the recent latent factor models is the unreliability of rec-
ommendations. Since learned parameters depend on initial parameters, the conventional
models often show low reliability. To deal with the problems, we propose a parameter ini-
tialization with PLVCs. The initialization improves the reliability and reduces the iterations
of learning. Furthermore, previous models integrate the multiple LVCs into a single latent
vector by a weighted sum with fixed weight values for context types. Thus, they cannot
effectively integrate LVCs, and dilute the meaning of each LVC. Our recommendation rat-
ing function and learning algorithm utilize the proposed context tensor in order to preserve
the contextual influence as much as possible. Experimental results using six real-world
datasets show that CT-CARS outperforms previous models in both accuracy and ranking
quality.

There is a limitation of our experiments that we do not consider very large datasets such
as MovieLens 20M. Thus, we will perform experiments on the datasets in future works.
Abundant data from IoT and mobile environments can be exploited as context data for rec-
ommender systems. Since unnecessary context data dilute the expression of latent vectors,
sorting out appropriate context data is crucial in order to improve the accuracy of recom-
mendations. Therefore, we will group the influential context types depending on the domain
to filter out useless context types. Furthermore, in order to treat the problems of data spar-
sity and cold start on each recommendation domain, we will augment a rating tensor by
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using a semantic reasoning to supplement information for entities. Moreover, we will han-
dle the approach which adaptively changes latent segments of contextual information based
on its changing rates.
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